
Under review as a conference paper at ICLR 2020

MINING GANS FOR KNOWLEDGE TRANSFER TO
SMALL DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the attractive characteristics of deep neural networks is their ability to
transfer knowledge obtained in one domain to other related domains. As a result,
high-quality networks can be trained in domains with relatively little training data.
This property has been extensively studied for discriminative networks but has re-
ceived significantly less attention for generative models. Therefore, we investigate
various scenarios of knowledge transfer for generative models and propose meth-
ods to mine the knowledge that is most beneficial to a specific target domain from
a single or multiple pretrained GANs. This is done using a miner network that
identifies which part of the generative distribution of the pretrained GAN outputs
samples closest to the target domain. We perform experiments on several complex
datasets using various GAN architectures (BigGAN, Progressive GAN) and show
that the proposed method, called MineGAN, effectively transfers knowledge to
small domains, outperforming existing methods. In addition, MineGAN can suc-
cessfully transfer knowledge from multiple pretrained GANs.

1 INTRODUCTION

Generative adversarial networks (GANs) can learn the complex underlying distribution of image
collections (Goodfellow et al., 2014). They have been shown to generate high-quality realistic im-
ages (Karras et al., 2017; 2019a; Brock et al., 2019) and are used in many applications including
image manipulation (Isola et al., 2017; Zhu et al., 2017), style transferring (Gatys et al., 2016),
compression (Tschannen et al., 2018), and colorization (Zhang et al., 2016). Since their successful
introduction, they have received much research attention. Specifically, a significant number of stud-
ies have focused on improving the architectures (Denton et al., 2015; Karras et al., 2017; Radford
et al., 2015), and the stability of training (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al.,
2018; Zhang et al., 2018).

It is known that high-quality GANs require a significant amount of training data and time. For
example, progressive GANs (Karras et al., 2017) are trained on 30K images and are reported to
require a month of training on one NVIDIA Tesla V100. Being able to exploit these high-quality
pretrained models, not just to generate the distribution on which they are trained, but also to combine
them with other models and adjust them to a target distribution is a desirable objective. For example,
it might be desirable to only generate women using a GAN trained to generate men and woman alike.
Alternatively, one may want to generating smiling people from two pretrained generative models,
one for men and one for women. The focus of this paper is on performing these operations using
only a small target set of images, and without access to the large datasets used to pretrain the models.

Transferring knowledge to small domains has been extensively studied for discriminative mod-
els (Hinton et al., 2014; Oquab et al., 2014; Romero et al., 2015) and, as a result, high-quality
networks can be trained in domains with relatively little training data. However, knowledge transfer
for generative models has received significantly less attention. Only recently, Wang et al. (2018)
studied finetuning from pretrained generative models and showed that it is beneficial for small do-
mains. Noguchi & Harada (2019) proposed instead to reduce the number of trainable parameters,
and only finetune the learnable parameters for the batch normalization (scale and shift) of the gen-
erator.

In this paper, we address knowledge transfer by adapting a trained generative model for targeted
image generation given a small sample of the target distribution. We introduce the process of mining

1

Under review as a conference paper at ICLR 2020

Figure 1: (a) Intuition behind our approach for a simple case. The mining operation shifts the prior input
distribution towards the most promising regions with respect to given target data DT . (b) Architecture imple-
menting the proposed mining operation on a single GAN. Miner M identifies the relevant regions of the prior
distribution so that generated samples are close to the target data DT . Note that when training the miner the
generator remains fixed. (c) Multiple generators. Miners M1 and M2 identify subregions of both pretrained
generators while selector S learns which pretrained model is preferable for the inference stage.

of GANs. This is performed by a mining network that transfers a multivariate normal distribution
into a distribution on the input space of the pretrained GAN in such a way that the generated images
resemble those of the target domain. We also extend our mining approach to multiple pretrained
GANs, which allows us to aggregate information from multiple sources simultaneously to generate
samples akin to the target domain. We show that these networks can be trained by applying a
selective backpropagation procedure. To the best of our knowledge, we are the first to investigate
transferring knowledge from multiple GANs to a single generative model.

We conduct experiments on multiple datasets, including some high-resolution datasets with high
complexity such as LSUN (Yu et al., 2015b), CelebA (Liu et al., 2015) and ImageNet (Krizhevsky
et al., 2012).We demonstrate the effects of mining on a single GAN, providing quantitative results
as well as insights based on the generated images. We evaluate mining from multiple GANs under
several scenarios including different amounts of available training data. The results show that mining
outperforms alternative approaches for knowledge transfer for generative models, and that it can
successfully transfer knowledge from multiple GANs.

