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ABSTRACT

Generative networks are promising models for specifying visual transformations.
Unfortunately, certification of generative models is challenging as one needs to
capture sufficient non-convexity so to produce precise bounds on the output.
Existing verification methods either fail to scale to generative networks or do
not capture enough non-convexity. In this work, we present a new verifier,
called APPROXLINE, that can certify non-trivial properties of generative networks.
APPROXLINE performs both deterministic and probabilistic abstract interpretation
and captures infinite sets of outputs of generative networks. We show that
APPROXLINE can verify interesting interpolations in the network’s latent space.

1 INTRODUCTION

Neural networks are becoming increasingly used across a wide range of applications, including
facial recognition and autonomous driving. So far, certification of their behavior has remained
predominantly focused on uniform classification of norm-bounded balls (Gehr et al., 2018; Katz et al.,
2017; Wong et al., 2018; Gowal et al., 2018; Singh et al., 2018; Raghunathan et al., 2018; Tjeng
et al., 2017; Dvijotham et al., 2018b; Salman et al., 2019; Dvijotham et al., 2018c; Wang et al., 2018),
which aim to capture invisible perturbations.

However, a system’s safety can also depend on its behavior on visible transformations. For these
reasons, investigation of techniques to certify more complex specifications has started to take place
(Liu et al., 2019; Dvijotham et al., 2018a; Singh et al., 2019). Of particular interest is the work of
Sotoudeh & Thakur (2019) which shows that if the inputs of a network are restricted to a line segment,
the verification problem can sometimes be efficiently solved exactly. The resulting method has been
used to certify non-norm-bounded properties of ACAS Xu networks (Julian et al., 2018) and improve
Integrated Gradients (Sundararajan et al., 2017).

This work We extend this technique in two key ways: (i) we demonstrate how to soundly
approximate EXACTLINE, handling significantly larger networks faster than even methods based on
sampling can (a form of deterministic abstract interpretation), and (ii) we use this approximation
to provide guaranteed bounds on the probabilities of outputs given a distribution over the inputs (a
form of probabilistic abstract interpretation). We believe this is the first time probabilistic abstract
interpretation has been applied in the context of neural networks. Based on these techniques, we also
provide the first system capable of certifying interesting properties of generative networks.

Main contributions Our key contributions are:

• A verification system APPROXLINE, capable of flexibly capturing the needed non-convexity.
• A method to compute tight deterministic bounds on probabilities with APPROXLINE, which

is to our knowledge the first time that probabilistic abstract interpretation has been applied
to neural networks.

• An evaluation on autoencoders for CelebA, where we prove for the first time the consistency
of image attributes through interpolations.

• The first demonstration of deterministic verification of certain visible, highly non-convex
specifications, such as that a classifier for “is bald” is robust to different amounts of
“moustache,” or that a classifier nA is robust to different head rotations, as shown in Figure 1.
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Figure 1: Using APPROXLINE to find probability bounds for a generative specification over flipped
images. Green polygonal chains represent activation distributions at each layer exactly. Blue boxes
are relaxations of segments highlighted by yellow boxes. We label regions with their probabilities.

Related work Dvijotham et al. (2018a) verify probabilistic properties universally over sets of
inputs by bounding the probability that a dual approach verifies the property. In contrast, our system
verifies properties that are either universally quantified or probabilistic. However, the networks
we verify are multiple orders of magnitude larger. While they only provide upper bounds on
the probability that a specification has been violated, we provide extremely tight bounds on such
probabilities from both sides. PROVEN (Weng et al., 2018) uses sampling to find high confidence
bounds (confidence intervals) on the probability there is a misclassification. While PROVEN only
provides high confidence bounds (99.99%), APPROXLINE provides bounds with 100% confidence.
Nevertheless, we show that our method is much faster and produces better results than a similar
sampling-based technique for finding confidence intervals using Clopper & Pearson (1934) (used by
smoothing methods, next). Another line of work is smoothing, which provides a defense with high
confidence statistical robustness guarantees (Cohen et al., 2019; Lecuyer et al., 2018; Liu et al., 2018;
Li et al., 2018; Cao & Gong, 2017). In contrast, APPROXLINE provides deterministic guarantees,
and is not a defense.

