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ABSTRACT

Strictly enforcing orthonormality constraints on parameter matrices has been
shown advantageous in deep learning. This amounts to Riemannian optimization
on the Stiefel manifold, which, however, is computationally expensive. To address
this challenge, we present two main contributions: (1) A new efficient retraction
map based on an iterative Cayley transform for optimization updates, and (2) An
implicit vector transport mechanism based on the combination of a projection of
the momentum and the Cayley transform on the Stiefel manifold. We specify two
new optimization algorithms: Cayley SGD with momentum, and Cayley ADAM
on the Stiefel manifold. Convergence of the Cayley SGD is theoretically analyzed.
Our experiments for CNN training demonstrate that both algorithms: (a) Use less
running time per iteration relative to existing approaches which also enforce or-
thonormality of CNN parameters; and (b) Achieve faster convergence rates than
the baseline SGD and ADAM algorithms without compromising the CNN’s per-
formance. The Cayley SGD and Cayley ADAM are also shown to reduce the
training time for optimizing the unitary transition matrices in RNNs.

1 INTRODUCTION

Orthonormality has recently gained much interest, as there are significant advantages of enforcing
orthonormality on parameter matrices of deep neural networks. For CNNs, Bansal et al. (2018) show
that this improves accuracy and gives a faster empirical convergence rate, Huang et al. (2018a) show
that orthonormality stabilizes the distribution of neural activations in training, and Cogswell et al.
(2015) show that orthonormality reduces overfitting and improves generalization. For RNNs, Ar-
jovsky et al. (2016); Zhou et al. (2006) show that the orthogonal hidden-to-hidden matrix alleviates
the vanishing and exploding-gradient problems.

Riemannian optimization on the Stiefel manifold, which represents a set of orthonormal matrices of
the same size, is an elegant framework for optimization under orthonormality constraints. But its
high computational cost is limiting in many applications, including deep learning. Recent efficient
approaches incorporate orthogonality in deep learning only for square parameter matrices (Arjovsky
et al., 2016; Dorobantu et al., 2016), or indirectly through regularization (Bansal et al., 2018).

To address the aforementioned limitations, our first main contribution is an efficient estimation of
the retraction mapping based on the Cayley transform for updating large non-square matrices of
parameters on the Stiefel manifold. We specify an efficient iterative algorithm for estimating the
Cayley transform that consists of only a few matrix multiplications, while the closed-form Cayley
transform requires costly matrix inverse operations (Vorontsov et al., 2017; Wisdom et al., 2016).

Our second main contribution is aimed at improving convergence rates of training by taking into
account the momentum in our optimization on the Stiefel manifold. We derive a new approach
to move the tangent vector between tangent spaces of the manifold, instead of using the standard
parallel transport. Specifically, we regard the Stiefel manifold as a submanifold of a Euclidean
space. This allows for representing the vector transport (Absil et al., 2009) as a projection onto the
tangent space. As we show, since the Cayley transform implicitly projects gradients onto the tangent
space, the momentum updates result in an implicit vector transport. Thus, we first compute a linear
combination of the momentum and gradient in the Euclidean space, and then update the network
parameters using the Cayley transform, without explicitly performing the vector transport.
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We apply the above two contributions to generalize the standard SGD with momentum and ADAM
(Kingma & Ba, 2014) to the Stiefel manifold, resulting in our two new optimization algorithms
called Cayley SGD with momentum and Cayley ADAM. A theoretical analysis of convergence of
the Cayley SGD is presented. Similar analysis for the Cayley ADAM is omitted, since it is very
similar to the analysis presented in (Becigneul & Ganea, 2019).

The Cayley SGD and Cayley ADAM are empirically evaluated on image classification using VGG
and Wide Resnet on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009). The ex-
periments show that the Cayley SGD and Cayley ADAM achieve better classification performance
and faster convergence rate than the baseline SGD with momentum and ADAM. While the base-
lines take less time per epoch since they do not enforce the orthonormality constraint, they take
more epochs until convergence than the Cayley SGD and Cayley ADAM. In comparison with ex-
isting optimization methods that also account for orthonormality – e.g., Polar decomposition, QR
decomposition, or closed-form Cayley transform – our Cayley SGD and Cayley ADAM run much
faster and yield equally good or better performance in image classification.

Finally, we apply the aforementioned two contributions to training of the unitary RNNs. Wisdom
et al. (2016) proposes the full capacity unitary RNN that updates the hidden-to-hidden transition
matrix with the closed-form Cayley transform. In contrast, for our RNN training, we use the more
efficient Cayley SGD with momentum and Cayley ADAM. The results show that our RNN training
takes less running time per iteration without compromising performance.

2 RELATED WORK

This section reviews closely related work on using orthonormal constraints in neural-network train-
ing, which can be broadly divided in two groups: regularization and Riemannian optimization.

Regularization approaches can be divided as hard, which strictly enforce orthonormality, and soft.
Hard regularizations are computationally expensive. For example, Huang et al. (2018b) extend
Batch Normalization (Ioffe & Szegedy, 2015) with the ZCA, and hence require costly eigenvalue
decomposition. Huang et al. (2018a) derive a closed-form solution that also requires eigenvalue
decomposition. Bansal et al. (2018); Xiong et al. (2016) introduce mutual coherence regularization
and spectral restricted isometry regularization; however, these regularizations are soft.

