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ABSTRACT

We introduce a method to create Universal Adversarial Perturbations (UAP) for
a given CNN in a data-free manner. Data-free approaches suite scenarios where
the original training data is unavailable for crafting adversaries. We show that the
adversary generation with full training data can be approximated to a formulation
without data. This is realized through a sequential optimization of the adversarial
perturbation with the proposed dilate loss. Dilate loss basically maximizes the
Euclidean norm of the output before nonlinearity at any layer. By doing so, the
perturbation constrains the ReLU activation function at every layer to act roughly
linear for data points and thus eliminate the dependency on data for crafting UAPs.
Extensive experiments demonstrate that our method not only has theoretical sup-
port, but achieves higher fooling rate than the existing data-free work. Further-
more, we evidence improvement in limited data cases as well.

1 INTRODUCTION

Despite the phenomenal success of deep neural networks in many practical applications, adversarial
attacks are being a constant plague. These attacks corrupt the input with a small and usually im-
perceptible structured noise causing the model to output incorrect predictions. The sole existence
of such a vulnerability not only raises concerns about the security of deep learning models, but also
questions the robustness of the learned representations. To make it further worse, it has been shown
that a single noise, called universal adversarial perturbation (UAP), can be added to any image and
fool the network. UAPs do not require any optimization on the input image at attack time, but the
corruption effectively works for most of the images. Interestingly, such perturbations created for
one model exhibit transferability of attack and induce high fooling on other models. One drawback
of UAPs though, is the requirement of training data for crafting perturbations. This is increasingly
infeasible as the datasets are becoming quite large and might not be publicly released due to privacy
or copyright reasons. In such cases where the original data is not available, data-free methods are
gaining traction. In the data-free setting, the perturbation is created only with the trained neural net-
work. Such methods typically rely on the trained weights and the CNN structure to find vulnerable
patterns that can maximally disturb the normal propagation of activations across the network. A
higher transfer of attack across networks is observed for data-free UAPs as well, raising its practical
utility. Moreover, the study of these perturbations might lead to new insights on how deep neural
networks actually work.

In this paper, we propose a new method for crafting data-free UAPs for any given CNN using
ReLU nonlinearity. The approach relies on finding the singular vectors of a linearly approximated
network (Section 3.1). A loss formulation is devised to enable this approximation under certain
conditions. Dilate loss forms the major component of the method, which generates a perturbation
that maximizes the Euclidean norm of the activation vector (before the nonlinearity) at a given
layer (Section 3.2). We show that the perturbation crafted through dilation has the effect of linearly
approximating the ReLU layer responses for any data points. These dilations are done sequentially
for all the layers from the input to the last classification stage (Section 3.3). We argue that the
sequential dilations results in a perturbation that aligns with the first singular vector of the linearly
approximated network. Our approach outperforms the existing data-free method in fooling rates and
the evaluation is also done for less data scenarios (Section 4).

In summary, the work contributes the following:
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Figure 1: Demonstration of adversarial attack through perturbation generated from our proposed
sequential dilation algorithm. The first row shows the clean images with the class predicted by the
model, while the second row has the corresponding perturbed samples with the flipped labels.

• A new method that can create universal adversarial perturbation without using data and
achieve state-of-the-art data-free fooling rates.

• A detailed theoretical analysis which formulates the proposed sequential dilation algorithm
by approximating the adversary generation with full training data under certain conditions.

2 RELATED WORK

The vulnerability of deep neural networks to adversarial samples is first shown in Szegedy et al.
(2013). Following Szegedy et al. (2013), several methods (Goodfellow et al., 2014; Kurakin et al.,
2016; Dong et al., 2018; Madry et al., 2017; Moosavi-Dezfooli et al., 2016; Brendel et al., 2017;
Athalye et al., 2018; Carlini & Wagner, 2017) are being proposed to craft such adversarial samples.
One of the simplest method is the Fast Gradient Sign Method (FGSM) formulated in Goodfellow
et al. (2014). FGSM obtains the perturbation by single step gradient ascent of the loss function with
respect to the input image. There are multi step variants to FGSM like iterative FGSM (Kurakin
et al., 2016), Momentum (Dong et al., 2018), Projected Gradient Descent (PGD) (Madry et al.,
2017), Deepfool (Moosavi-Dezfooli et al., 2016), etc. These attacks are image-specific, where the
perturbation is a function of the input and requires a separate optimization for each image.