2 BACKGROUND

We briefly review important concepts, closely following their presentations given in previous works
(Gehr et al., 2018; Sotoudeh & Thakur, 2019) where applicable.

Let N : Rm → Rn be a neural network with m input neurons and n output classes. We assume that
we can decompose the neural network as a sequence of l piecewise-linear layers: N = Ll ◦ · · · ◦ L1.
The neural network classifies an input x ∈ Rm to class arg maxiN(x)i.

2.1 NEURAL NETWORK ROBUSTNESS

Deterministic robustness Given a set X ⊆ Rm of input activations and a set Y ⊆ Rn of output
activations, the neural network f is said to be (X,Y)-robust if for all x ∈ X, we have f(x) ∈ Y.
Typically, X is taken to be a set of points that are similar enough to a fixed point x in Rm, and Y is a
set of output activations that cause classification of the input to a specific class.

Probabilistic robustness Even if a neural network is not completely robust in this sense, it may
still be interesting to quantify its lack of robustness. Concretely, given a distribution µ over input
activations and a set Y over output activations, we are interested in computing bounds on the
probability Prx∼µ[N(x) ∈ Y]. For each deterministic robustness property (X,Y), we can define a
corresponding robustness probability by taking µ to be the uniform distribution over X.

2.2 ABSTRACT INTERPRETATION

An abstract domain (Cousot & Cousot, 1977) is a set of symbolic representations of sets of program
states. We write An to denote an abstract domain whose elements each represent an element of
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P(Rn), in our case a set of vectors of n neural network activations. The concretization function
γn : An → P(Rn) maps a symbolic representation a ∈ An to its concrete interpretation as a set
X ∈ P(Rn) of neural network activation vectors.

The concrete transformer Tf : P(Rm) → P(Rn) of some function f : Rm → Rn maps subsets
X ⊆ Rm of the domain of f to their image under f , i.e., Tf (X) = {f(x) | x ∈ X}. Using this
notation, the (X,Y)-robustness property of a neural network N can be written as TN (X) ⊆ Y.

An abstract transformer T#
f : Am → An transforms symbolic representations to symbolic

representations overapproximating the effect of the function f : Rm → Rn, which means it is
required to satisfy Tf (γm(a)) ⊆ γn(T#

f (a)) for all a ∈ Am.

Abstract transformers are compositional: For given functions f : Rt → Rn and g : Rm → Rt with
abstract transformers T#

f : At → An and T#
g : Am → At, we can define an abstract transformer

T#
f◦g : Am → An for their composition f ◦ g : Rm → Rn, namely T#

f◦g = T#
f ◦ T#

g . We will follow
this recipe for the neural network N , abstracting it as T#

N = T#
Ll
◦ · · · ◦ T#

L1
.

Abstract interpretation provides a sound, typically incomplete method to certify neural network
robustness. Namely, to show that a neural network N : Rm → Rn is (X,Y)-robust, it suffices to
show that γn(T#

N (a)) ⊆ Y, for some abstract element a ∈ Am with X ⊆ γ(a).

Box domain An element of the box domain Bn is a pair of vectors b = (c,d) where c,d ∈ Rn.
The concretization function is γn(c,d) = {c + diag(d) · β | β ∈ [−1, 1]n}. Abstract interpretation
with the box domain B is equivalent to bounds propagation with standard interval arithmetic.

Powerset domain Given an abstract domainA, elements of its powerset domain P(A)n are (finite)
sets of elements of An. The concretization function is given by γn(a) =

⋃
a′∈a γn(a′) (using the

concretization function of the underlying domain A). We can lift any abstract transformer for A to an
abstract transformer for P(A) by applying the transformer to each of the elements.