2 GAN FORMULATION

Let pdata(x) be a probability distribution over real data x determined by a set of real images D,
and let pz(z) be a prior distribution over an input noise variable z. The generator G is trained to
synthesize images given z ∼ pz(z) as input, inducing a generative distribution pg(x) that should
approximate the real data distribution pdata(x). This is achieved through an adversarial game (Good-
fellow et al., 2014), in which a discriminator D aims to distinguish between real images and images
generated by G, while the generator tries to generate images that fool D. In this paper, we fol-
low the WGAN-GP (Gulrajani et al., 2017) approach, which provides better convergence properties
by using the Wasserstein loss (Arjovsky et al., 2017) and a gradient penalty term (omitted from our
formulation for simplicity). The discriminator (or critic) and generator losses are defined as follows:

LD = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)], (1)

LG = −Ez∼pz(z)[D(G(z))]. (2)

We also consider families of pretrained generators {Gi}. Each Gi has the ability to synthesize
images given input noise z ∼ piz(z). For simplicity and without loss of generality, we assume the
prior distributions are Gaussian, i.e. piz(z) = N (z|µi,Σi). Each generator Gi(z) induces a learned
generative distribution pig(x), which approximates the corresponding real data distribution pidata(x)
over real data x given by the set of source domain images Di.

3 MINING OPERATIONS ON GANS

Assume we have access to one or more pretrained GANs and wish to use their knowledge to train
a new GAN for a (small) target domain. First, we propose a method called mining GANs, which
learns miner networks that when combined with a pretrained GAN enable the generation of samples
that are close to the target domain. Then, we show how the miners can be used to train new GANs.

2

Under review as a conference paper at ICLR 2020

3.1 MINING FROM A SINGLE GAN

We would like to approximate a target real data distribution pTdata(x) induced by a set of real images
DT , given a criticD and a generatorG trained to approximate a source data distribution pdata(x) via
the generative distribution pg(x). The mining operation learns a new generative distribution pTg (x)
by finding those regions in pg(x) that better approximate the target data distribution pTdata(x) while
keeping G fixed. In order to find such regions, mining actually finds a new prior distribution pTz (z)
such that samples G(z) with z ∼ pTz (z) are similar to samples from pTdata(x) (see Fig. 1a). For this
purpose, we propose a new GAN component called miner, implemented by a multilayer perceptron
M . Its goal is to transform the original input noise variable u ∼ pz(u) to follow a new, more suitable
prior that identifies the regions in pg(x) that most closely align with the target distribution.

Fig. 1b presents the proposed mining architecture, called MineGAN. Miner M acts as an interface
between the input noise variable and the generator, which remains fixed during training. To generate
an image, we first sample u ∼ pz(u), transform it with M and then input the transformed variable
to the generator, i.e. G(M(u)). We train the model adversarially: the critic D aims to distinguish
between fake images output by the generator G(M(u)) and real images x from the target data
distribution pTdata(x). We implement this with the following modification on the WGAN-GP loss

LM
D = Eu∼pz(u)[D(G(M(u)))]− Ex∼pT

data(x)
[D(x)], (3)

LM
G = −Eu∼pz(u)[D(G(M(u)))]. (4)

The parameters of G are kept unchanged but the gradients are backgropagated all the way to M to
learn its parameters. This training strategy will gear the miner towards the most rewarding regions of
the input space, i.e. those that generate images close to DT . Therefore, M is effectively mining the
relevant input regions of prior pz(u) and giving rise to a targeted prior pTz (z), which will focus on
these regions while ignoring other ones that lead to samples far off the target distribution pTdata(x).

We distinguish two types of targeted generation: on-manifold and off-manifold. In the on-manifold
case, there is a significant overlap between the original distribution pdata(x) and the target distri-
bution pTdata(x). For example, pdata(x) could be the distribution of human faces (both male and
female) while pTdata(x) includes female faces only. On the other hand, in off-manifold generation,
the overlap between the two distributions is negligible, e.g. pTdata(x) contains cat faces. The off-
manifold task is evidently more challenging as the miner needs to find samples out of the original
distribution (see Fig. 3). Specifically, we can consider the images in D to lie on a high-dimensional
image manifold that contains the support of the real data distribution pdata(x) (Arjovsky & Bottou,
2017). For a target distribution farther away from pdata(x), its support will be more disjoint from
the original distribution’s support, and thus its samples might be off the manifold that contains D.

3.2 MINING FROM MULTIPLE GANS

We generalize the mining operation to multiple pretrained generators. Given target dataDT , the task
consists in mining relevant regions from the induced generative distributions learned by a family of
N generators {Gi}. We do not have access to the original data used to train {Gi} and can only use
target dataDT . Fig. 1c presents the architecture of our model, which extends the mining architecture
for a single pretrained GAN by including multiple miners and an additional component called the
selector. In the following, we present this component and describe the training process in detail.

Supersample. In traditional GAN training, a fake minibatch is composed of fake images G(z)
generated with different samples z ∼ pz(z). To construct fake minibatches for training a set of
miners, we introduce the concept of supersample. A supersample S is a set of samples composed
of exactly one sample per generator of the family, i.e. S = {Gi(z)|z ∼ piz(z); i = 1, ..., N}. Each
minibatch contains K supersamples, which amounts to a total of K×N fake images per minibatch.

Selector. The selector’s task is choosing which pretrained model to use for generating samples
during inference. For instance, imagine that D1 is a set of ‘kitchen’ images and D2 are ‘bedroom’
images, and let DT be ‘white kitchens’. The selector should prioritize sampling from G1, as the
learned generative distribution p1g(x) will contain kitchen images and thus will naturally be closer
to pTdata(x), the target distribution of white kitchens. Should DT comprise both white kitchens and
dark bedrooms, sampling should be proportional to the distribution in the data.