Riemannian optimization guarantees that the solution respects orthonormality constraints. For ex-
ample, Cho & Lee (2017) replace Batch Normalization layers in a CNN with Riemannian optimiza-
tion on the Grassmann manifold G(n, 1), where the parameters are normalized but not orthonor-
malized. Also, Vorontsov et al. (2017); Wisdom et al. (2016) perform Riemannian optimization
on the unitary group matrices to stablize RNNs training, but their technique cannot be applied to
non-suquare parameter matrices. Becigneul & Ganea (2019) introduce a more general Riemannian
optimization, but do not show how to efficiently perform this optimization on the Stiefel manifold.

The key challenge of Riemannian optimization is that exponential mapping — the standard step for
estimating the next update point — is computationally expensive on the Stiefel manifold. Some
methods use an efficient pseudo-geodesic retraction instead of the exponential mapping. For exam-
ple, Absil & Malick (2012); Gawlik & Leok (2018); Manton (2002) use a projection-based method
to map the gradient back to the Stiefel manifold that rely on computational expensive SVD. Other
approaches are based on the closed-form Cayley transform (Fiori et al., 2012; Jiang & Dai, 2015;
Nishimori & Akaho, 2005; Zhu, 2017), but require the costly matrix inversion. Also, Wen & Yin
(2013) reduce the cost of the Cayley transform by making the restrictive assumption that the matrix
size n × p is such that 2p � n. Unfortunately, this algorithm is not efficient when 2p ≥ n, and
hence is not suitable for training common deep neural networks.

3 PRELIMINARY

This section briefly reviews some well-known properties of the Riemannian and Stiefel manifolds.
The interested reader is referred to Boothby (1986); Edelman et al. (1998) and references therein.
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3.1 RIEMANNIAN MANIFOLD

Definition 1. Riemannian Manifold: A Riemannian manifold (M, ρ) is a smooth manifold M
equipped with a Riemannian metric ρ defined as the inner product on the tangent space TxM for
each point x, ρx(·, ·) : TxM× TxM→ R.
Definition 2. Geodesic, Exponential map and Retraction map: A geodesic is a locally shortest
curve on a manifold. An exponential map, Expx(·), maps a tangent vector, v ∈ Tx, to a manifold,
M. Expx(tv) represents a geodesic γ(t) : t ∈ [0, 1] on a manifold, s.t. γ(0) = x, γ̇(0) = v. A
retraction map is defined as a smooth mapping Rx : TxM → M on a manifold iff Rx(0) = x
and DRx(0) = idTxM, where DRx denotes the derivative of Rx, idTxM denotes an identity map
defined on TxM. It is easy to show that any exponential map is a retraction map. As computing an
exponential map is usually expensive, a retraction map is often used as an efficient alternative.
Definition 3. Parallel transport and vector transport: Parallel transport is a method to translate
a vector along a geodesic on a manifold while preserving norm. A vector transport τ is a smooth
map defined on a retraction R of a manifoldM, τ : TxM× TxM→ TR(ηx), (ηx, ξx) 7→ τηx(ξx).
τ satisfies the following properties: (1) Underlying retraction: τηx(ξx) ∈ TR(ηx); (2) Consistency:
τ0xξx = ξx,∀ξx ∈ TxM; (3) Linearity: τηx(aξx + bζx) = aτηx(ξx) + bτηx(ζx). Usually, a vector
transport is a computationally efficient alternative to a parallel transport.

3.2 STIEFEL MANIFOLD

The Stiefel manifold St(n, p), n ≥ p, is a Riemannian manifold that is composed of all n × p
orthonormal matrices {X ∈ Rn×p : XTX = I}. In the rest of the paper, we will use notationM =
St(n, p) to denote the Stiefel manifold. We regardM as an embeded submanifold of a Euclidean
space. Hence, the Riemannian metric ρ is the Euclidean metric as:ρX(Z1, Z2) = tr(Z>1 Z2), where
Z1, Z2 are tangent vectors in TXM. The tangent space ofM at X is defined as

TXM = {Z : Z>X +X>Z = 0} (1)

The projection of a matrix Z ∈ Rn×p to TXM can be computed as

πTX (Z) =WX

where: W = Ŵ − Ŵ>, Ŵ = ZX> − 1

2
X(X>ZX>). (2)

Given a derivative of the objective function ∇f(X) at X in the Euclidean space, we can com-
pute the Riemannian gradient ∇Mf(X) on the Stiefel manifold as a projection onto TXM using
πTX (∇f(X)) given by Eq. 2. It follows that optimization of f on the Riemannian manifold can be
computed as follows. First, compute ∇Mf(Xt) in TXM. Second, transport the momentum Mt

to the current tangent space TXM and combine it linearly with the current Riemannian gradient
∇Mf(Xt) to update the momentum Mt+1. Finally, third, update the new parameter Xt+1 along a
curve on the manifold with the initial direction as Mt+1.

While the exponential map and parallel transport can be used to update parameters and momen-
tums in optimization on the Riemannian manifold, they are computationally infeasible on the Stiefel
manifold. In the following section, we specify our computationally efficient alternatives.