Union domain Given abstract domains A and A′, an element of their union domain is a tuple
(a, a′) with a ∈ An and a′ ∈ A′n. The concretization function is γn(a, a′) = γn(a)∪γn(a′). We can
apply abstract transformers of the same function for A and A′ to the tuple elements independently.

2.3 PROBABILISTIC ABSTRACT INTERPRETATION

We denote as Dn the set of probability measures over Rn. Probabilistic abstract interpretation is an
instantiation of abstract interpretation where deterministic points from Rn are replaced by measures
from Dn. I.e., a probabilistic abstract domain (Cousot & Monerau, 2012) is a set of symbolic
representations of sets of measures over program states. We again use subscript notation to determine
the number of activations: a probabilistic abstract domain An has elements that each represent an
element of P(Dn). The probabilistic concretization function γn : An → P(Dn) maps each abstract
element to the set of measures it represents.

For a measurable function f : Rm → Rn, the corresponding probabilistic concrete transformer
Tf : P(Dm)→ P(Dn) maps a set of measures M ⊆ Dm to a set of measures M′ ⊆ Dn, given by

M′ =
{
Y 7→ Pr

x∼µ
[f(x) ∈ Y]

∣∣∣∣µ ∈M
}
,

where Y ranges over measurable subsets of Rn.

A probabilistic abstract transformer T#
f : Am → An abstracts the probabilistic concrete transformer

in the standard way: it satisfies ∀a ∈ Am. Tf (γm(a)) ⊆ γn(T#
f (a)), as in the deterministic setting.

Probabilistic abstract interpretation provides a sound method to compute bounds on robustness
probabilities. Namely, to show that Prx∼µ[N(x) ∈ Y] ∈ [l, u], it suffices to show that ν(Y) ∈ [l, u]
for each ν ∈ γn(T#

N (a)) where µ ∈ γm(a).
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Domain lifting Any deterministic abstract domain can be directly interpreted as a probabilistic
abstract domain, where the concretization of an element is given as the set of probability measures
whose support is a subset of the set produced by the deterministic concretization. The original
deterministic abstract transformers can still be used.

Convex combinations Given two probabilistic abstract domains A and A′, we can form their
convex combination domain, whose elements are tuples (a, a′, p) with a ∈ An, a′ ∈ A′n and
p ∈ [0, 1]. The concretization function is given by γn(a, a′, p) = {(1 − p) · µ + p · µ′ | µ ∈
γn(a), µ′ ∈ γn(a′)}. We can apply abstract transformers of the same function for A and A′ to the
respective elements of the tuple independently, leaving p intact.

Similarly, given a single probabilistic abstract domain A, elements of its convex combination domain
are tuples (a, λ) where a ∈ Akn, λ ∈ [0, 1]k and

∑k
i=1 λi = 1 for some k. The concretization of an

element is given by γn(a, λ) = {
∑k
i=1 λi · µi | µi ∈ γn(ai), i ∈ {1, . . . , k}}. We can apply abstract

transformers for A independently to each entry of a, leaving λ intact.

2.4 EXACTLINE

EXACTLINE (Sotoudeh & Thakur, 2019) is a method that computes a succinct representation of a
piecewise-linear neural network N : Rm → Rn restricted to a line segment AB ⊂ Rm. Namely, the
primitive P(N |AB) computes a polygonal chain (P1, . . . , Pk) in Rn representing the line segment
AB, such that the neural network N is affine on the segment PiPi+1 for all 0 ≤ i < k. Note that as
a consequence, the polygonal chain (N(P1), . . . , N(Pk)) represents the image of AB under N .

3 APPROXLINE

Here we define APPROXLINE, its non-convex relaxations, and its usage for probabilistic inference.

3.1 DEFINITION AS AN ABSTRACT DOMAIN

First, note that we can use EXACTLINE to create an abstract domain E . The elements of En are
polygonal chains (P1, . . . , Pk) in Rn for some k. The concretization function γn maps a polygonal
chain (P1, . . . , Pk) in Rn to the set of points in Rn that lie on it. For a piecewise-linear function
f : Rm → Rn, its abstract transformer T#

f : Em → En maps a polygonal chain (P1, . . . , Pk) in
Rm to a new polygonal chain in Rn by concatenating the results of the EXACTLINE primitive on
consecutive line segments PiPi+1, eliminating adjacent duplicate points and applying the function
f to all points. The resulting abstract transformers are exact, i.e., they satisfy the subset relation in
∀a ∈ Am. Tf (γm(a)) ⊆ γn(T#

f (a)) with equality.

