
Under review as a conference paper at ICLR 2020

LADDER POLYNOMIAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Polynomial neural networks are essentially polynomial functions. These
networks are shown to have nice theoretical properties by previous analysis,
but they are hard to train when their polynomial orders are high. In this work,
we devise a new type of activations and then create the Ladder Polynomial
Neural Network (LPNN). The LPNN has a feedforward structure. It provides
good control of its polynomial order because its order increases by 1 with
each of its hidden layers. The new network can be treated with deep learning
techniques such as batch normalization and dropout. As a result, it can be
well trained with generic optimization algorithms regardless of its depth. In
our empirical study, deep LPNN models achieve good performances in a
series of regression and classification tasks.

1 INTRODUCTION

A polynomial neural network has a unique underlying function, which is a polynomial. Well
studied by mathematicians, polynomial functions have been shown to have many favorable
theoretical properties. Polynomial neural networks also bridge the analysis of general neural
architectures to the properties of polynomial functions. However, in practice, there is still a gap
in performance between polynomial neural networks and popular feedforward neural networks.
One purpose of this work is to narrow the gap and provide a new model for both theoretical
study and practice.

One method of constructing polynomial neural networks is to use the quadratic function as
activations in a feedforward network. Livni et al. (2014) call this specific type of networks as
PNNs and show several of their theoretical properties, e.g. they are polynomial-time learnable,
and they can approximate other feedforward neural networks. Kileel et al. (2019) study their
functional space from the algebraic perspective. The theoretical analysis favors low-order
polynomials in terms of learning time. However, PNNs cannot have an arbitrary order, as their
orders grow exponentially with their layers. For learning PNN models, researchers often devise
specialized learning algorithms (Livni et al., 2014; Soltani & Hegde, 2018; Du & Lee, 2018;
Soltani & Hegde, 2019). Most of these algorithms only work for PNNs with one or two hidden
layers. A deep PNN will have a very large order, then the model becomes hard to train.

Polynomial learning models can also be constructed by defining a polynomial kernel over input
features and network parameters (Blondel et al., 2016b;a; 2017). Blondel et al. (2016b) show
that PNNs with one hidden layer can be constructed by a second-order polynomial kernel.
One can use an arbitrary order in the polynomial kernel, then the constructed learning model
has the same order. Factorization machines (Rendle, 2010; Blondel et al., 2016a) is another
polynomial model constructed from the ANOVA kernel. Training of these models often needs
special optimization methods. They don’t have a layered structure, so it is not easy to apply
deep learning techniques, such as batch normalization, to these models.

In this work, we propose a new type of polynomial neural networks, Ladder Polynomial Neural
Networks (LPNNs). Particularly, we introduce a new activation function, product activation, and
use it in a feedforward structure. In this new activation function, the hidden layer is multiplied
to a linear transformation of the input feature. This activation always increases the polynomial
order of the network by one, so we can specify an arbitrary order for the network. As a type
of feedforward networks, an LPNN can be trained with standard training techniques. Further
analysis shows that the function surface of LPNN has much better smooth guarantee than PNNs.
As a function of learnable parameters, the network is block multiconvex with respect it weight

1

Under review as a conference paper at ICLR 2020

matrices, providing opportunities of faster learning methods. The model space of LPNNs
includes models constructed from polynomial kernels as special cases, indicating LPNNs are
more flexible than these models.

The LPNN model is evaluated in a list of benchmark regression and classification tasks. The re-
sults indicate that the LPNN outperforms other polynomial networks in general. Its classification
performances match those of a standard feedforward neural network. Our results also indicate
the necessity of batch normalization and dropout when training deep LPNN models.

2 THE LADDER POLYNOMIAL NEURAL NETWORK

We first define the general form of a feedforward neural network. Suppose the input to the
neural network is a feature vector x ∈ Rd0 , and denote h0 = x. Suppose the network has L
hidden layers, with each layer ` ∈ {1, . . . , L} takes the input h`−1 and has the output h`. Each
layer is defined by

h` = σ
(
W`h`−1) . (1)

Here W` is the weight matrix for layer `, and σ(·) is the activation function. Note that
superscripts of hidden vectors and weight matrices always denote layer indices, not exponents.
For notational simplicity, we omit intercept vectors for now and will add them back later.