3.2.1 PARAMETER UPDATES BY ITERATIVE CAYLEY TRANSFORM

The Cayley transform computes a parametric curve on the Stiefel manifold using a skew-symmetric
matrix (Nishimori & Akaho, 2005). The closed-form of the Cayley transform is given by:

Y (α) = (I − α

2
W )−1(I +

α

2
W )X, (3)

where W is a skew-symmetric matrix, X is on the Stiefel manifold, and α ≥ 0 is a parameter that
represents length on the curve. It is straightforward to verify that

Y (0) = X and Y
′
(0) =WX. (4)

From Definition 2 and the definition of the tangent space of the Stiefel manifold given by Eq. 1, the
Cayley transform is a valid retraction map on the Stiefel manifold. By choosing W = Ŵ − Ŵ>,
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where Ŵ = ∇f(X)X> − 1
2X(X>∇f(X)X>) as in Eq. 2, we see that the Cayley transform im-

plicitly projects gradient on the tangent space as its initial direction. Therefore, the Cayley transform
can represent an update for the parameter matrices on the Stiefel manifold.

However, the closed-form Cayley transform in Eq. 3 involves computing the expensive matrix in-
version, which cannot be efficiently performed in large deep neural networks.

Our first contribution is an iterative estimation of the Cayley transform that efficiently uses only
matrix multiplications, and thus is more efficient than the closed form in Eq. 3. We represent the
Cayley transform with the following recurrence relationship:

Y (α) = X +
α

2
W (X + Y (α)) , (5)

which can be proved by moving Y (α) on the right-hand side to the left-hand side in Eq. 3. The
expression in Eq. 5 is an efficient approximation of Eq. 3. In Sec. 5, we will analyze its convergence
rate to the closed-form Eq. 3.

3.2.2 MOMENTUM UPDATES BY THE IMPLICIT VECTOR TRANSPORT

Our second contribution is an efficient way to perform momentum updates on the Stiefel manifold.
We specify an implicit vector transport by combining the Cayley transform and momentum update
in an elegant way without explicitly computing the vector transport. As the Stiefel manifold can
be viewed as a submanifold of the Euclidean space R, we have a natural inclusion of the tangent
space TXM ⊂ R. Consequently, the vector transport on the Stiefel manifold is the projection on
the tangent space. Formally, for two tangent vectors ξX , ηX ∈ TXM, the vector transport of ξX
along a retraction map r(ηX), denoted as τηX (ξX), can be computed as:

τηX (ξX) = πTr(ηX )
(ξX). (6)

We specify the retraction map r(·) as the Cayley transform Y in Eq. 3. At optimization step k, in
Eq. 6, we choose ξX = ηX = Mk, where Mk is the momentum in step k − 1. Then, we compute
the vector transport of Mk as τMk

(Mk) = πTXk (Mk). As the projection onto a tangent space is a
linear map, then ατMk

(Mk) + β∇Mf(Xk) = απTXk (Mk) + βπTXk (∇f(Xk)) = πTXk (αMk +

β∇f(Xk)). Thus we first compute a linear combination of the Euclidean gradient ∇f(X) and the
momentum Mk, as in the Euclidean space, and then use the iterative Cayley transform to update the
parameters, without explicitly estimating the vector transport, since the Cayley transform implicitly
project vector onto the tangent space.

4 ALGORITHMS

This section specifies our Cayley SGD and Cayley ADAM algorithms. Both represent our efficient
Riemannian optimization on the Stiefel manifold that consists of two main steps. As the Cayley
transform implicitly projects gradient and momentum vectors onto the tangent space, we first lin-
early combine the momentum of the previous iteration with the stochastic gradient of the objective
function f at the current point X , denoted as G(X). Then, we use the iterative Cayley transform
to estimate the next optimization point based on the updated momentum. This is used to gener-
alize the conventional SGD with momentum and ADAM algorithms to our two new Riemannian
optimizations on the Stiefel manifold, as described in Section 4.1 and Section 4.2.

4.1 THE CAYLEY SGD WITH MOMENTUM

We generalize the heavy ball (HB) momentum update (Ghadimi et al., 2015; Zavriev & Kostyuk,
1993) in the kth optimization step1 to the Stiefel manifold. Theoretically, it can be represented as:

Mk+1 = βπTXk (Mk)− GM(Xk), Xk+1 = Y (α,Xk,Wk) (7)

where Y (α,Xk,Wk) is a curve that starts at Xk with length α on the Stiefel manifold, specified
by the Cayley transform in Eq. 3. In practice, we efficiently perform the updates in Eq. 7 by the

1Note that we use index i in superscript to indicate our iterative steps in estimation of the Cayley transform,
and index k in subscript to indicate optimization steps.
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Algorithm 1 The Cayley SGD with Momentum

1: Input: learning rate lr, momentum coefficient β, ε=10−8, q = 0.5, s = 2.
2: Initialize X1 as an orthonormal matrix; and M1 = 0
3: for k = 0 to T do
4: Mk+1 ← βMk − G(Xk), . Update the momentum
5: Ŵk ←Mk+1X