Our abstract domain is the union of the powersets of the EXACTLINE and box domains. Therefore,
an abstract element is a tuple of a set of polygonal paths and a set of boxes, whose interpretation is
that the activations of the neural network in a given layer are on one of the polygonal paths or within
one of the boxes. For x1, x2 ∈ Rn, we write S(x1, x2) = ({(x1, x2)}, {}) to denote the abstract
element that represents a single line segment connecting x1 and x2. Like EXACTLINE, we focus on
the case where the abstract element describing the input activations captures such a line segment.

Note that if we use the standard lifting of abstract transformers T#
Li

for the EXACTLINE and box
domains into our union of powersets domain, propagating a segment S(x1, x2) through the neural
network N = Ll ◦ · · · ◦ L1 using the abstract transformer T#

N = T#
Ll
◦ · · · ◦ T#

L1
is equivalent to

using only the EXACTLINE domain: As the standard lifting applies the abstract transformers to all
elements of both sets independently, we will simply obtain an abstract element ({(P1, . . . , Pk), {}),
where (P1, . . . , Pk) is a polygonal path exactly describing the image of x1x2 under N .

Relaxation Therefore, our abstract transformers may, before applying a lifted abstract transformer,
apply relaxation operators that turn an abstract element a into another abstract element a′ such that
γn(a) ⊆ γn(a′). We use two kinds of relaxation operators: bounding box operators remove a single
line segment, splitting the polygonal chain into at most two new polygonal chains (at most one on
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each side of the removed line segment). The removed line segment is then replaced by its bounding
box. Merge operators replace multiple boxes by their common bounding box.

Carefully applying the relaxation operators, we can explore a rich tradeoff between the EXACTLINE
domain and the box domain. Our analysis generalizes both: if we never apply any relaxation operators,
the analysis reduces to EXACTLINE, and will be exact but potentially slow. If we relax the initial line
segment into its bounding box, the analysis reduces to box and be will be imprecise but fast.

Relaxation heuristic For our evaluation, we use the following relaxation heuristic, applied before
each convolutional layer of the neural network. The heuristic is parameterized by a relaxation
percentage p ∈ [0, 1] and a clustering parameter k ∈ N. Each chain with t > 1000 nodes is traversed
from one end to the other, and each line segment is turned into its bounding box, until the chain ends,
the total number of nodes visited exceeds t/k or we find a line segment whose length is strictly above
the p-th percentile, computed over all segment lengths in the chain prior to applying the heuristic.
All bounding boxes generated in one such step (from adjacent line segments) are then merged, the
next segment (if any) is skipped, and the traversal is restarted on the remaining segments of the chain.
This way, each polygonal chain is split into some new polygonal chains and a number of new boxes.

3.2 PROBABILISTIC INFERENCE

The EXACTLINE domain can be extended such that it captures a single probability distribution on a
polygonal chain. For each line segment (Pi, Pi+1) on the polygonal chain (P1, . . . , Pk) in Rn, we
additionally store a symbolic representation of a measure µi on [0, 1], such that

∑k−1
i=1 µi([0, 1]) = 1.

The abstract element a = (P1, µ1, P2, . . . , Pk−1, µk−1, Pk) then represents the probability measure

ν(X) =
k−1∑
i=1

µi

({
‖x− Pi‖2
‖Pi+1 − Pi‖2

∣∣∣∣x ∈ X ∩ PiPi+1

})
,

where X ranges over measurable subsets of Rn. I.e., we have γn(a) = {ν}. Whenever an abstract
transformer splits a line segment, it additionally splits the corresponding measure, appropriately
applying affine transformations, such that the new measures each range over [0, 1] again. Note that if
measures are uniform, it suffices to store µi([0, 1]) as the symbolic representation of µi.