We first define the product activation σp(·) before we define the new network,

σp(u;V,x) = u� (Vx). (2)

Here � is the element-wise product. V is the parameter for the activation function. V has
a shape of (d, d0) if u has d entries. The activation is data-dependent. If u is a polynomial
function of x, then σp(u;V,x) is also a polynomial function of x with the polynomial order
increased by 1. Note that the product activation is not a function of u because different x values
may give the same u value but different responses from σp(u;V,x).

We use product activations in a feedforward structure and get an LPNN. We use a different
matrix V` for the product activation in each layer `. Suppose hL is the output of the neural
network, the function of the LPNN is formally defined as hL = LPNN(x; θ),

LPNN(x; θ) := σp
(
WL σp

(
WL−1 . . . σp

(
W1x;V1,x

)
. . . ;VL−1,x

)
;VL,x

)
. (3)

Here we use θ to denote all network parameters, θ =
(
W1, . . . ,WL,V1, . . . ,VL

)
. The first

hidden layer h1 is a second order polynomial of the input, and each activation increase the order
by 1, so the hidden layer h` is an order (`+1) polynomial. The entire network is an order L+1
polynomial function of the input.

We further re-write the function with simple additions and multiplications.

h` =
(
W`h`−1)� (V`x

)
=

d∑̀
i=1

ei
(
W`

ih
`
) (

V`
ix
)
. (4)

Here ei is a one-hot vector with its i-th entry to be one. Note that W`
i and V`

i are both row
vectors, so both

(
W`

ih
`
)

and
(
V`

ix
)

are scalars.

After expanding all product activations and taking out all summations, we write the entire
network as

LPNN(x; θ) =

dL∑
iL=1

eiL

d(L−1)∑
i(L−1)=1

· · ·
d1∑

i1=1

[(
L∏

`=2

W`
i`,i`−1

)(
W`

i1x
)(L∏

`=1

V̂`
i`,:

x̂

)]
. (5)

This equation further show that the polynomial order increases with the number of layers.

In this form, every monomial term has order L+ 1. To include terms with different orders, we
need to include intercept vectors. Suppose each layer has an intercept vector b`, then the layer
is defined by

h` = σp(W
`h`−1 + b`;V`,x). (6)

2

Under review as a conference paper at ICLR 2020

We can re-write the input, hidden vectors, and weight matrices in the following form,

x̂ =

[
x
1

]
, ĥ` =

[
h
1

]
, Ŵ` =

[
W` b`

0> 1

]
, V̂` =

[
V` 0
0> 1

]
, (7)

then we still have the previous form, ĥ` = σp(Ŵ
`ĥ`−1; V̂`, x̂), and then all previous deriva-

tions apply. For notational simplicity, the following analysis continues to use notations without
the intercept term.

3 ANALYSIS

3.1 SMOOTHNESS OF THE FUNCTION SURFACE

The smoothness of the function surface of a neural network characterizes the network’s important
properties, such as being robust to input perturbations. This subsection gives an upper bound of
the Lipschitz constant of the LPNN function.

We first compute the first order derivative of h`(x) with respective to the input x. According to
(4), we have,

∇h1 = diag(V1x)W1 + diag(W1x)V1, (8)

∇h` = diag(V`x)W`(∇h`−1) + diag(W`h`−1)V`, ` = 2, 3, · · · , L (9)

where diag(u) denotes a diagonal matrix with u as its diagonal.