3

Under review as a conference paper at ICLR 2020

We model the selector as a random variable s following a categorical distribution parametrized by
p1, ..., pN with pi > 0 and

∑
pi = 1. During training, we estimate the parameters of this dis-

tribution as follows. The quality of each sample Gi(z) is evaluated by a single critic D based on
its critic value D(Gi(z)). Therefore it is expected that samples from generators whose generative
distributions are closer to pTdata(x) will on average have higher critic values when training D with
DT as real data. Based on this, for each supersample S in the minibatch, we record which generator
obtains the maximum critic value, i.e. argmaxiD(Gi(z)). By accumulating over all K supersam-
ples and normalizing, we obtain an empirical probability value p̂i that reflects how often generator
Gi obtained the maximum critic value among all generators for the current minibatch. We estimate
each parameter pi as the empirical average p̂i estimated in the last 1000 minibatches. Note that pi
are learned during training and stay fixed during inference, serving as parameters for the categorical
distribution of selector s.

Critic and Miner Training. We now define the training behavior of the remaining learnable com-
ponents, namely the critic D and miners {Mi}, when minibatches are composed of supersamples.
The critic aims to distinguish real images from fake images. This is done by looking for artifacts
in the fake images which distinguish them from the real ones. Another, less discussed but equally
important task of the critic, is to observe the frequency of occurrence of images: if some (poten-
tially high-quality) image occurs more often among fake images than real ones, the critic will lower
its score, and thereby motivate the generator to lower the frequency of occurrence of this image.
Training the critic by backpropagating from all images in the supersample prevents it from assess-
ing the frequency of occurrence of the generated images (and we empirically observed this to yield
unsatisfactory results). Therefore, we adapt the training loss for multiple GAN mining to:

LM
D = E{ui∼pi

z(u)}[max
i
{D(Gi(Mi(u

i))))} − Ex∼pT
data(x)

[D(x)] (5)

LM
G = −E{ui∼pi

z(u)}[max
i
{D(Gi(Mi(u

i)))}]. (6)

As a result of the max operator we only backpropagate from the generated image that obtained the
highest critic score. This is in accordance with the selector, which is trained to select this image
anyway. Training with Eq. 6 allows the critic to assess the frequency of occurrence correctly. Using
this strategy, the critic can perform both its tasks: boosting the quality of the images as well as
driving the miner to follow the distribution of the target set closely. Note that in this case we
initialize the single critic D with the pretrained weights from one of the pretrained critics1.

Conditional GANs. So far, we have only considered unconditional GAN models. However, con-
ditional GANs are highly relevant in the literature, often providing the most successful approaches
to realistic image generation (Brock et al., 2019; Zhang et al., 2018). cGANs introduce an additional
input variable c, which conditions the generation on the class label. In this section, we extend our
proposed MineGAN to cGANs that condition on the batch normalization layer (Dumoulin et al.,
2017; Brock et al., 2019). More concretely, we experiment with BigGAN (Brock et al., 2019),
which first maps a one-hot conditioning vector to an embedding vector and then maps this vector to
layer-specific batch normalization parameters. Therefore, to mine BigGANs, alongside the standard
miner Mz we introduce a second miner network M c, which maps from u to the embedding space,
resulting in a generator G(M c(u),Mz(u)). The training is then equal to that of a single GAN and
follows Eqs. 3 and 4. See Appendix B for experiments with another type of conditioning.

3.3 KNOWLEDGE TRANSFER WITH MINEGAN

Here we explain how to use mining GANs for knowledge transfer. The underlying idea of mining
is to predispose the pretrained model to the target distribution by reducing the divergence between
the source and target distributions. The miner network contains relatively few parameters and is
therefore less prone to overfitting to the target data, which is known to occur when directly finetuning
the generator G (Noguchi & Harada, 2019). We finalize the knowledge transfer to the new domain
by finetuning both the miner M and generator G (releasing its weights). The risk of overfitting is
now diminished as the generative distribution is closer to the target.

1We empirically found that starting from any pretrained critic leads to similar results (see Appedix D).

4

Under review as a conference paper at ICLR 2020

Figure 2: (Left) Illustration of generating target digit ‘9’ from MNIST (unconditional case) for on-manifold
and off-manifold targeted generation. (Right) Results for off-manifold generation. We generate 20 samples of
digits ‘9’, ‘8’, ‘7’ or ‘5’.

4 RELATED WORK

Only few works have explored transferring knowledge for generative models. Wang et al. (2018) in-
vestigated finetuning of pretrained GANs, leading to improved performance for target domains with
limited samples. This method, however, suffers from mode collapse since it requires all parameters
of the generator to be updated to adapt to the target domain. Recently, Noguchi & Harada (2019)
proposed to only update the batch normalization parameters. They also replaced the GAN loss with
a mean square error loss. As a result, their model only learns the relationship between latent vectors
and sparse training samples, requiring the distribution of z to be truncated during inference to gen-
erate realistic samples. The proposed MineGAN does not suffer from this drawback. In addition,
we are the first to consider transferring knowledge from multiple GANs to a single target domain.