Our probabilistic abstract domain is the convex combination of the convex combination domains of
this probabilistic EXACTLINE domain and the standard lifting of the box domain as a probabilistic
abstract domain. In practice, it is convenient to store an abstract element a with p probabilistic
polygonal chains and q probabilistic boxes as

a = (((P (1)
1 , µ

(1)
1 , . . . , µ

(1)
k1−1, P

(1)
k1

), . . . , (P (p)
1 , µ

(p)
1 , . . . , µ

(p)
kp−1, P

(p)
kp

)), ((b(1), . . . , b(q)), λ)),

such that
∑l
i=1
∑ki−1
j=1 µ

(i)
j ([0, 1]) +

∑q
i=1 λi = 1. Its concretization is then given as

γn(a) =


p∑
i=1

wiνi +
q∑
j=1

λiν
′
j

∣∣∣∣∣∣ νi ∈ γn
(
P

(i)
1 , µ

(i)
1 /wi, . . . , µ

(i)
ki−1/wi, P

(i)
ki

)
, ν′j ∈ γn(b(j))

 ,

where wi =
∑ki−1
j=1 µ

(i)
j ([0, 1]). Our input always captures a uniform distribution on a line segment.

Relaxation and heuristic Our deterministic relaxations can be extended to work in the probabilistic
setting. When we replace a line segment by its bounding box, we use the total weight in its measure
as the new entry in the weight vector λ corresponding to the box. When we merge multiple boxes,
their weights are added to give the weight for the the resulting box. We then use the same relaxation
heuristic as we described previously also in the probabilistic setting.

Computing bounds Given a probabilistic abstract element a as above, describing the output
distribution of the neural network, we want to compute optimal bounds on the robustness
probabilities P = {ν(Y) | ν ∈ γn(a)}. The part of the distribution tracked by the probabilistic
EXACTLINE domain has all its probability mass in perfectly determined locations, while the
probability mass in each box can be located anywhere inside it. We can compute bounds
(l, u) = (minP,maxP) =

(
e+

∑
j∈L λj , e+

∑
∈U λj

)
, where e =

∑p
i=1 wiνi(Y), with
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{νi} = γn

(
P

(i)
1 , µ

(i)
1 /wi, . . . , µ

(i)
ki−1/wi, P

(i)
ki

)
, L = {j ∈ {1, . . . , q} | γn(b(j)) ⊆ Y} and

U = {j ∈ {1, . . . , q} | γn(b(j)) ∩ Y 6= ∅}. Here, we used the deterministic box concretization γn.

4 EVALUATION

We write APPROXLINEpk to denote our analysis (deterministic and probabilistic versions) where
the relaxation heuristic uses relaxation percentage p and clustering parameter k. We implement
APPROXLINE as a new domain for the DiffAI framework, taking advantage of the GPU parallelization
provided by PyTorch (Paszke et al., 2017). Additionally, we use our implementation of APPROXLINE
to compute exact results without approximation. To get exact results, it suffices to set the relaxation
percentage p to 0, in which case the clustering parameter k can be ignored. Verification using
APPROXLINE0

k is equivalent to EXACTLINE up to floating point error. To distinguish our GPU
implementation from the original CPU implementation, we call our method EXACT instead of
EXACTLINE. EXACT is additionally capable of doing exact probabilistic inference. We run on a
machine with a GeForce GTX 1080 with 12 GB of GPU memory, and four processors with a total of
64 GB of RAM.

4.1 GENERATIVE SPECIFICATIONS

For generative specifications, we use decoders from autoencoders with either 32 or 64 latent
dimensions trained in two different ways: VAE and CycleAE, described below. We train them
to reconstruct CelebA with image sizes 64× 64. We always use Adam Kingma & Ba (2014) with a
learning rate of 0.0001 and a batch size of 100. The specific network architectures are described in
Appendix A. Our decoder always has 74128 neurons and the attribute detector has 24676 neurons.