Moosavi-Dezfooli et al. (2017) introduce the idea of Universal Adversarial Perturbations (UAP),
a single perturbation that can fool the model for most of the input images. UAP is obtained by
jointly maximizing the training loss for dataset images. There are also generative approaches like
NAG (Reddy Mopuri et al., 2018b), AAA (Reddy Mopuri et al., 2018a), GAP (Poursaeed et al.,
2018) for crafting universal adversaries. Khrulkov & Oseledets (2018) propose a method based on
singular vectors of Jacobian matrix to create universal adversaries. They show impressive fooling
performance with a very small set of training images, but the method is not data-free. Though the
study of adversarial attacks started with the classification task, there are several works (Xie et al.,
2017; Metzen et al., 2017) that extend such attacks to other tasks like segmentation, detection,
etc. Further, adversarial examples are shown to generalize to the physical world in Kurakin et al.
(2016). While most attacks changes each pixel in the image with small imperceptible noise, there are
methods (Sharif et al., 2016; Brown et al., 2017; Papernot et al., 2016) that perturb limited number
of pixels with large noise as these are more practical in nature.

The attacks discussed so far, in general, rely on maximizing the training loss. In contrast, Mopuri
et al. (2018) devise a generalizable data-free objective for crafting UAPs (GDUAP). GDUAP maxi-
mizes the activations at the output of all convolutional layers corrupting the feature representations
learned and hence fooling the model. Our method has similarity to GDUAP, but with the crucial
difference that the Euclidean norm maximization is performed before the nonlinearity in our case.
Further, we maximize the norms of the layers one after the other in a sequential fashion as opposed
to a single joint optimization. We show theoretically and experimentally that these changes cause a
lot of difference in fooling performance. Moreover, no sound reasoning is available in Mopuri et al.
(2018) to justify the formulation, whereas we provide theoretical explanation for the algorithm.
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3 OUR APPROACH

3.1 CRAFTING A DATA-FREE OBJECTIVE

Consider a deep neural network with L layers already trained for classification task. We assume the
activation function employed in the network to be ReLU (Nair & Hinton, 2010), defined as

σR(x) =

{
x if x > 0

0 otherwise,

which basically zeros out all negative elements and retains the positive ones when applied on a
matrix. Let f1(x) = W1x, f2(x) = W2σR(W1x), ..., fl(x) = WlσR(. . .W2σR(W1x) . . .) be
the outputs at different layers of the network for an input vector x. Note that the output fi for the
ith layer is taken before the nonlinearity and fL represents the pre-softmax neuron layer. We ignore
the bias terms for mathematical simplicity. The weights (Wis) of the network are trained with input
and label pairs from the dataset D.

Our aim is to craft a perturbation vector p with Euclidean norm c such that the network incorrectly
classifies for most of the data samples. Mathematically, the optimization can be written as,

max
p:|p|=c

∑
(xi,yi)∈D

Iargmax(σS(fL(xi+p))) 6=yi , (1)

where σS is the softmax function. Note that the condition for the indicator function (I) that
checks for misclassification is dependent on the ground truth labels (yis). Assuming a high clas-
sification accuracy for the model, we approximate the condition to argmax(σS(fL(xi + p))) 6=
argmax(σS(fL(xi))). Since softmax function is monotonic, we further relax the objective 1 to

max
p:|p|=c

∑
(xi,yi)∈D

|fL(xi + p)− fL(xi)|2, (2)

which amounts to finding a p that maximizes the network response after being added to the inputs.
In other words, p should maximally disturb the output fL for all data points. Note that for some
xis, maximizing |fL(xi + p)− fL(xi)|2 might not result in incorrect prediction. We assume such
cases to be minority and the objective could lead to significant adversarial changes to fL responses
for majority input samples. If X = {x0,x1, . . . ,xN} denote the matrix formed by the assembling
all the N data samples as columns and 1 represent a column vector of ones of appropriate size, then
the optimization 2 can be rewritten as,

max
p:|p|=c

|fL(X + p1T )− fL(X)|2F . (3)