Then we can give a bound of the first order derivative, which in turn gives an estimate of the
Lipschitz constant of h` as a function of x . The results are summarized in the following theorem.
Here, for the sake of simplicity, we use l2 norm (‖ · ‖) for both vectors and matrices.
Theorem 3.1. If h` is defined recursively as in (1) and (2), then, for ` = 1, 2, . . . , L,

‖h`‖ ≤

(∏̀
k=1

‖Vk‖‖Wk‖

)
‖x‖`+1 =

(∏̀
k=1

ρ(Vk)ρ(Wk)

)
‖x‖`+1 (10)

and

‖∇h`(x)‖ ≤ (`+ 1)

(∏̀
k=1

‖Vk‖‖Wk‖

)
‖x‖` = (`+ 1)

(∏̀
k=1

ρ(Vk)ρ(Wk)

)
‖x‖`, (11)

where ρ(·) takes the maximal singular value of its input matrix.

Proof. Our proof is based on two inequalities. The first one is from the definition of matrix
norm, e.g. ‖W`h`−1‖ ≤ ρ

(
W`

)
‖h`−1‖. The second one is the Cauchy-Schwarz inequality,

e.g. ‖(W`h`−1)� (V`x)‖ ≤ ‖(W`h`−1)‖ · ‖(V`x)‖.
We will use mathematical induction to derive the results. For ` = 1,

‖h1‖ = ‖diag(V1x)W1x‖ ≤ ‖V1‖‖W1‖‖x‖2,
‖∇h1‖ = ‖diag(V1x)W1 + diag(W1x)V1‖ ≤ 2‖V1‖‖W1‖‖x‖.

This means (10) and (11) hold for ` = 1. Now assume (10) and (11) hold for `− 1, then

‖h`‖ = ‖diag(V`x)W`h`−1‖ ≤ ‖V`‖‖x‖‖W`‖‖h`−1‖ ≤

(
k∏

`=1

‖V`‖‖W`‖

)
‖x‖`+1,

and

‖∇h`‖ = ‖ diag(V`x)W`(∇h`−1(x)) + diag(W`h`−1(x))V`‖
≤ ‖V`‖‖x‖‖W`‖‖∇h`−1(x)‖+ ‖W`‖‖h`−1(x)‖‖V`‖

= (`+ 1)

(∏̀
k=1

‖Vk‖‖Wk‖

)
‖x‖`.

3

Under review as a conference paper at ICLR 2020

This bound indicates the relation between the smoothness and the norm of weight matrices.
The result is similar to the feedforward neural networks with other activation functions whose
gradients are always between -1 and 1 (Virmaux & Scaman, 2018). The proof above is inde-
pendent of the data and network parameters. We can further improve the bound by considering
network weights with an approach similar to (Virmaux & Scaman, 2018), but we defer the
further investigation to future work.

As a comparison, the same type of bound is much higher for a deep PNN model, as its order is
exponential in its number of layers.

3.2 MULTICONVEXITY IN PARAMETERS

We also study the network as a function of its parameters to understand its function surface for
parameter optimization.

The network output hL is linear in a weight matrix W` or V` if we hold other weights as con-
stants. We can see so if we examine the function form in (5): there is no multiplications between
any two entries in W` or V`. With this property, the learning model is block multiconvex with
respect to the model parameters.
Theorem 3.2. Let hL = LPNN(x; θ) and y be the fitting target. Suppose loss(hL,y) is a
convex loss function, then the training objective of an LPNN,

obj(θ) = loss(hL,y) +
1

2
λ

L∑
`=1

(
‖W`‖2F + ‖V`‖2F

)
, (12)

is block multiconvex in blocks {W1, . . . ,WL,V1, . . . ,VL}.

Multiconvexity enables some specialized optimization algorithms (Shen et al., 2017). These
algorithms have the potential to be combined with generic optimization algorithms and speed
up the training of LPNN.

As a comparison, network weights in PNNs are exponentiated through hidden layers. We believe
PNNs has a much rough surface than LPNNs.

3.3 TRAINING WITH BATCH NORMALIZATION AND DROPOUT

Batch normalization (BN) (Ioffe & Szegedy, 2015) and dropout (Srivastava et al., 2014) are
effective techniques for training deep neural networks. We can apply batch normalization and
dropout to an LPNN without any modification given its layered structure. We put the BN layer
after the activation per some practitioners’ advice, though the original paper suggests putting it
before the activation.