Nguyen et al. (2016) have investigated training networks to generate images that maximize the
activation of neurons in a pretrained classification network. In a follow-up paper, which improves the
diversity of the generated images, they showed that this technique can be used to generate images of
a particular class from a pretrained classifier network (Nguyen et al., 2017). In principle, these works
do not aim at knowledge transfer to a new domain, and can instead only be applied to generate a
distribution which is exactly described by one of the class labels of the pretrained classifier network.
Another major difference is that the generation at inference time of each image is an iterative process
of successive backpropagation updates until convergence, whereas our method is feedforward.

5 EXPERIMENTS

In this section, we first introduce the used evaluation measures and architectures used. Then, we
evaluate our method for knowledge transfer from unconditional GANs, considering both a single
and multiple pretrained generators. Finally, we assess transfer learning from conditional GANs.
Experiments focus on transferring knowledge to small target domains.

Evaluation Measures. We employ the widely used Fréchet Inception Distance (FID) (Heusel et al.,
2017) for evaluation. FID measures the similarity between two sets in the embedding space given
by the features of a convolutional neural network. More specifically, it computes the differences
between the estimated means and covariances assuming a multivariate normal distribution on the
features. FID measures both the quality and diversity of the generated images and has been shown
to correlate well with human perception (Heusel et al., 2017), but it suffers from instability on small
datasets. For this reason, we also employ Kernel Maximum Mean Discrepancy (KMMD) with a
Gaussian kernel and Mean Variance (MV) for some experiments (Noguchi & Harada, 2019). Low
KMMD values indicate high quality images, while high values of MV indicate more image diversity.

Architectures. We introduce mining to several architectures, including Progressive GAN (Karras
et al., 2017), SNGAN (Miyato et al., 2018), and BigGAN (Brock et al., 2019). The training details
for all models are included in Appendix A. For the miner, we use four fully connected layers for all
experiments except those on MNIST, where we use only two (see Appendix A).

5.1 TRANSFERRING KNOWLEDGE FROM UNCONDITIONAL GANS

MNIST Dataset. We first evaluate our model on the MNIST (LeCun, 1998) dataset as a proof
of concept for generating simple handwritten digits. We test mining for both on-manifold and off-

5

Under review as a conference paper at ICLR 2020

On-manifold (target:women)

Scratch TransferGAN MineGAN(w/o FT) MineGAN

Off-manifold (target:children)

Scratch

etrained

etrained

etrained

PretrainedPretrained TransferGAN MineGAN(w/o FT) MineGAN

Figure 3: Results: (left) On-manifold (CelebA→FFHQ women), (right) Off-manifold (CelebA→FFHQ chil-
dren). Based on pretrained Progressive GAN. More examples are shown in Appendix C.

On-manifold (target:women) Off-manifold (target:children)
Scratch

TransferGAN

MineGAN(w/o FT)

MineGAN

Figure 4: KMMD and FID on CelebA→FFHQ women (left) and CelebA→FFHQ children (right)

manifold targeted image generation (see Fig. 2 left). We use 1000 images of size 28 × 28 as target
data. In the on-manifold case, the trained network G already possesses this exact knowledge, and
thus the miner’s goal is to correctly identify these regions by restricting the sampling regions in p(z).
In off-manifold targeted generation, G is trained to synthesize all MNIST digits except for one, e.g.
G generates 0-8 but not 9. This is a more challenging task, as we can observe qualitatively in the
right section of Fig. 2 and quantitatively in Appendix B. The miner manages to steer the generator
to output samples that resemble the target digits, mostly by using and merging patterns from other
digits in the source set. For example, digit ‘9’ frequently resembles a modified 4 while ‘8’ heavily
borrows from 0s and 3s. We can also observe that some digits can be more challenging to generate.
For example, ‘5’ is generally more distinct from other digits and thus in more cases the resulting
sample is confused with other digits such as ‘3’. On the other hand, ‘7’ can be simply generated by
slightly modifying 1s or 9s.

Single Pretrained Model. We start by transferring knowledge from a Progressive GAN trained
on CelebA (Liu et al., 2015). We evaluate the performance on target datasets of varying size, and
use images of size 1024× 1024. We consider two target domains: one on-manifold domain, FFHQ
woman (Karras et al., 2019b) and one off-manifold domain, FFHQ children face (Karras et al.,
2019b). We consider two versions of our model: MineGAN refers to the mining method combined
with finetuning to the target domain, whereas MineGAN(w/o FT) only applies mining. We compare
our results to training from scratch, and the transferring GANs method of Wang et al. (2018). In the
plots in Fig. 4, we show the performance in terms of FID and KMMD as a function of the number
of images in the target domain. The proposed MineGAN framework outperforms all baselines.
For the on-manifold experiment, MineGAN already outperforms the other baselines, and results are
further improved by additional finetuning. Interestingly, for the off-manifold experiment MineGAN
obtains only slightly worse results than Transferring GAN, showing that the miner already manages
to generate images close to the target domain. Fig. 3 shows images generated when the target
data contains 100 training images. Training the model from scratch generates blurry images, and
Transferring GANs results in mode collapse. MineGAN, in contrast, generates high-quality images
without mode collapse. The generated images are sharper and have more realistic fine details.