We recognize that optimization 3 is not exactly equivalent to the original objective 1, but is an ap-
proximation which does not require the ground truth labels. But still the training data X is essential
for computation and needs to be eliminated for a complete data-free approach. Now observe that if
fL were to be a linear function, then the objective 3 reduces to,

max
p:|p|=c

|fL(p)|2, (4)

which means that p has to align along the first right singular vector of the linear fL map. The singular
p could potentially disturb the output fL more for all the xis than any other vector. Interestingly,
note that the optimization 4 is a data-free objective under the linear assumption of fL. However, fL is
nonlinear due to the presence of ReLU activation functions at every layer. Note that the formulation
4 is valid even if fL is not a complete linear map, but satisfies fL(X + p1T ) = fL(X) + fL(p1T )
for some p. Hence, we devise an algorithm to seek a perturbation that can approximately induce the
above additivity property to the ReLU network.

3.2 LINEARLY APPROXIMATING THE NETWORK

We start by noting that the only nonlinearity in the network is due to the ReLU activation function
at every layer. But ReLU is piece-wise linear; especially, observe that σR(a+ b) = σR(a) +σR(b)
if vectors a and b are in the same orthant. Now consider the ReLU nonlinearity after the first layer,
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σR(W1X + W1p1T ), which becomes additive if column vectors in W1X are in the same orthant
as W1p. We relax this criteria and favour the case of making the vectors as close as possible by,

max
p:|p|=c

1T (W1X)T (W1p) = N(W1x̄1)T (W1p), (5)

where x̄1 stands for the mean of the N data samples in X . The solution of the optimization 5 is
expected to minimize the error due to the additive approximation of the layer. In order to eliminate
the data term from the objective, we make an assumption that the first singular vector of the weight
matrices align along the mean vector of its corresponding input. In other words, the dot product of
data mean x̄1 with the singular vectors of W1 is maximum for the first singular vector. Now we use
the following lemma to argue that the objective 5 is maximum when p aligns with the first singular
vector of W1 (proof available in Appendix A).
Lemma 1. If x has positive and larger scalar projection on the first singular vector of W than
remaining singular vectors, then argmaxpxW

TWp = argmaxp|Wp|2 subject to |p| = c.

Hence, the optimization problem 5 is equivalent to,

max
p:|p|=c

|W1p|2, (6)

which we call as the dilation of the first layer. We justify the assumption based on the premise that
the singular vectors of the weights must have captured the discriminatory modes of data samples
while training. By discriminatory mode we refer to the components of X that are essential for the
classification task and most likely extracted by the hierarchy of weights in the network. These does
not correspond to the modes of variation of data points. The assumption essentially means that the
first singular vector carries the most important features common to most of the data points than the
remaining singular directions. This is taken to be valid for any layer weight Wl with difference that
the mean vector x̄l is averaged over the layer l−1 output, i.e. x̄l = (1/N)σR(fl−1(X))1 for l > 1.