When LPNN has BN layers, the model in training is not a polynomial function, but the trained
model with constant BN parameters are still polynomial functions. Here we want to integrate
BN parameters into network weights so that previous derivations still apply. We consider one
hidden layer and omit layer indices for notational simplicity.

Let [h1, . . . ,hn] be hidden layer values of n instances in a batch, then the batch-normalized
hidden layer hi of instance i is computed by

hi = γ(hi − µ)/(σ + ε) + β, with µ =
1

n

n∑
i=1

hi, σ =
1

n

n∑
i=1

(hi − µ)2. (13)

Here the division / and the square are element-wise operations, and ε is a small positive
number.

In the training procedure, the variance σ is a function of input instances in the batch, therefore,
the hidden vector hi is not a linear function of the input x anymore. After training, the mean
vector µ and the variance vector σ become constants, then the model is still a polynomial
function.

4

Under review as a conference paper at ICLR 2020

Let’s write the model with BN into the original function form. Let µ, σ, γ, and β are convergent
values of the training procedure, then the equivalent LPNN without batch normalization has
parameters defined as follows.

W′ = W diag(γ/(σ + ε)), b′ = −W diag(γµ/(σ + ε) + β (14)

Here we need to build equivalence with the LPNN with intercept terms. These terms can be
absorbed into weight matrices by (7).

In this result, we can see that BN changes the norm of weight matrices and then the Lipschitz
constant of the network function. Based on the study by Santurkar et al. (2018), BN can simply
shrink the norms of weight matrices to avoid having steep slopes in the function surface.

Dropout can be directly applied to LPNN. In the training phase, using dropout is equivalent to
removing some entries in summations of (5) and rescaling the summation. In the testing phase,
dropout have no effect, and the trained model is just as the definition above.

3.4 RELATION WITH MODELS BASED ON POLYNOMIAL KERNELS

In this subsection, we show that the polynomial networks constructed from polynomial kernel
functions (Blondel et al., 2016b) are special cases of LPNN networks.
Lemma 3.3. The polynomial kernel function Pm(p,x) = (λ+ p>x)m with p,x ∈ Rd can be
written in the form of LPNN(x; θ) such that network weights in θ can be expressed by p.

Proof. Append 1 to the feature vector, h0 = [x>, 1]>. Set W1 = [p>, λ]>, V` = [p>, λ]>

for all ` = 1, . . . ,m− 1, and Wll = [1] for ` = 2, . . . , L, then LPNN(x; θ) is equivalent to
the kernel by (5).

Theorem 3.4. The learning models in the form of y =
∑K

k=1 πk(λ+ p>k x)
m (Blondel et al.,

2016b) are special cases of LPNN.
Theorem 3.5. The second order factorization machines are special cases of LPNN.

Proof. By Appendix D.3 in (Blondel et al., 2016b) , the function of a factorization machine can
be computed by

FM(x;U,S) =
1

2

[
x>US>x− tr

(
U>diag(x)diag(x)S

)]
=

1

2

[
x>US>x− (x� x)>diag

(
SU>

)]
(15)

We can set the network as follows.

W1 =

[
U
I

]
,V1 =

[
S
I

]
(16)

Here the identity matrix in W1 and V1 passes x to the hidden layer and get (x� x) there. The
hidden layer h1 = [(Ux)� (Sx);x� x]. Then we set W2 = [1>, t>] with t = diag

(
SU>

)
,

then W2h1 = FM(x;U,S).

From this analysis, we see that the LPNN is more flexible than polynomial models constructed
from polynomial kernel functions. We believe the LPNN is also more flexible than the factor-
ization machine. Compared with LPNNs, the factorization machine does not have monomials
that contains the second or higher order exponential of a feature entry. We don’t expect this
difference brings much expressiveness to the factorization machine, though it creates difficulties
for writing a factorization machine in the form of an LPNN.