VAEl This is a variational autoencoder (Kingma & Welling, 2013) with l latent dimensions.

CycleAEl This is a repurposed CycleGAN (Zhu et al., 2017) with l latent dimensions. While
these were originally designed for unsupervised style transfer between two data distributions, P
and Q, we use it to build an autoencoder such that the generator behaves like a GAN and the
encodings are distributed evenly among the latent space. Specifically, we use a normal distribution
in l dimensions for the embedding/latent space P with a small feed forward network DP as the
latent space discriminator. The distribution Q is the image distribution, and for its discriminator DQ

we use the BEGAN method (Berthelot et al., 2017), which determines an example’s realism based
on an autoencoder (also with l latent dimensions), which is trained to reproduce the ground-truth
distribution Q and adaptively to fail to reproduce the GAN generator’s distribution.

Attribute detector We train an attribute detector (whose architecture is described below) to
recognize the 40 attributes provided by CelebA. Specifically, the attribute detector has a linear
output. We consider the attribute i to be detected as present in the input image if and only if the i-th
component of the output of the attribute detector is strictly greater than 0.5. The attribute detector is
trained using Adam, minimizing the L1 loss between either 1 and the attribute (if it is present) or 0
and the attribute (if it is absent). We train it for 300 epochs.

4.2 SPEED AND PRECISION RESULTS

Given a generative model capable of producing interpolations between inputs which remain on the
data manifold, there are many different verification goals one might pursue: E.g., check whether
the generative model is correct with respect to a trusted classifier or whether a classifier is robust to
interpretable interpolations between data points generated from a trusted generative model. Even
trusting neither the generator nor the classifier, we might want to verify that they are consistent.

We address all of these goals by efficiently computing the attribute consistency of a generative model
with respect to an attribute detector: For a point picked uniformly at random between the encodings e1
and e2 of two ground truth inputs with matching attributes, we would like to determine the probability
that its decoding will have the same attribute i. We define the attribute consistency as

Ci,nA,nD
(e1, e2, t) = Pr

α∼U(0,1)
[nA(nD((1− α)e1 + αe2))i > 0.5 ⇐⇒ t],
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Figure 2: A comparison of of different methods that compute confidence intervals for Ĉ.

where t is the ground truth for attribute i. We will frequently omit the attribute detector nA and the
decoder nD from C if it is clear from context which networks are being evaluated.

In this section, we demonstrate that probabilistic APPROXLINE is precise and efficient enough to
provide useful bounds on the attribute consistency for interesting generative models and specifications
on a reasonable dataset. To this end we compare APPROXLINE to a variety of other methods which
are also capable of providing probabilistic bounds. We do this for CycleAE32 trained for 200 epochs.

Specifically, suppose P is a fixed set of unordered pairs {a, b} from the data set such that aA,i >
0.5 ⇐⇒ bA,i > 0.5 for each of the k attributes i, where aA are the ground truth attribute labels of
a. Using each of these methods, we find bounds on the true value of average attribute consistency
as ĈP (nA, nD, nE) = meana,b∈P,iCi,nA,nD

(nE(a), nE(b), aA,i > 0.5) where nE is the encoding
network. Each method finds a confidence interval, [l, u], such that l ≤ Ĉ ≤ u. We call u− l its width.

We compare probabilistic APPROXLINE against two other probabilistic abstract domains, EXACT
(=APPROXLINE0

k), and HZono (Mirman et al., 2018) lifted probabilistically. Furthermore, we also
compare against sampling with binomial confidence intervals on C using the ClopperPearson interval.

For probabilistic sampling, we take samples and recalculate the ClopperPearson interval with a
confidence of 99.99% until the interval width is below 0.002 (chosen to be the same as our best result
with APPROXLINE). To avoid an incorrect calculation, we discard this interval and prior samples,
and resample using the estimated number of samples. Importantly, the confidence interval returned
by the abstract domains is guaranteed to be correct 100% of the time, while for sampling it is only
guaranteed to be correct 99.99% of the time.