We also perform the experiment proposed by Noguchi & Harada (2019) using the same architecture
as them, namely a SNGAN. They performed knowledge transfer from a pretrained SNGAN from
ImageNet (Krizhevsky et al., 2012) to FFHQ and from ImageNet to Anime Face. Target domains

6

Under review as a conference paper at ICLR 2020

BSA TransferGAN MineGAN

 (w/o FT)

MineGANBSA TransferGAN MineGAN

 (w/o FT)

MineGAN

Method FFHQ Anime Face
KMMD MV KMMD MV

From scratch 0.890 - 0.753 -
TransferGAN 0.346 0.506 0.347 0.785
VAE 0.744 - 0.790 -
BSA 0.345 0.785 0.342 0.908
MineGAN (w/o FT) 0.349 0.774 0.347 0.891
MineGAN 0.337 0.812 0.334 0.934

Figure 5: Results for various knowledge transfer methods. (Left) Generated images. (Right) KMMD and MV.

Scratch MineGAN

 (w/o FT)

MineGAN TransferGAN

 (church)

Scratch MineGAN

 (w/o FT)

MineGAN TransferGAN

 (car)

 TransferGAN

 (bus)

Figure 6: Results: {car, bus} → red vehicles (left) and {Living room, Bridge, Church, Kitchen}
→ Tower (right). Based on pretrained Progressive GAN. For TransferGAN we show the pretrained
model between parentheses. More examples are shown in Appendix D.

have only 25 images of size 128 × 128. We added our results to those reported in (Noguchi &
Harada, 2019) in Fig. 5 (right). Compared to Batch Statistics Adaptation (BSA), MineGAN (w/o FT)
obtains similar KMMD scores, showing that generated images obtain the same quality. MineGAN
outperforms BSA both in KMMD score and Mean Variance. The qualitative results (shown in
Fig. 5 (left)) clearly show that MineGAN outperforms the baselines. The BSA results show blur
artifacts, which are probably caused by the mean square error used to optimize their model.

Multiple Pretrained Models. We now investigate the effect of having more than one pretrained
model to mine from. We consider two pretrained Progressive GANs: one on Cars and one on Buses,
both from the LSUN dataset (Yu et al., 2015a). These pretrained networks generate cars and buses
of a variety of different colors. We collect a target dataset of 200 images (with resolution 256×256)
of red vehicles, which contains both red cars and red buses. We consider three target sets with
different car-bus ratios (we consider 0.3:0.7, 0.5:0.5, and 0.7:0.3) which allows us to evaluate the
estimated probabilities pi of the selector. To successfully generate red vehicles knowledge needs to
be transferred from both pre-trained models. Fig. 6 shows the synthesized images. As expected,
the limited amount of data makes training from scratch unfeasible. The TransferGAN approach
produces only high-quality output samples for one of the two classes; the class which coincides with
the pretrained model. TransferGAN cannot extract knowledge from both pretrained GANs. On the
other hand, MineGAN synthesizes high-quality images by successfully transferring the knowledge
from both source domains simultaneously. Table 1 (left top row) quantitatively validates that our
method obtains a significantly lower FID score. Furthermore, the probability distribution predicted
by the selector, reported in Table 1 (right top row), matches the class distribution of the target data.
Finally, Fig. 6 (left) shows visual examples, showing that only MineGAN generates high-quality
images for both classes.

To demonstrate the scalability of MineGAN with multiple pretrained models, we conduct experi-
ments using four different generators, each trained on a different LSUN category including Livin-
groom, Kitchen, Church, and Bridge. We consider two different off-manifold target datasets, one
with Bedroom images and one with Tower images, both containing 200 images. Table 1 (left bottom

7

Under review as a conference paper at ICLR 2020

Scratch TransferGAN (car) TransferGAN (bus) MineGAN (w/o FT) MineGAN

190 / 185 / 196 76.9 / 72.4 / 75.6 72.8 / 71.3 / 73.5 67.3 / 65.9 / 65.8 61.2 / 59.4 / 61.5

Scratch TransferGAN(lroom) TransferGAN(church) MineGAN (w/o FT) MineGAN

176 78.9 73.8 69.2 62.4

Scratch TransferGAN(lroom) TransferGAN(church) MineGAN(w/o FT) MineGAN

181 65.4 71.5 58.9 54.7

Car Bus
0.34 / 0.48 / 0.64 0.66 / 0.52 / 0.36

livingroom kitchen bridge church
0.07 0.06 0.42 0.45
livingroom kitchen bridge church
0.45 0.40 0.08 0.07

Table 1: Results for {Car, Bus} → Red vehicles with three different target data distributions (ratio cars:buses
equal to 0.3:0.7, 0.5:0.5 and 0.7:0.3) (top row) and {Living room, Bridge, Church, Kitchen}→ Tower/Bedroom
(two bottom rows). We show FID scores between real and generated samples (left) and estimated probabilities
pi for each model (right).