5

Under review as a conference paper at ICLR 2020

Table 1: RMSE of different models on regression tasks

methods wine-quality power-plant kin8nm boston-housing concrete-strength
FF 0.60 ± 0.04* 4.05 ±0.17* 0.100 ± 0.002 2.82 ± 0.76* 5.10 ±0.49*
FM 0.73 ± 0.09 4.43 ± 0.15 0.155 ± 0.004 4.80 ± 1.14 8.52 ±0.59
PK 4.39 ± 5.50 4.05 ± 0.15* 0.100 ± 0.005 41.9 ± 77.2 7.95 ±2.42

PNN 5.49 ± 16.5 5.83 ± 1.39 0.102 ± 0.007 4.59 ± 2.74 5.58 ±0.48
LPNN 0.82± 0.18 4.13 ± 0.16 0.099 ± 0.006* 4.05 ± 2.13 5.20 ±0.62

Table 2: Error rates of different models on classification tasks

methods mnist fashion-mnist skin sensIT letter covtype-b covtype
FF 0.0185 0.108 0.0313 0.176 0.096 0.113 0.146
FM 0.0573 0.167 0.0439 0.260 0.546 0.208 0.575
PK 0.0506 0.168 0.0039 0.225 0.248 0.191 0.494

PNN 0.0503 0.127 0.0018 0.199 0.104 0.097 0.103
LPNN 0.0171 0.117 0.0017 0.175 0.0729 0.117 0.140

4 EXPERIMENT

4.1 EXPERIMENT SETUP

In this section, we evaluate the LPNN on several learning tasks. The LPNN is compared
against feedforwrad network and three polynomial learning models. All models are summarized
below.

Feedforward network (FF): FF uses ReLU functions as activations. We add l-2 norm regulraiza-
tion to the model. The regularization weight is chosen from {1e-6, 1e-5, 1e-4, 5e-4}. When
dropout is applied, the dropout rate is chosen from {0, 0.05, 0.1, 0.2, 0.4}.

Polynomial Neural Network (PNN): the model is the same as the FF except its activations are
the quadratic function. It has the same hyperparameters as FF, and it is trained in the same way
as FF.

Factorization Machine (FM): we use the implementation from the sklearn package (Niculae,
Accessed in 2019). The order of FM in this implementation can be 2 or 3. It add several
ANOVA kernel functions (called factors) to increase model complexity. The model is also
regularized by l-2 norm. The hyperparameters of FM include the order, the number of factors,
and the weight of regularization. The number of factors is chosen from from {2, 4, 8, 16},
and the regularization weight is chose from the same range as FF. This implementation of
FF does not have multiple outputs, so we have used one-vs-rest for multiclass classification
problems.

Polynomial Kernel (PK): PK uses polynomial kernels. Other than that, PK is similar to FM. We
can specify the order of the underlying polynomial function of PK. The hyperparameters of PK
are the same as FM. The implementation is also from the sklearn package.

LPNN: the model is the same as the FF except its activations are product activations. Its
hyperparameters are the same as FF, and it is trained in the same way as FF.

We test these models on five regression datasets (wine-quality, power-plant, kin8nm, boston-
housing, and concrete-strength) and six classification datasets (mnist, fashion-mnist, skin,
sensIT, letter, covtype-b, and covtype). The mnist and fasion-mnist datasets come with the
Keras package, the skin, sensIT, and covtype-b datasets are from the libSVM website, and all
other datasets are from the UCI repository.

4.2 PRODUCT ACTIVATIONS

We first examine the product activation function h = σp(u;V,x) in a trained model. We set up
an LPNN with three hidden layers and then train it on the mnist dataset. The training finishes
after 20 epoches when the network has a validation accuracy of 0.984. Then we check inputs

6

Under review as a conference paper at ICLR 2020

2 0

0

2

4

2 0
2

0

0 10

0

10

5 0 5

0

10

5 0 5

10

0

0 10

0

10

20

1 0 1
1

0

1

2

0 2

4

2

0

2

0 10
20

10

0

5 0 5
10

0

10

10 0

5

0

5

5 0 5
10

0

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)
hidden layer 1 hidden layer 2 hidden layer 3

Figure 1: Product activations of LPNN on the mnist dataset. The model has three hidden layers.
From each layer, activations of four hidden units are plot here in the same color.