>
k − 1

2
Xk(X

>
k Mk+1X

>
k ) . Compute the auxiliary matrix

6: Wk ← Ŵk − Ŵk
>

7: Mk+1 ←WkXk. . Project momentum onto the tangent space
8: α← min{lr, 2q/(‖Wk‖+ ε)} . Select adaptive learning rate for contraction mapping
9: Initialize Y 0 ← X + αMk+1 . Iterative estimation of the Cayley Transform

10: for i = 1 to s do
11: Y i ← Xk +

α

2
Wk(Xk + Y i−1)

12: Update Xk+1 ← Y s

Algorithm 2 The Cayley ADAM

1: Input: learning rate lr, momentum coefficients β1 and β2, ε = 10−8, q = 0.5, s = 2.
2: Initialize X1 as an orthonormal matrix. M1 = 0, v1 = 1
3: for k = 0 to T do
4: Mk+1 ← β1Mk + (1− β1)G(Xk) . Estimate biased momentum
5: vk+1 ← β2vk + (1− β2)‖G(Xk)‖2
6: v̂k+1 ← vk+1/(1− βk2 ) . Update biased second raw moment estimate
7: r ← (1− βk1 )

√
ˆvk+1 + ε . Estimate biased-corrected ratio

8: Ŵk ←Mk+1X
>
k − 1

2
Xk(X

>
k Mk+1X

>
k ) . Compute the auxiliary skew-symmetric matrix

9: Wk ← (Ŵk − Ŵ>k )/r
10: Mk+1 ← rWkXk . Project momentum onto the tangent space
11: α← min{lr, 2q/(‖Wk‖+ ε)} . Select adaptive learning rate for contraction mapping
12: Initialize Y 0 ← Xk − αMk+1 . Iterative estimation of the Cayley Transform
13: for i = 1 to s do
14: Y i ← Xk − α

2
W (Xk + Y i−1)

15: Update Xk+1 ← Y s

proposed iterative Cayley transform and implicit vector transport on the Stiefel manifold. Specially,
we first update the momentum as if it were in the Euclidean space. Then, we update the new
parameters by iterative Cayley transform. Finally, we correct the momentum Mk+1 by projecting it
to TXkM. The details of our Cayley SGD algorithm are shown in Alg. 1.

4.2 THE ADAM ON THE STIEFEL MANIFOLD

ADAM is a recent first-order optimization method for stochastic objective functions. It estimates
adaptive lower-order moments and uses adaptive learning rate. The algorithm is designed to combine
the advantages of both AdaGrad, which performs well in sparse-gradient cases, and RMSProp,
which performs well in non-stationary cases.

We generalize ADAM to the Stiefel manifold by making three modifications to the vanilla ADAM.
First, we replace the standard gradient and momentum with the corresponding ones on the Stiefel
manifold, as described in Section 4.1. Second, we use a manifold-wise adaptive learning rate that
assign a same learning rate for all entries in a parameter matrix as in (Absil et al., 2009). Third, we
use the Cayley transform to update the parameters. The Cayley ADAM is summarized in Alg 2.

5 CONVERGENCE ANALYSIS

In this section, we analyze convergence of the iterative Cayley transform and Cayley SGD with
momentum. To facilitate our analysis, we make the following common assumption.

Assumption 1. The gradient ∇f of the objective function f is Lipschitz continuous

‖∇f(X)−∇f(Y )‖ ≤ L‖X − Y ‖, ∀X,Y, where L > 0 is a constant. (8)
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The above assumption allows proving the following contraction mapping theorem.
Theorem 1. For α ∈ (0,min{1, 2

‖W‖}), the iteration Y i+1 = X+ α
2W

(
X + Y i

)
is a contraction

mapping and converges to the closed-form Cayley transform Y (α) given by Eq. 3. Specifically, at
iteration i, ||Y i − Y (α)|| = o(α2+i).

Theorem 1 shows the iterative Cayley transform will converge. Specially, it converges faster than
other approximation algorithms, such as, e.g., the Newton iterative and Neumann Series which
achieves error bound o(αi) at the ith iteration. We further prove the following result on convergence:
Theorem 2. Given an objective function f(X) that satisfies Assumption 1, let the Cayley SGD
with momentum run for t iterations with G(Xk). For α = min{ 1−βL , A√

t+1
}, where A is a positive

constant, we have: mink=0,··· ,tE[‖∇Mf(Xk)‖2] = o( 1√
t+1

)→ 0, as t→∞.

The proofs of Theorem 1 and Theorem 2 are presented in the appendix.

6 EXPERIMENTS

6.1 ORTHONORMALITY IN CNNS

In CNNs, for a convolutional layer with kernel K̂ ∈ Rcout×cin×h×w, we first reshape K̂ into a
matrix K of size p× n, where p = cout, n = cin × h×w. In most cases, we have p ≤ n. Then, we
restrict the matrix K on the Stiefel manifold using the Cayley SGD or Cayley ADAM, while other
parameters are optimized with the SGD and ADAM.

Datasets: We evaluate the Cayley SGD or Cayley ADAM in image classification on the CIFAR10
and CIFAR100 datasets (Krizhevsky & Hinton, 2009). CIFAR10 and CIFAR100 consist of of 50,000
training images and 10,000 test images, and have 10 and 100 mutually exclusive classes.