On-manifold

S
c
ra

tc
h

Tr
a
n
s
fe

rG
A

N
M

in
e
G

A
N

M
in

e
G

A
N

(w
/o

 F
T
)

Off-manifold

Figure 7: Results for conditional GAN computed with BigGAN. (Left) Off-manifold (ImageNet→Places365).
(Right) On-manifold (ImageNet→ImageNet).

rows) again shows that our method obtains significantly better FID scores even when we choose the
most relevant pretrained GAN to initialize training for TransferGAN. Table 1 (right bottom rows)
shows that the miner identifies the relevant pretrained models, e.g. transferring knowledge from
Bridge and Church for the target domain Tower. Finally, Fig. 6 (right) provides visual examples.

5.2 TRANSFERRING KNOWLEDGE FROM CONDITIONAL GANS

Here we transfer knowledge from a pretrained conditional BigGAN. We evaluate on two target
datasets: on-manifold (ImageNet: cock, tape player, broccoli, fire engine, harvester) and off-
manifold (Places365 (Zhou et al., 2014): alley, arch, art gallery, auditorium and ballroom). We
use 500 images per category. Fig. 7 shows several representative examples of the different meth-
ods2. If should be noted that for the on-manifold results for TransferGAN we use the label of
the target domain class (which is not used by MineGAN). This label cannot be provided for the
off-manifold experiment, and in that case TransferGAN fails to obtain satisfactory results. Again,
MineGAN manages to produce realistic results, also for the off-manifold case. Further comparison
and quantitative results are provided in Appendix E.

6 CONCLUSIONS

We presented a new model for knowledge transfer for generative models. It is based on a mining
operation that identifies the regions on the learned GAN manifold that are closer to a given target
domain. We demonstrated that mining can be applied to single, conditional and multiple pretrained
GANs. Experiments with various GAN architectures (BigGAN, Progressive GAN, and SNGAN) on
multiple datasets demonstrated the effectiveness of MineGAN. Our results show that we outperform
previous approaches, including TranferGAN (Wang et al., 2018) and BSA (Noguchi & Harada,
2019). Finally, we demonstrated that MineGAN can be used to transfer knowledge from multiple
domains, which cannot be achieved with previous methods.

2We were unable to obtain satisfactory results with the BSA method in this setting (images suffered signifi-
cantly from blur artifacts) and have excluded them from this experiment

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. ICLR, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In ICLR, 2019.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In NIPS, pp. 1486–1494, 2015.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. In ICLR, 2017.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In CVPR, pp. 2414–2423, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680,
2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In NIPS, pp. 5767–5777, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, pp.
6626–6637, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS, 2014.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, pp. 1125–1134, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. CVPR, 2019a.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, pp. 4401–4410, 2019b.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In ICCV, pp. 3730–3738, 2015.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks. In NIPS, pp.
3387–3395, 2016.

9

Under review as a conference paper at ICLR 2020

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play
generative networks: Conditional iterative generation of images in latent space. In CVPR, pp.
4467–4477, 2017.

Atsuhiro Noguchi and Tatsuya Harada. Image generation from small datasets via batch statistics
adaptation. arXiv preprint arXiv:1904.01774, 2019.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In CVPR, pp. 1717–1724. IEEE,
2014.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In ECCV, pp.
213–229, 2018.

Michael Tschannen, Eirikur Agustsson, and Mario Lucic. Deep generative models for distribution-
preserving lossy compression. In NIPS, pp. 5929–5940, 2018.

Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel Gonzalez-Garcia, and Bogdan
Raducanu. Transferring gans: generating images from limited data. In ECCV, pp. 218–234, 2018.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015a.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of
a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015b.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, pp. 649–
666. Springer, 2016.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. ICLR, 2014.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, pp. 2223–2232, 2017.

A APPENDIX: ARCHITECTURE AND TRAINING DETAILS.

MNIST dataset. Our model contains a miner, generator and discriminator. For both unconditional
and conditional GANs, we use the same framework (Gulrajani et al., 2017) to design the generator
and discriminator. The miner is composed of two fully connected layers with the same dimension-
ality as the latent space |z|. The visual results are computed with |z| = 16; we found that the
quantitative results improved for larger |z| and choose |z| = 128. In MNIST, we consider the case
where label c is a one-hot vector. We use the selector to predict the conditioning label. We randomly
initialize the weights of the miner following a Gaussian distribution, and optimize the model using
Adam (Kingma & Ba, 2014) with batch size of 64. The learning rate of our model is 0.0004, with
an exponential decay rates of (β1, β2) = (0.5, 0.999). Note the same configure is also used for the
unconditional case.

CelebA Womem, FFHQ Children and LSUN (Tower and Bedroom) Datasets. We design the
generator and discriminator based on Progressive GANs (Karras et al., 2017). Both networks use
a multi-scale technique to generate high-resolution images. The miner comprises out of four fully

10

Under review as a conference paper at ICLR 2020

connected layers (8-64-128-256-512), each of which is followed with a relu and pixel normalization
except for last layer. We use a Gaussian distribution to initialize the miner, and optimize the model
using Adam (Kingma & Ba, 2014) with batch size of 4. The learning rate of our model is 0.0015,
with an exponential decay rates of (β1, β2) = (0, 0.99).