Table 3: Effect of batch normalization and dropout

L BN and dropout only dropout only BN neither
1 7.77 ± 0.53 7.78 ± 0.54 7.82 ± 0.55 7.76 ± 0.53
2 6.05 ± 0.50 5.98 ± 0.57 6.26 ± 0.87 6.30 ± 0.96
3 5.20 ± 0.62 5.12 ± 0.58 5.82 ± 1.13 6.89 ± 2.06
5 4.72 ± 0.66 4.92 ± 0.78 5.46 ± 1.83 7.86 ± 3.10
10 5.11 ± 2.18 4.71 ± 0.90 4.97 ± 0.97 7.49 ± 2.77

and responses of the activation functions at three different layers. We plot the response hi
against the corresponding ui for each hidden unit i to generate a subplot. We randomly select
400 instances and plot each (hi, ui) pair. We plot four hidden units at each of all three hidden
layers and generate plots in Figure 1.

In these results, we see that the product activation is not really a function because inputs with
the same value may have different responses. It is also clear that the product activation is not
linear. The behavior of the activation is versatile: the activations shown in (c) at layer 1 and (b)
at layer 3 exhibit some linear behavior while the activations shown in (d) at layer 1 and (c) at
layer 2 roughly approximate the quadratic function.

4.3 REGRESSION AND CLASSIFICATION

We first apply the model to five regression tasks. We use the same data splits by Gal (Accessed
in 2019). Each dataset has 20 random splits. On each split, we run model selection through
five-fold cross validation, re-train the model, and then test the model on the test set. The results
are averaged over the 20 splits. For FF, PNN, and LPNN, we set three hidden layers and 50
hidden units in each hidden layer. We apply dropout and batch normalization to all the three
models. We set the polynomial order to be 4 for the PK model to match the order as LPNN.
We set the order of FM to be 3. For each model, we select all hyperparameters described in the
subsection above.

Table 1 tabulates RMSE of all algorithms on all datasets. On most datasets, no single algorithm
outperforms others with statistical significance, but we put a * at the smallest error mean. If
comparing the mean values only, LPNN performs a little worse than FF but better than other
polynomial models. The PNN has very bad performances on two splits of the wine-quality
dataset. We speculate that PNN is not stable when its polynomial order is high. PK has bad

7

Under review as a conference paper at ICLR 2020

Table 4: Effect of batch normalization and dropout on the mnist dataset

L BN and dropout only dropout only BN neither
1 0.0191 0.0208 0.0242 0.0171
2 0.0191 0.0188 0.0202 0.0192
3 0.0170 0.0187 0.0229 0.0207
5 0.0207 0.7657 0.0271 0.8947

10 0.0230 0.0298 0.0207 0.0241

performances on wine-quality and boston-housing because the model does not fit the two tasks–
its performances are bad on most splits.

We then test these models on seven classification tasks. For each dataset, we set 30% as the test
set, except for mnist and fasion-mnist datasets, which come with test sets. We do model selection
for both architecture and hyperparameters on 20% of the training set. For neural networks, the
number of hidden layers is chosen from {1, 2, 4}. We shrink the number of hidden units from
the bottom to the top. The number of hidden units is computed by α`(dout − din) + dout so
that the number of hidden units in a middle layer is between the input dimension and the output
dimension. The shrinking factor α is chose from {0.3, 0.5, 0.7, 0.8}. We also select the order
for PK from {2, 3, 5} to match the order of LPNN. All other hyperparameters of a model are
also selcted together with architectures.