Now consider the second layer of the network given by σR(W2σR(W1X +W1p1
T )), where there

are two ReLU functions in action. Suppose the first ReLU function is linearly approximated with
dilation objective 6. Consequently, the second layer output can be written as σR(W2σR(W1X) +
W2σR(W1p1

T )). Note that the second ReLU can be linearly approximated if column vectors in
W2σR(W1X) are close to W2σR(W1p). Considering the two approximations, we formulate the
optimization as,

max
p:|p|=c

1T (W2σR(W1X))T (W2σR(W1p)) + 1T (W1X)T (W1p), (7)

max
p:|p|=c

(W2x̄2)T (W2σR(W1p)) + (W1x̄1)T (W1p). (8)

Again, we leverage the assumption that the data mean projects more to the first singular vector of
the weight matrix and with Lemma 1, the problem becomes the dilation of the second layer,

max
p:|p|=c

|W2σR(W1p)|2 + |W1p|2. (9)

We extend the same arguments to further layers and see that the dilations tends to make the net-
work layers approximately additive with respect to the generated perturbation vector. For the last
layer, the dilation terms are added to objective 4 to account for the errors introduced due to linear
approximation of all the ReLU layers. Hence, the final optimization problem for UAP generation
becomes,

max
p:|p|=c

|fL(p)|2 +

L−1∑
l=1

|fl(p)|2, (10)

which is clearly a completely data-free formulation.

3.3 SEQUENTIAL DILATION ALGORITHM

We leverage the theoretical intuitions from the previous Section to formulate an algorithm for UAP
generation in a data-free manner. Note that the direct implementation of optimization 10 through
any gradient descent algorithm would lead to sub-optimal solutions as the chances of getting stuck
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Algorithm 1: The sequential dilation algorithm for crafting data-free UAPs. The input is the
multi-layer neural network f and the perturbation strength c. A set of adversarial perturbations
{pl}Ll=1, one for each layer, is returned as the output. Note that λ is the learning rate.

p0 ∼ U(−10, 10)
for l = {1, 2, . . . , L} do

pl = pl−1
while convergence do

pl = pl + λ∇pl

∑l
i=1 log(|fi(pl)|2)

Set |pl|∞ = c
end

end

in local minimas is high. This is especially true since no data is used and the only variable being
optimized is p with no sources of randomness. Hence, we perform the dilations of optimization 10
in sequential manner so as to avoid chances of reaching local minima solutions. Some more changes
are applied in the way the original optimization is implemented, mainly for training stability and to
compare fairly with existing methods. For numerical stability of the optimization, we follow Mopuri
et al. (2018) and maximize logarithm of the Euclidean norm in the dilate loss. In order to compare
with existing methods, l∞ norm is restricted instead of the l2 in the problem 10. This constrains the
maximum of absolute value of the adversarial noise.

Algorithm 1 elucidates our proposed sequential dilation algorithm for ReLU based neural networks.
The procedure loops over all the layers of the network. For the first layer, we find a vector p1 which
maximizes the logarithm of l2 norm of W1p1, essentially finding the first singular vector of W1.
After the dilation of the first layer, the perturbation p1 is used as an initialization for maximizing the
Euclidean norm of second layer. But note the first loss term |W1p|22 is still kept in the dilation of
second layer. This loss formulation tries to maximize the norm of output at the current layer along
with all the previous layers that feed into it. In short, dilation of lth layer starts the optimization with
perturbation obtained from dilation of (l − 1)th layer and involves the joint dilation of all l layers.
The method runs till the softmax layer of the network and the final perturbation pL is a UAP, created
without using any training data and could potentially fool majority of input samples.

We only consider CNNs trained for classification task. The optimization is performed using standard
ADAM optimizer (Kingma & Ba, 2014) with a fixed learning rate schedule till the training loss sat-
urates. Typical learning rate is 0.1. At every step of the optimization, the values of the perturbation
are clipped to limit the allowed range. The l∞ norm is set as 10 for all our experiments. Although,
Euclidean and maximum norms are not theoretically equivalent, practically we observe that the final
perturbations are saturated, with roughly more than 78% of the values reaching ±10. This implies
the l2 norm also to be approximately restricted under the saturation assumption. Once the perturba-
tion gets saturated while optimization, the loss might saturate and could be stuck in local minimas.