FFHQ Face and Anime Face. We use the same network as (Miyato et al., 2018), namely the
SNGAN. The miner consists of three fully connected layers (8-32-64-128). We randomly initial-
ize the weights following a Gaussian distribution. For this additional set of experiments, we use
Adam (Kingma & Ba, 2014) with a batch size of 8, following a hyper parameter learning rate of
0.0002 and exponential decay rate of (β1, β2) = (0, 0.9).

Conditional GANs. For conditional GANs, we use the pretrained BigGAN (Brock et al., 2019).
We ignore the projection loss in the discriminator, since we do not have access to the label of the
target data. The miner consists of two sub-networks: miner Mz and miner M c. Both Mz and
M c are composed of four fully connected layers (128-128-128-128-120(Mz)/128(M c)). We use
Adam (Kingma & Ba, 2014) with a batch size of 256, learning rate of 0.0001 for miner and generator
and 0.0004 for discriminator. The exponential decay rate is (β1, β2) = (0, 0.999). We randomly
initialize the weights following a Gaussian distribution.

B APPENDIX: MNIST EXPERIMENT

We expand the MNIST experiments presented in Sec. 5.1 by providing a quantitative evaluation and
including results on conditional GANs. As evaluation measures, we use FID (Sec. 5) and classifier
error (Shmelkov et al., 2018). To compute classifier error, we first train a CNN classifier on real
training data to distinguish between multiple classes (e.g. digit classifier). Then, we classify the
generated images that should belong to a particular class and measure the error as the percentage of
misclassified images. This gives us an estimation of how realistic and accurate the generated images
are in the context of targeted generation.

The conditional architecture in this experiment (Appendix A) conditions by concatenating to the
input noize z a one-hot vector c indicating the target class of the image. We extend MineGAN to this
type of pretrained conditional models by considering each possible conditioning as an independently
trained generator. Given a conditional generator G(c, z), we consider G(i, z) as Gi and apply the
presented MineGAN approach on the family {G(i, z)| i = 1, ..., N}. The resulting selector now
chooses among the N classes of the model rather than among N pretrained models, but the rest of
the MineGAN training remains the same, including the training of N independent miners.

Table 2 presents the results for both unconditional and conditional models, using a noise length of
|z| = 128. The relatively low error values indicate that the miner manages to identify the correct
regions for generating the target digits. The conditional model offers better results than the uncon-
ditional one by selecting the target class more often. We can also observe that the off-manifold task
is more difficult than the on-manifold task, as indicated by the higher evaluation scores. However,
the off-manifold scores are still reasonably low, indicating that the miner manages to find suitable
regions from other digits by mining local patterns shared with the target. Overall, these results indi-
cate the effectiveness of mining on MNIST for both types of targeted image generation. In addition,
in Fig. 8 we have added a visualization for the off-manifold MNIST classes which were not already
shown in Fig. 2.

Figure 8: Results for unconditional off-manifold generation of digits ‘6’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’.

11

Under review as a conference paper at ICLR 2020

Table 2: Quantitative results of mining on MNIST, expressed as FID / classifier error.

d
On-manifold Off-manifold

Unconditional Conditional Unconditional Conditional

0 13.4 / 2.5 12.6 / 0.7 21.3 / 2.8 15.6 / 1.1
1 13.1 / 1.7 12.6 / 1.9 15.9 / 2.5 14.8 / 2.1
2 14.6 / 6.3 12.8 / 2.7 23.1 / 5.2 18.2 / 3.6
3 14.1 / 10.1 13.3 / 1.6 22.8 / 7.3 14.2 / 1.5
4 14.7 / 6.4 13.4 / 1.2 23.4 / 6.3 15.3 / 4.2
5 13.1 / 9.3 11.7 / 2.1 21.9 / 10.9 17.2 / 5.7
6 13.4 / 2.8 14.3 / 1.8 24 / 3.1 15.8 / 1.6
7 12.9 / 3.2 14.2 / 1.8 24.8 / 4.9 16.3 / 2.6
8 14.2 / 7.5 14.7 / 5.5 25.7 / 9.8 18.7 / 5.6
9 11.3 / 6.8 11.2 / 2.9 12.5 / 7.4 16.3 / 3.5

Average 13.5 / 5.7 13.1 / 2.2 21.5 / 6.0 16.2 / 3.2

C APPENDIX: FURTHER RESULTS ON CELEBA

We provide additional results for the on-manifold experiment CelebA→FFHQ women in Fig. 9,
and the off-manifold CelebA→FFHQ children in Fig. 10. In addition, we have also performed an
on-manifold experiment with CelebA→CelebA women, whose results are provided in Fig. 11.

D APPENDIX: FURTHER RESULTS FOR LSUN

We provide additional results for the experiment ({bus, car})→ Red vehicles in Fig. 12.

We also provide additional results for the experiment {Bedroom, Bridge, Church, Kitchen} →
Tower/Bedroom in Fig. 13.

When applying MineGAN to multiple pretrained GANs, we use one of the domains to initialize the
weights of the critic. In Table 1 we used Church to initialize the critic in case of the target set Tower,
and Kitchen to initialize the critic for the target set Bedroom. We found this choice to be of little
influence on the final results. When using Kitchen to initialize the critic for target set Tower results
change from 62.4 to 61.7. When using Church to initialize the critic for target set Bedroom results
change from 54.7 to 54.3.