The error rates of different models are reported in Table 2. In general, the performance of LPNN
is comparable to FF and better other polynomial models. Comparing to feedforward networks,
LPNN has relatively better performance on classification tasks. We speculate the reason is that
an LPNN only needs to decide discrete labels from its outputs in classification tasks while it
needs to fit the exact value in regression tasks. LPNN may be not flexible enough for fitting
continuous values compared to feedforward networks.

4.4 THE EFFECT OF BATCH NORMALIZATION AND DROPOUT

In this subsection, we investigate the effect of batch normalization and dropout on LPNN. We
use L ∈ {1, 2, 3, 5, 10}. For each depth, we try four configurations: using/not using batch
normalization and using/not using dropout. We select other hyperparameters through model
selection. We run the experiment on a regression task (concrete-strength) and a classification
task (mnist).

The results are shown in Table 3. From this result, we see that both batch normalization and
dropout are needed to train a good LPNN model. On the mnist dataset, the LPNN without batch
normalization has very bad performance when L = 5. Its performance drops sharply after a few
epochs. This observation indicates that the LPNN without batch normalization is very unstable
due to some bad optimization directions.

5 CONCLUSION

In this paper, we have proposed LPNN, a new type of polynomial neural networks that can
have an arbitrary polynomial order. The network is based on product activations. A product
activation multiplies a linear transformation of the input to the hidden layer to achieve non-linear
transformation of the input. The product activation always increases the polynomial order by 1.
LPNN uses product activations in a feedforward structure. With modern training techniques,
such as dropout and batch normalization, we can well train deep LPNN models. These models
achieve competitive performances in our empirical evaluations. The LPNN has the potential to
provide new insights to the theoretical study of polynomial learning models and. It is also a
valuable learning method in practice.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-order factor-
ization machines. In Advances in Neural Information Processing Systems, pp. 3351–3359,
2016a.

Mathieu Blondel, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda. Polynomial networks
and factorization machines: New insights and efficient training algorithms. In International
Conference on Machine Learning, pp. 850–858, 2016b.

Mathieu Blondel, Vlad Niculae, Takuma Otsuka, and Naonori Ueda. Multi-output polynomial
networks and factorization machines. In Advances in Neural Information Processing Systems,
pp. 3349–3359, 2017.

Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks with
quadratic activation. In International Conference on Machine Learning, pp. 1328–1337,
2018.

Yarin Gal. https://github.com/yaringal/DropoutUncertaintyExps, Accessed in 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial
neural networks. arXiv preprint arXiv:1905.12207, 2019.

Ming Lin, Shuang Qiu, Bin Hong, and Jieping Ye. The second order linear model. arXiv
preprint arXiv:1703.00598, 2017.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in neural information processing systems, pp. 855–863, 2014.

Vlad Niculae. https://github.com/scikit-learn-contrib/polylearn, Accessed in 2019.

Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data
Mining, pp. 995–1000. IEEE, 2010.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? In Advances in Neural Information Processing Systems, pp.
2483–2493, 2018.

Xinyue Shen, Steven Diamond, Madeleine Udell, Yuantao Gu, and Stephen Boyd. Disciplined
multi-convex programming. In 2017 29th Chinese Control And Decision Conference (CCDC),
pp. 895–900. IEEE, 2017.

Mohammadreza Soltani and Chinmay Hegde. Towards provable learning of polynomial neu-
ral networks using low-rank matrix estimation. In International Conference on Artificial
Intelligence and Statistics, pp. 1417–1426, 2018.

Mohammadreza Soltani and Chinmay Hegde. Fast and provable algorithms for learning
two-layer polynomial neural networks. IEEE Transactions on Signal Processing, 67(13):
3361–3371, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems, pp. 3835–3844,
2018.

9

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/scikit-learn-contrib/polylearn

	Introduction
	The Ladder Polynomial Neural Network
	Analysis
	Smoothness of the function surface
	Multiconvexity in parameters
	Training with batch normalization and dropout
	Relation with models based on polynomial kernels

	Experiment
	Experiment setup
	Product activations
	Regression and classification
	The effect of batch normalization and dropout

	Conclusion