VGG-16 VGG-19 ResNet-50

ResNet-152 Inception-v1 Inception-v3

Figure 2: Data-free Universal Adversaries crafted using our sequential dilation algorithm.
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Table 1: Comparison of fooling rates (in percentage) obtained for our approach with that of other
works. We achieve higher fooling rate than the existing data-free method GDUAP (Mopuri et al.,
2018). Note that UAP (Moosavi-Dezfooli et al., 2017) is data dependent (shown for completeness).

Network UAP Random GDUAP Ours

VGG16 77.80 8.20 44.79 51.35 ± 1.16
VGG19 80.80 8.14 40.51 49.58 ± 0.96
ResNet 50 - 10.01 32.81 60.10 ± 0.63
ResNet 152 84.00 8.46 23.90 47.37 ± 1.50
Inception v1 78.50 9.94 17.59 52.02 ± 1.05
Inception v3 - 7.83 21.74 47.18 ± 1.36

To prevent this, after dilation at every layer, we rescale the perturbation by dividing the pixel values
by 2. This does not make any difference to the procedure as only the magnitude is changed to make
room for further optimization. Ideally, we should do sequential dilations for all the convolutional
and fully connected layers of the CNN from input side to the end softmax classifier. But for very
deep models like Inception and ResNet, the dilations are done only for every architectural blocks.
Because of this the optimization might be more nonlinear than what is being assumed in Section
3.1, with the maximum norm further inducing the clipping nonlinearity. Hence, we initialize the
perturbation (p0) with the values drawn randomly from a uniform distribution U(−10, 10). Finally,
note that absolutely no data in any form is used for creating adversarial noise, not even a validation
set is employed in contrast to Mopuri et al. (2018). The code for our approach is available for review
at the anonymous link https://github.com/anoniclr/uap seq dilate.

4 EXPERIMENTS

We benchmark our proposed sequential dilation method with the existing data-free approaches. All
the experiments are performed on popular classification models like VGG (Simonyan & Zisserman,
2014), ResNet (He et al., 2016) and Inception (Szegedy et al., 2016). These models are already
trained on Imagenet (Deng et al., 2009) dataset and delivers very high classification accuracy. Figure
2 shows the perturbations crafted using the proposed method for various networks. We follow
other works (Moosavi-Dezfooli et al., 2017; Mopuri et al., 2018) and assess the performance of our
adversarial attack using the fooling rate metric. Fooling rate is defined as the fraction of test images
on which the network prediction differs before and after the addition of the adversarial noise. Table 1
reports the fooling rates obtained by our method along with that of other works. The first comparison
is with the random baseline, which is the fooling incurred with just random noise. Second baseline is
with the only existing data-free approach GDUAP. Clearly, our proposed data-free objective achieves
significantly higher fooling rates than the other data-free work. This indicates that sequential dilation
algorithm, not only has theoretical backing, but also results in higher fooling rates in practice. Note
that we have run our method ten times and the results produced in the table are mean fooling rate
along with the standard deviation, to statistically validate the performance improvement.

Now we ablate the different aspects of the sequential dilation algorithm to demonstrate the useful-
ness of the design choices. Table 2 reports the results of the various ablative experiments. First

Table 2: Various ablative experiments regarding our approach. It is evident that the proposed se-
quential dilation algorithm has higher performance than any of its variants.

Network Single Dilation PSM Maximization Ours without accumulation Ours

VGG16 49.46 24.24 31.49 51.35
VGG19 44.10 25.20 31.00 49.58
ResNet 50 25.62 16.57 28.52 60.10
ResNet 152 28.16 15.85 13.40 47.37
Inception v1 24.81 15.57 39.08 52.02
Inception v3 19.40 11.92 26.08 47.18
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conv1_1 (29.95%) conv1_2 (33.16%) conv2_1 (34.37%) conv2_2 (35.30 %) conv3_1 (36.11%)

conv3_2 (38.22%) conv3_3 (40.62%) conv4_1 (43.73%) conv4_2 (46.01%) conv4_3 (47.17%)

conv5_1 (48.68%) conv5_2 (49.99%) conv5_3 (51.32%) fc6 (52.69%) fc7 (52.58%)