Models: We use two networks — Vgg (Simonyan & Zisserman, 2014) and Wide Resnet (Zagoruyko
& Komodakis, 2016) — that give the state-of-the-art performance on CIFAR10 and CIFAR100. For
Vgg, every convolutional layer is followed by a batch normalization layer and a ReLU. For Wide
Resnet, we use basic blocks, where two consecutive 3-by-3 convolutional layers are followed by the
batch normalization and ReLU activation, respectively.

Training Strategies: We use different learning rates lre and lrst for weights on the Euclidean space
and the Stiefel manifold, respectively. We set the weight decay as 0.0005, momentum as 0.9, and
minibatch size as 128. The initial learning rates are set as lre = 0.01 and lrst = 0.2 for the Cayley
SGD and lre = 0.01 and lrst = 0.4 for the Cayley ADAM. During training, we reduce the learning
rates by a factor of 0.2 at 60, 120, 160 epochs. The total number of epochs in training is 200.
In training, the data samples are normalized using the mean and variance of the training set, and
augmented by randomly flipping training images.

Our baselines include the SGD with momentum and ADAM. We follow the same training strategies
as mentioned above, except for the initial learning rates set to 0.1 and 0.001, respectively.

Performance: Table 1 and Table 2 show classification errors on CIFAR10 and CIFAR100 respec-
tively using different optimization algorithms. As shown in the tables, the proposed two algorithms
achieve competitive performance, and for certain deep architectures, the best performance. Specifi-
cally, the network WRN-28-10 trained with the Cayley ADAM achieves the best error rate of 3.57%
and 18.10% on CIFAR10 and CIFAR100 respectively. Fig. 1 compares training curves of our al-
gorithms and baselines, and shows that both the Cayley SGD and Cayley ADAM converge faster
than the baselines. In particular, the training curves of the baselines tend to get stuck in a plateau
before the learning rate drops, which is not the case with our algorithms. This might be because the

Table 1: Classification errors(%) on CIFAR10.
METHOD VGG-13 VGG-16 VGG-19 WRN 52-1 WRN 16-4 WRN 28-10

SGD 5.88 6.32 6.49 6.23 4.96 3.89
ADAM 6.43 6.61 6.92 6.77 5.32 3.86
CAYLEY SGD 5.90 5.77 5.85 6.35 5.15 3.66
CAYLEY ADAM 5.93 5.88 6.03 6.44 5.22 3.57
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Table 2: Classification errors(%) on CIFAR100.
METHOD VGG-13 VGG-16 VGG-19 WRN 52-1 WRN 16-4 WRN 28-10

SGD 26.17 26.84 27.62 27.44 23.41 18.66
ADAM 26.58 27.10 27.88 27.89 24.45 18.45
CAYLEY SGD 24.86 25.48 25.68 27.64 23.71 18.26
CAYLEY ADAM 25.10 25.61 25.70 27.91 24.18 18.10

baselines to do not enforce orthonormality of network parameters. In training, the backpropagation
of orthonormal weight vectors, in general, does not affect each other, and thus has greater chances
to explore new parameter regions.

(a) CIFAR10 (b) CIFAR100

Figure 1: Training loss curves of different optimization algorithms for WRN-28-10. (a) Results on
CIFAR10. (b) Results on CIFAR100. Both figures show that our Cayley SGD and Cayley ADAM
achieve the top two fastest convergence rates.

Comparison with State of the Art. We compare the proposed algorithms with two sets of state of
the art. The first set of approaches are soft orthonormality regularization approaches (Bansal et al.,
2018). Specially, for a weight matrix K ∈ Rn×p, SO penalizes ||KK> − I||2F , DSO penalizes
(||KK>−I||2F + ||K>K−I||2F ), the SRIP penalizes the spectral norm of (KK>−I). The second
set of approaches includes the following hard orthonormality methods: Polar decomposition(Absil
et al., 2009), QR decomposition(Absil et al., 2009), closed-form Cayley transform, Wen&Yin (Wen
& Yin, 2013), OMDSM(Huang et al., 2018a), DBN(Huang et al., 2018b). Note that we do not in-
clude momentum in Polar decomposition and QR decomposition as previous work does not specify
the momentum. Also, we use the closed-form Cayley transform without momentum as an ablation
study of the momentum effect. All experiments are evaluated on the benchmark network WRN-28-
10. Table 3 shows that our algorithms achieve comparable error rates with the state of art work.

Table 3: Error rate and training time per epoch comparison to baselines with WRN-28-10 on CI-
FAR10 and CIFAR100. All experiments are performed on one TITAN Xp GPU.

Error Rate(%)
Method CIFAR10 CIFAR100 Training time(s)

Baselines SGD 3.89 18.66 102.5
ADAM 3.85 18.52 115.2

Soft orthonormality
SO (Bansal et al., 2018) 3.76 18.56 297.3
DSO (Bansal et al., 2018) 3.86 18.21 311.0
SRIP (Bansal et al., 2018) 3.60 18.19 321.8

Hard orthonormality

OMDSM (Huang et al., 2018a) 3.73 18.61 943.6
DBN (Huang et al., 2018b) 3.79 18.36 889.4
Polar (Absil et al., 2009) 3.75 18.50 976.5
QR (Absil et al., 2009) 3.75 18.65 469.3
Wen&Yin (Wen & Yin, 2013) 3.82 18.70 305.8
Cayley closed form w/o momentum 3.80 18.68 1071.5
Cayley SGD (Ours) 3.66 18.26 218.7
Cayley ADAM (Ours) 3.57 18.10 224.4
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Table 4: Pixel-by-pixel MNIST accuracy and training time per iteration of the closed-form Cayley
Transform, Cayley SGD, and Cayley ADAM for Full-uRNNs (Wisdom et al., 2016). All experi-
ments are performed on one TITAN Xp GPU.