For all methods, we set a timeout of 60 seconds, and report the largest possible confidence interval if
a timeout or out-of-memory error occurs. For APPROXLINE, if an out-of-memory error occurs, we
refine the hyperparameters using schedule A in Appendix B and restart (without resetting the timeout
clock). Figure 2 shows the results of running these on |P | = 100 pairs of matching celebrities with
matching attribute labels, chosen uniformly at random from CelebA (each method uses the same P ).

The graph shows that while HZono is the fastest domain, it is unable to prove any specifications.
Sampling and EXACT do not appear to be significantly slower than APPROXLINE, but it can be
observed that the average width of the confidence intervals they produce is large. This is because
Sampling frequently times out, and EXACT frequently exhausts GPU memory. On the other hand,
APPROXLINE is able to provide an average confidence interval width of less than 0.002 in under 30
seconds with perfect confidence (compared with the lower confidence provided by sampling).

4.3 USE CASES FOR APPROXLINE

Here, we demonstrate how to use our domain to check the attribute consistency of a model against
an attribute detector. We do this for two possible generative specifications: (i) generating rotated
heads using flipped images, and (ii) adding previously absent attributes to faces. For the results in
this section, we use schedule B described in Appendix B.

Comparing models with turning heads It is known that VAEs are capable of generating images
with intermediate poses of the subject from flipped images of the subject. An example of this
transformation is shown in Figure 3b. Here, we show how one can use APPROXLINE to compare the
effectiveness of different autoencoding models in performing this task. To do this, we trained all 4
architectures described above for 20 epochs. We then create a line specification over the encodings
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(a)

(b)

(c)

Figure 3: Examples of equally spaced interpolated images. The original images are at the 0th and
10th positions, and their immediate neighbors are their respective reconstructions. (a) is between
the same person with the same attributes using CycleAE32 trained for 200 epochs. (b) is between
horizontally flipped images using CycleAE64 trained for 20 epochs. (c) is between an image and the
addition of the “mustache” feature vector using CycleAE32 again.

Figure 4: Comparing the different models using
probabilistic APPROXLINE0.02

200 to provide lower bounds
for 1

k

∑k
i=1 Ci(nE(a), nE(Flipped(a)), aA,i), where a

and Flipped(a) are the images shown in Figure 3b. The
width of the largest confidence interval was smaller than
3× 10−6, so only the lower bounds are shown. Less than
50 seconds were necessary to compute each bound, and
the fastest computation was for CycleAE64 at 30 seconds. VAE32 CycleAE32VAE64 CycleAE64

0.8

0.85

0.9
Lower Bound on Correctness

of the flipped images shown in Figure 3b. For a human face that is turned in one direction, ideally
the different reconstructions will correspond to images of different orientations of the same face
in 3D space. As none of the CelebA attributes correspond to pose, the attribute detector should
recognize the same set of attributes for all interpolations. We used deterministic APPROXLINE0.02

200
to demonstrate which attributes provably remain the correct for every possible interpolation (as
visualized in Appendix D). While we are able to show in the worst case, 32 out of 40 attributes are
entirely robust to flipping, some attributes are not robust across interpolation. Figure 4 demonstrates
the results of using probabilistic APPROXLINE to find the average lower bound on the fraction of the
input interpolation encodings which do result in the correct attribute appearing in the output image.

Verifying attribute independence Larsen et al. (2015) demonstrated that vectors can be found
in the latent space of some types of VAEs which correspond to attributes. Some models have even
been designed specifically to enable this (Lu et al., 2018; He et al., 2019). Here, we demonstrate
using APPROXLINE that attribute detection for one features is invariant to a transformation in an
independent feature. Specifically, we verify for a single image the effect of adding a mustache. This
transformation is shown in Figure 3c. To do this, we find the attribute vector m for “mustache”
(i = 22 in CelebA) using the 80k training-set images in the manner described by Larsen et al. (2015),
and compute confidence intervals for Cj(nE(o), nE(o) + 2m, oA,j) for j 6= 22 and the image o.
Using APPROXLINE we are able to prove that 30 out of the 40 attributes are entirely robust through
the addition of a mustache. Among the attributes which can be proven to be robust are i = 4 for “bald”
and i = 39 for “young”. We are able to find that the attribute i = 24 for “NoBeard” is not entirely
robust to the addition of the mustache vector. We find a lower bound on the robustness probability for
that attribute of 0.83522 and an upper bound of 0.83528.