Figure 3: Intermediate perturbations (pls) crafted for different layers using our sequential dilation
algorithm for VGG-16 network with corresponding fooling rates obtained.

experiment is non-sequential version of dilation, listed as single dilation in the table. This is a
single joint optimization maximizing the norm of activations before the non-linearity. PSM maxi-
mization refers to simple maximization of the pre-softmax layer (fL) alone, which is same as the
approximated objective 4. As described in Section 3.3, our dilation of a layer involves keeping
the maximization terms of all the previous layers. We empirically validate the necessity of such a
scheme by just sequentially maximizing the layer norms without the cumulative loss term for the
experiment Ours without accumulation in Table 2. Note that each maximization starts with the per-
turbation initialized from the previous optimization. The results for these ablations evidence that our
exact formulation of sequential dilation achieves higher fooling rates in data-free scenario. Further,
Figure 3 displays the perturbations obtained through sequential dilation at every layer for VGG-16
network, basically the pls from Algorithm 1. We also indicate the corresponding fooling rates for
each of the perturbation. It is interesting to observe that the fooling rate increases as we successively
dilate layers and saturates towards the end, again emphasizing the need for the sequential process.

In many practical attack scenarios, the actual deployed model might not be available to generate
the adversarial perturbation. Hence, the ability of the perturbation crafted for one network to cause
reasonable fooling on another network is often highly sought-after property. This setting is known
as black-box, for which we compare our method with GDUAP (Mopuri et al., 2018) in Table 3.
The results evidence better black-box performance for our method than the existing data-free work,
suggesting higher generalization for the perturbations from sequential dilation.

Table 3: Black-box testing of data-free sequential dilation approach. Rows indicate the networks
used to craft the adversary and the columns specify the one for which the fooling rate is computed.
Blue values are the fooling rates obtained by our method, while the red ones correspond to GDUAP.

Network VGG16 VGG19 ResNet 50 ResNet 152 Inception v1 Inception v3

VGG16 44.8, 52.2 38.5, 45.9 27.7, 37.8 23.9, 32.1 26.3, 34.9 20.1, 26.9
VGG19 35.6, 47.5 40.5, 52.0 24.9, 37.3 21.5, 30.4 25.7 , 33.7 18.7, 27.2
ResNet 50 15.2, 23.6 14.8, 23.1 32.8, 59.8 17.9, 35.0 18.9, 33.3 13.7, 21.6
ResNet 152 16.6, 27.1 15.8, 26.3 21.7, 36.6 23.9, 46.7 18.7, 27.5 13.7, 18.5
Inception v1 14.4, 26.1 13.9, 26.5 16.4, 34.3 14.1, 27.2 17.6, 51.5 12.1, 21.8
Inception v3 11.8, 16.5 11.8, 16.3 13.2, 18.0 11.8, 14.6 13.9, 16.5 21.7, 45.9
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Table 4: Comparison of fooling rates obtained by our method and GDUAP (Mopuri et al., 2018) in
less data setting with varied number of images available for crafting the perturbation.

GDUAP Ours

Network D=64 D = 500 D=1000 D=10000 D=64 D = 500 D=1000 D=10000

VGG16 71.25 75.16 76.20 75.62 74.25 77.66 78.12 79.09
VGG19 68.65 73.11 74.19 74.73 66.81 72.34 74.00 74.28
ResNet 50 57.94 71.98 72.71 71.64 70.33 74.52 74.54 76.36
ResNet 152 43.95 67.43 69.34 70.48 68.07 70.57 71.52 71.64
Inception v1 15.83 85.99 86.41 87.10 60.26 64.43 69.68 71.78
Inception v3 27.13 53.84 55.04 59.88 81.54 86.69 87.21 87.57

Table 5: Benchmarking our approach in less data scenario with Singular Fool (Khrulkov & Os-
eledets, 2018) where the adversaries are crafted with just 64 images.