Closed-Form Cayley SGD Cayley ADAM
Model Hidden Size Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s)

Full-uRNN 116 92.8 2.10 92.6 1.42 92.7 1.50
Full-uRNN 512 96.9 2.44 96.7 1.67 96.9 1.74

Moreover, we run all algorithms on one TITAN Xp GPU, and compare their average training time
per epoch. Table 3 shows that our algorithms run much faster than existing algorithms, except for
the baseline SCD and ADAM which do not impose orthonormality constraints.

6.2 ORTHONORMALITY IN RNNS

In RNNs, the hidden-to-hidden transition matrix K can be modeled as unitary matrix (Arjovsky
et al., 2016). Wisdom et al. (2016) model the hidden-to-hidden transition matrix as a full-capacity
unitary matrix on the complex Stiefel manifold: St(CN ) = {K ∈ CN×N : KHK = I}.
Pixel-by-pixel MNIST: We evaluate the proposed algorithms on the challenging pixel-by-pixel
MNIST task for long-term memory. The task was used to test the capacity of uRNNs (Arjovsky
et al., 2016; Wisdom et al., 2016). Following the same setting as in Wisdom et al. (2016), we re-
shape MNIST images of 28× 28 pixels to a T = 784 pixel-by-pixel sequences, and select 5000 out
of the 60000 training examples for the early stopping validation.

Training: Wisdom et al. (2016) restricted the transition unitary matrix on the Stiefel manifold via
closed-form Cayley transform. On the contrary, we use the Cayley SGD with momentum and Cayley
ADAM to reduce the training time. Table 4 shows that the proposed algorithms reduces the training
time by about 35% for all settings of the network, while maintaining the same level of accuracy. All
experiments are performed on one TITAN Xp GPU.

Checking Unitariness: To show that the proposed algorithms are valid optimization algorithms on
the Stiefel manifold, we check the unitariness of the hidden-to-hidden matrix K by computing the
error term ||KHK − I||F during training. Table 5 compares average errors for varying numbers of
iterations s. As can be seen, the iterative Cayley transform can approximate the unitary matrix when
s = 2. The iterative Cayley transform performs even better than the closed form Cayley transform,
which might be an effect of the rounding error of the matrix inversion as in Eq. 3.

Table 5: Checking unitariness by computing the error ||KHK − I||F for varying numbers of itera-
tions in the iterative Cayley transform and the closed-form Cayley transform.

Hidden Size s=0 s=1 s=2 s=3 s=4 Closed-form

n=116 3.231e-3 2.852e-4 7.384e-6 7.353e-6 7.338e-6 8.273e-5
n=512 6.787e-3 5.557e-4 2.562e-5 2.547e-5 2.544e-5 3.845e-5

7 CONCLUSION

We specified an efficient way to enforce the exact orthonormal constraints on parameters by opti-
mization on the Stiefel manifold. The iterative Cayley transform was applied to the conventional
SGD and ADAM for specifying two new algorithms: Cayley SGD with momentum and Cayley
ADAM, and the theoretical analysis of convergence of the former. The experiments show that
both algorithms achieve comparable performance and faster convergence over the baseline SGD and
ADAM in training of the standard Vgg and ResNet on CIFAR10 and CIFAR100, as well as RNNs
on the pixel-by-pixel MNIST task. Both Cayley SGD with momentum and Cayley ADAM take less
runtime per iteration than all existing hard orthonormal methods and soft orthonormal methods, and
can be applied to non-square parameter matrices.
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In the appendix, we give the proofs of Theorem 1 and Theorem 2 in the main paper.

A PRELIMINARY

To facilitate the analysis, we derive some properties of the Stiefel manifold in this section.

Considering the Stiefel manifold M is a bounded set and Lipschitz Assumption 1 on the gradi-
ent in Sec. 5, one straightforward conclusion is that both ∇f(X) and its Stiefel manifold gradient
∇Mf(X) that is a projection onto the tangent space are bounded. Formally, there exists a positive
constant G, such that

||∇Mf(X)|| ≤ ||∇f(X)|| ≤ G,∀X ∈M (9)

As stochastic gradient G(X) = G(X; ξ) is the gradient of a sub-dataset, where ξ is a stochastic
variable for data samples and we are working are a finite dataset, it’s straightforward to show that
G(X) and its Riemannian stochastic gradient GM(X) are also bounded. For brevity, we still use the
same upper bound G, such that:

||GM(X)|| ≤ ||G(X)|| ≤ G,∀X ∈M (10)

Recall the recursion in Eq. 7, we show that the momentum is also bounded:

||Mk+1|| ≤ β||Mk||+ ||GM(Xk)||

≤
k∑
i=0

βk−i||GM(Xi)||

≤ 1

1− β
G (11)

Therefore, we know that Wk in Eq. 7 is bounded.