E APPENDIX: TRANSFERRING KNOWLEDGE FROM CONDITIONAL GANS

We provide quantitative results for mining the BigGAN in Table 3 and qualitative results in Fig. 14.
As can be seen, our method obtains the best FID and KMMD scores. DGN-AM (Nguyen et al.,
2016) obtains the worst score, since it fails to achieve diversity. PPGN (Nguyen et al., 2017) im-
proves the diversity of the model, but is still worse than our method. It should be noted that both
DGN-AM (Nguyen et al., 2016) and PPGN (Nguyen et al., 2017) are based on a less complex GAN
(similar to DCGAN). Therefore, the quantitative and qualitative results presented here should be
more interpreted to show the general progress of GANs. However, we do want to stress that both
DGN-AM and PPGN do not aim to transfer knowledge to new domains. They can only generate
samples of a particular class of a pretrained classifier network, and they have no explicit loss which
ensures that the generated images follow a target distribution. Another important point is that the
generation at inference time of each image is an iterative process of successive backpropagation
that updates until convergence, whereas our method is feedforward. In Table 3 we have included the
running time of the various algorithms, which clearly shows that the feedforward methods (Transfer-
GAN and MineGAN) are much faster even when applied on a much more complex GAN (BigGAN).
We used the default setting of 200 iterations for DGN-AM and PPGN. Timings have been computed
with a CPU Intel Xeon E5-1620 v3 @ 3.50GHz, and GPU NVIDIA Quadro K5200.

12

Under review as a conference paper at ICLR 2020

On-manifold (target:women)

TransferGAN MineGAN(w/o FT) MineGANPretrained

ed

d

ed

Figure 9: (CelebA→FFHQ women). Based on pretrained Progressive GAN.

13

Under review as a conference paper at ICLR 2020

On-manifold (target:children)

TransferGAN MineGAN(w/o FT) MineGANPretrained

Off-manifold (target: children)

Figure 10: (CelebA→ FFHQ children). Based on pretrained Progressive GAN.

14

Under review as a conference paper at ICLR 2020

Off-manifold (target:women)

TransferGAN MineGAN(w/o FT) MineGANPretrained

On-manifold(target: women)

Figure 11: (CelebA→CelebA women). Based on pretrained Progressive GAN.

15

Under review as a conference paper at ICLR 2020

ined

MineGAN

 (w/o FT)
MineGAN TransferGAN

 (car)

 TransferGAN

 (bus)

Target: red vehicle

Figure 12: ({bus, car})→red vehicles. Based on pretrained Progressive GAN.

16

Under review as a conference paper at ICLR 2020

ed

ed

ed

Scratch

 TransferGAN

 (livingroom)

MineGAN(w/o FT) MineGAN

Scratch MineGAN(w/o FT) MineGAN

 TransferGAN

 (church)

Target: tower

Target: bedroom

Figure 13: Results for unconditional GAN. (Top) (Livingroom, kitchen, bridge, church)→Tower. (Bottom)
(Livingroom, kitchen, bridge, church)→Bedroom. Based on pretrained Progressive GAN.

17

Under review as a conference paper at ICLR 2020

M
in

e
G

A
N

(w
/o

 F
T
)

M
in

e
G

A
N

Off-manifold

D
G

N
-A

M
P
P
G

N

On-manifold

M
in

e
G

A
N

(w
/o

 F
T
)

M
in

e
G

A
N

D
G

N
-A

M
P
P
G

N

Figure 14: Results for conditional GAN. (Top) Off-manifold (ImageNet→Places365). (Bottom) On-manifold
(ImageNet→ImageNet).

18

Under review as a conference paper at ICLR 2020

Off-manifold On-manifold
Target label FID/KMMD Target label FID/KMMD Inference time

DGN-AM Yes 214/0.98 Yes 180/0.95 6.70
PPGN Yes 139/0.56 Yes 12770.47 8.65
TransferGAN* No 89.2/0.53 Yes 58.4/0.39 0.0051
Scratch No 190/0.96 No 187/0.93 0.0051
MineGAN(w/o FT) No 82.3/0.47 No 61.8/0.32 0.0052
MineGAN No 58.4/0.41 No 52.3/0.25 0.0052

Table 3: Distance between real data and generated samples as measured by FID score and KMMD value. The
off-manifold results correspond to Imagenet → Places365, and the on-manifold results correspond to Imagenet
→ Imagenet. We also indicate whether the method requires the target label. Finally, we show the inference
time for the various methods in seconds.

19

	Introduction
	GAN formulation
	Mining operations on GANs
	Mining from a single GAN
	Mining from multiple GANs
	Knowledge Transfer with MineGAN

	Related Work
	Experiments
	Transferring knowledge from unconditional GANs
	Transferring knowledge from conditional GANs

	Conclusions
	Appendix: Architecture and training details.
	Appendix: MNIST experiment
	Appendix: Further results on CelebA
	Appendix: further results for LSUN
	Appendix: Transferring knowledge from conditional GANs