Ours Singular Fool

Network Imagenet Pascal (Khrulkov & Oseledets, 2018)

VGG16 72.13 76.15 52
VGG19 66.56 68.87 60
ResNet 50 68.73 65.69 44
ResNet 152 66.84 66.47 -
Inception v1 46.74 40.86 -
Inception v3 76.42 76.70 -

The experiments performed so far show that proposed sequential dilate loss formulation achieves
state-of-the-art fooling rates in data-free scenarios. We now consider the case where minimal train-
ing data is available, called the less data setting. For this case, the sequential dilation is applied
with the limited data. The input to the network at any stage of the optimization is the image added
with the current perturbation (xi + pl for layer l). With the help of some data points, we expect
the solution to approach more closer to the actual adversarial perturbation obtained with full data.
Table 4 indicates the fooling rates of the less data setting with varied amount of training samples.
Note that to compare with GDUAP, we also use a validation set to select the best perturbation while
training. Our approach performs significantly better than GDUAP when data samples are very less,
increasing the practical utility of the method. We also observe that the fooling rates with less data,
in general, have increased than data-free and became comparable to full data UAP (see Table 1).

Furthermore, Table 5 compares our approach with Singular Fool (Khrulkov & Oseledets, 2018) in
extremely less data scenario. For fair comparison with Khrulkov & Oseledets (2018), we use only
64 images for crafting the perturbation and no validation set is employed. The best perturbation is
selected based on the training loss. As expected, our method achieves significantly higher fooling
performance than Khrulkov & Oseledets (2018). Even more, we apply our algorithm with 64 ran-
domly chosen images from Pascal VOC (Everingham et al., 2011). Interestingly, despite the models
used are being trained for a different dataset, the fooling rates remain more or less similar and is
higher than that of Khrulkov & Oseledets (2018). This shows that our approach works well in less
data cases even when the available images are not from the dataset on which the model is trained.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new algorithm, called the sequential dilation, to craft universal
adversaries in a data-free manner. The approach relies on finding the first singular vector of the
linearly approximated neural network. The approximation is being enabled by optimizing with the
proposed dilate loss. Elaborate experiments and ablations demonstrate that our approach achieves
superior data-free fooling performance. One promising direction for future research would be to
modify the algorithm and generate targeted UAP, where the objective is fooling to a specific class.
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A PROOF OF LEMMA 1

If W = USV T denote the singular value decomposition of W , then

max
p:|p|=c

xTW TWp = xTV S2V Tp =
∑
i

S2
ii(x

TV:,i)(p
TV:,i). (11)

Since xTV:,1 > xTV:,i (by assumption) and S11 > Sii for all i > 1, the solution to the optimization
is cV:,1, a scaled version of the first singular vector of W . The same solution can be obtained through
the definition of the first singular vector as,

max
p:|p|=c

|Wp|2, (12)

completing the proof.

B EXPERIMENTAL SETUP

All our experiments reported in the main paper are run on NVIDIA DGX cluster (Dual 20-core
Intel Xeon E5-2698 v4 2.2 GHz) within the Tensorflow docker. We use the pretrained classification
models from Tensorflow Slim library S. Guadarrama (2016).
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C DEMONSTRATION OF ADVERSARIAL ATTACK

Figures 4 to 9 demonstrate adversarial attack through perturbation generated from our proposed
sequential dilation algorithm for various networks. The first row in the figures shows the clean
images with the class predicted by the model, while the second row has the corresponding perturbed
samples with the flipped prediction labels.
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Figure 4: Attack on VGG-16 network.
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Figure 5: Attack on VGG-19 network.
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Figure 6: Attack on ResNet-50 network.
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Figure 7: Attack on ResNet-152 network.
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Figure 8: Attack on Inception-v1 network.
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Figure 9: Attack on Inception-v3 network.
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