B PROOF OF THEOREM 1

Proof. By subtracting the iterative relationship Eq. 5 by its ith iteration Y i+1 = X +
α
2W

(
X + Y i

)
, we have:

||Y i+1 − Y (α)|| ≤ α||W ||
2
||Y i − Y (α)|| (12)

Therefore, since W is bounded, for α < 2
‖W‖ , such that α‖W‖

2 < 1, the iteration in Eq. 5 is a
contraction mapping, and it will converge to the closed-from solution Y (α).

By differentiate Eq. 5, we have:

dY (α)

dα
=W (

X + Y (α)

2
) +

α

2
W
dY (α)

dα
d2Y (α)

dα2
= (I − α

2
W )−1W

dY (α)

dα
(13)

therefore, dY (α)
dα and d2Y (α)

dα2 are bounded, i.e. there exist a positive constant C, such that:

||d
2Y (α)

dα2
|| ≤ C (14)

Using the Taylor expansion of Y in Eq. 3, we have:

Y (α) = Xk + αMk+1 +
1

2
α2 d

2Y (γkα)

dα2
(15)

where γk ∈ (0, 1). Given Y 0 = Xk + αMk+1, we have:

||Y 0 − Y (α)|| = o(α2) (16)

11
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Since W is bounded and α||W ||
2 < 1, then,

||Y i − Y (α)|| ≤ (
α||W ||

2
)i||Y 0 − Y (α)|| = o(α2+i) (17)

C PROOF OF THEOREM 2

Proof. Use Taylor expansion of Y (α), the process of Cayley SGD with momentum Eq. 7 can be
written as:

Mk+1 = πTXk (βMk)− GM(Xk)

Xk+1 = Xk + αMk+1 +
1

2
α2 d

2Y (γkα)

dα2
(18)

where γk ∈ (0, 1).

Using the fact that

M = πTX (M) + πNX (M) (19)

where πNX (M) is the projection onto the normal space, and

πNX (M) = X
X>M +M>X

2
(20)

Then, the projection of momentum can be represented as:

πTXk (Mk) =Mk − πNXk (Mk)

=Mk −Xk
X>k Mk +M>k Xk

2

=Mk −
1

2
Xk{[Xk−1 + αMk +

1

2
α2 d

2Y (γk−1α)

dα2
]>Mk

+M>k [Xk−1 + αMk +
1

2
α2 d

2Y (γk−1α)

dα2
]}

=Mk − αXkM
>
k Mk −

1

4
α2Xk[

d2Y (γk−1α)

dα2

>

Mk +M>k
d2Y (γk−1α)

dα2
] (21)

Then the momentum update in Eq. 7 is equivalent to:

Mk+1 = βMk − αβXkM
>
k Mk − GM(Xk)

− 1

4
α2βXk[

d2Y (γk−1α)

dα2

>

Mk +M>k
d2Y (γk−1α)

dα2
] (22)

Therefore, the paramter update in Eq. 7 can be represented as:

Xk+1 = Xk + αβMk − αGM(Xk)

− 1

4
α3βXk[

d2Y (γk−1α)

dα2

>

Mk +M>k
d2Y (γk−1α)

dα2
]

− α2βXkM
>
k Mk +

1

2
α2 d

2Y (γkα)

dα2

= Xk + β(Xk −Xk−1)− αGM(Xk) + α2U (23)

where

U = −1

4
αβXk[

d2Y (γk−1α)

dα2

>

Mk +M>k
d2Y (γk−1α)

dα2
]

− βXkM
>
k Mk +

1

2

d2Y (γkα)

dα2
− β

2

d2Y (γk−1α)

dα2
(24)

12
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Since ||M ||, ||X||, and‖d
2Y
dα2 ‖ are bounded, there is a positive constant D, such that

||U || ≤ D (25)

To facilitate the analysis of Cayle SGD with momentum, we introduce auxiliary variables {Pk},
such that:

Zk+1 = Zk −
α

1− β
GM(Xk) +

α2

1− β
U

(26)

where

Zk = Xk + Pk (27)

and

Pk =


β

1− β
(Xk −Xk−1), k ≥ 1

0, k = 0

Since f(X) is a smooth function according to Assumption 1, we have:

f(Y )− f(X)− tr(∇f(X)>(Y −X))

=

∫ 1

0

∇tr(f(Y + t(Y −X))>(Y −X))dt− tr(∇f(X)>(Y −X))

≤||
∫ 1

0

(∇f(Y + t(Y −X))−∇f(X))dt|| × ||Y −X||

≤
∫ 1

0

L||t(Y −X)||dt× ||Y −X||

≤L
2
||Y −X||2 (28)

Then, we have

f(Zk+1) ≤f(Zk) + tr(∇f(Zk)>(Zk+1 − Zk)) +
L

2
||Zk+1 − Zk||2

=f(Zk) + tr(∇f(Zk)>(Zk+1 − Zk)) +
L

2
|| α

1− β
GM(Xk)−

α2

1− β
U ||2

≤f(Zk) + tr(∇f(Zk)>(Zk+1 − Zk)) +
Lα2

(1− β)2
||GM(Xk)||2 +

Lα4

(1− β)2
||U ||2

≤f(Zk)−
α

1− β
tr(GM(Xk)