5 CONCLUSION

In this paper we presented a highly scalable non-convex relaxation to verify neural network properties
where inputs are restricted to a line segment. Our results show that our method is faster and more
precise than previous methods for the same networks, including sampling. This speed and precision
permitted us to verify properties based on interesting visual transformations induced by generative
networks for the first time, including probabilistic properties.
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A NETWORK ARCHITECTURES

For both models, we use the same encoders and decoders (even in the autoencoder descriminator
from BEGAN), and always use the same attribute detectors. Here we use ConvsC ×W × H to
denote a convolution which produces C channels, with a kernel width of W pixels and height of
H , with a stride of s and padding of 1. FC n is a fully connected layer which outputs n neurons.
ConvTs,pC ×W ×H is a transposed convolutional layer (Dumoulin & Visin, 2016) with a kernel
width and height of W and H respectively and a stride of s and padding of 1 and out-padding of p,
which produces C output channels.

• Latent Descriminator is a fully connected feed forward network with 5 hidden layers each
of 100 dimensions.

• Encoder is a standard convolutional neural network:
x → Conv132× 3× 3→ ReLU→ Conv232× 4× 4→ ReLU→ Conv164× 3× 3
→ ReLU→ Conv264× 4× 4→ ReLU→ FC 512→ ReLU→ FC 512→ l.

• Decoder is a transposed convolutional network which has 74128 neurons:
l → FC 400→ ReLU→ FC 2048→ ReLU
→ ConvT2,116× 3× 3→ ReLU→ ConvT1,03× 3× 3→ x

• Attribute Detector has 24676 neurons:
x→ Conv216× 4× 4→ ReLU→ Conv232× 4× 4→ ReLU→ FC 100→ 40.

B APPROXLINE REFINEMENT SCHEDULE

While many refinement schemes start with an imprecise approximation and progressively tighten
it, we observe that being only occasionally memory limited and rarely time limited, it conserves
more time to start with the most precise approximation we have determined usually works, and
progressively try less precise approximations as we determine that more precise ones can not fit into
GPU memory. Thus, we start searching for a confidence interval with APPROXLINEpN and if we
run out of memory, try APPROXLINE

min(1.5p,1)
max(0.95N,5) for schedule A, and APPROXLINE

min(3p,1)
max(0.95N,5) for

schedule B. This procedure is repeated until a solution is found, or time has run out.

C EFFECT OF APPROXIMATION PARAMETERS ON SPEED AND PRECISION
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Figure 5: A comparison of speed (a) and Confidence Interval Widths (b) of APPROXLINE for different
approximation hyperparameters, on CycleAE64 trained for 200 epochs.

Here we demonstrate how modifying the approximation parameters, p and N of APPROXLINEpN
effect its speed and precision. Figure 5 shows the result of varying these on x-axis. The bottom
number, N is the number of clusters that will be ideally made, and the top number p is the percentage
of nodes which are permitted to be clustered.
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VAE32
CycleAE32
VAE64
CycleAE64

Figure 6: Blue means that the interpolative specification visualized in Figure 3b has been
deterministically and entirely verified for the attribute (horizontal) using APPROXLINE0.02

200 . Red
means that the attribute can not be verified. In all cases, this is because the specification was not
robust for the attribute. One can observe that the most successful autoencoder is CycleAE64.

D COMPARING THE DETERMINISTIC BINARY ROBUSTNESS OF DIFFERENT
MODELS

Figure 6 uses deterministic APPROXLINE0.02
200 to demonstrate which attributes provably remain the

same and are correct (in blue) for every possible interpolation.
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