>∇f(Zk)) +
α2

1− β
tr(U>∇f(Zk)) +

Lα2

(1− β)2
G2

+
Lα4

(1− β)2
D2

≤f(Zk)−
α

1− β
tr(GM(Xk)

>∇f(Zk)) +
α2

2(1− β)
(||U ||2 + ||∇f(Zk)||2) +

Lα2

(1− β)2
G2

+
Lα4

(1− β)2
D2

≤f(Zk)−
α

1− β
tr(GM(Xk)

>∇f(Zk)) +
α2

2(1− β)
(D2 +G2)

+
Lα2

(1− β)2
G2 +

Lα4

(1− β)2
D2 (29)

13
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By taking expectation over the both sides, we have:

E[f(Zk+1)− f(Zk))]

≤E[− α

1− β
tr(∇f(Zk)>∇Mf(Xk))] +

α2

2(1− β)
(D2 +G2) +

Lα2

(1− β)2
G2 +

Lα4

(1− β)2
D2

≤E[− α

1− β
tr(∇f(Zk)−∇f(Xk))

>∇Mf(Xk)−
α

1− β
tr(∇f(Xk)

>∇Mf(Xk))]

+
α2

2(1− β)
(D2 +G2) +

Lα2

(1− β)2
G2 +

Lα4

(1− β)2
D2

=E[− α

1− β
tr(∇f(Zk)−∇f(Xk))

>∇Mf(Xk)−
α

1− β
||∇Mf(Xk)||2]

+
α2

2(1− β)
(D2 +G2) +

Lα2

(1− β)2
G2 +

Lα4

(1− β)2
D2 (30)

By noticing that:

− α

1− β
(∇f(Zk)−∇f(Xk))

>∇Mf(Xk)

≤ 1

2L
||∇f(Zk)−∇f(Xk)||2 +

Lα2

2(1− β)2
||∇Mf(Xk)||2 (31)

Then

E[f(Zk+1)− f(Zk))]

≤ 1

2L
E||∇f(Zk)−∇f(Xk)||2 + (

Lα2

2(1− β)2
− α

1− β
)E||∇Mf(Xk)||2

+
α2

2(1− β)
(D2 +G2) +

Lα2

(1− β)2
G2 +

Lα4

(1− β)2
D2 (32)

According to the Lipschitz continuous property in Assumption 1, we have:

||∇f(Zk)−∇f(Xk)||2 ≤L2||Zk −Xk||2

=
L2β2

(1− β)2
||Xk −Xk−1||2

=
L2β2

(1− β)2
||αMk +

1

2
α2 d

2Y (γkα)

dα2
||2

≤ 2L2β2

(1− β)2
(||αMk||2 + ||

1

2
α2 d

2Y (γkα)

dα2
||2)

≤2L2α2β2

(1− β)2
(

G2

(1− β)2
+
α2C2

4
) (33)

Therefore,

E[f(Zk+1)− f(Zk))]

≤ −BE||∇Mf(Xk)||2 + α2B
′

(34)

where

B =
α

1− β
− Lα2

2(1− β)2
(35)

B
′
=

Lβ2

(1− β)2
(

G2

(1− β)2
+
α2C2

4
) +

D2 +G2

2(1− β)
+

LG2

(1− β)2
+

Lα2

(1− β)2
D2 (36)

14
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Since α ≤ 1−β
L , then

B =
α

1− β
− Lα2

2(1− β)2

=
α

1− β
(1− αL

2(1− β)
)

≥ α

2(1− β)
> 0 (37)

By summing Eq. 34 over all k, we have

B

t∑
k=0

E||∇Mf(Xk)||2 ≤ E[f(Z0)− f(Zt+1)] + (t+ 1)α2B
′

≤ f(Z0)− f∗ + (t+ 1)α2B
′

(38)

Then

min
k=0,··· ,t

E[||∇Mf(Xk)||2] ≤
f(Z0)− f∗
(t+ 1)B

+ α2B
′

B
(39)

min
k=0,··· ,t

E[||∇Mf(Xk)||2] ≤
2(f(Z0)− f∗)(1− β)

(t+ 1)α
+ α2B

′
(1− β) (40)

Use the fact that α = min{ 1−βL , A√
t+1
}, and notice that Z0 = X0, therefore,

min
k=0,··· ,t

E[||∇Mf(xk)||2]

≤2(f(X0)− f∗)(1− β)
t+ 1

max{ L

1− β
,

√
t+ 1

A
}+ 2AB

′
(1− β)√
t+ 1

≤2(f(X0)− f∗)(1− β)
t+ 1

max{ L

1− β
,

√
t+ 1

A
}

+
2A(1− β)√

t+ 1
[

Lβ2

(1− β)2
(

G2

(1− β)2
+

A2C2

4(t+ 1)
)

+
D2 +G2

2(1− β)
+

LG2

(1− β)2
+

LA2

(t+ 1)(1− β)2
D2] (41)

Therefore, min
k=0,··· ,t

E[||∇Mf(Xk)||2] = o( 1√
t+1

)→ 0, as t→∞.
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