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ABSTRACT

Predicting the emotional impact of videos using machine learning is a challenging
task. Feature extraction, multi-modal fusion and temporal context fusion are cru-
cial stages for predicting valence and arousal values in the emotional impact, but
have not been successfully exploited. In this paper, we proposed a comprehen-
sive framework with innovative designs of model structure and multi-modal fu-
sion strategy. We select the most suitable modalities for valence and arousal tasks
respectively and each modal feature is extracted using the modality-specific pre-
trained deep model on large generic dataset. Two-time-scale structures, one for
the intra-clip and the other for the inter-clip, are proposed to capture the temporal
dependency of video content and emotional states. To combine the complemen-
tary information from multiple modalities, an effective and efficient residual-based
progressive training strategy is proposed. Each modality is step-wisely combined
into the multi-modal model, responsible for completing the missing parts of fea-
tures. With all those above, our proposed prediction framework achieves better
performance with a large margin compared to the state-of-the-art.

1 INTRODUCTION

Affective video content analysis aims at predicting the videos’ emotional impact on audiences. It
plays important roles in understanding the videos’ content, highlight detection, and of a fundamen-
tal support for several advanced applications such as multi-modal search with sentimental queries.
Predicting the audiences’ emotional evolvement when watching movies is also an important way to
help both online media-server providers or filmmakers to invest movies, evaluate on-line effect as
well as distribute them more efficiently.

In the affective computing community, human emotions can be categorically or continuously defined
(Izard, [2007; Barrett et al.l |2007). Emotion categories are happy, sad, angry, surprise, disgust,
neutral, which are commonly used in emotion recognition or classification (Cowie et al., [2001).
Compared to the categorical definition, continuous definition describes the emotions continuously
in two dimensions: Valence (positive vs. negative) and Arousal (active vs. calm). Any human
emotion can be located in the space spanned by the two dimensions, which is more fine-grained
than the categorical definition. The goal of our task is to predict the audiences’ emotional states
based on the movie content, i.e. the valence and arousal values with the movie going on.

Finding discriminative features from raw videos for predicting valence and arousal values is far
away from an easy task. Video is the typical multi-modal media involving both audio and visual
modalities. Even if in visual content, human facial expressions, pose behaviors, scenes, etc. can also
be regarded as modalities. Audiences’ emotions can be triggered by any modality such as the actors’
expressions or actions, the movies’ scenes (environment, atmosphere) as well as background music.
Therefore, the mainstream of affective video content analysis is to extract multi-modal features and
combine all those features.

Feature fusion is another challenging step. Multi-modal features are always complementary and
the importance of each modality dynamically changes over time. For example, some movie clips’
emotional impact can be captured by audio content while others may rely on visual features. Cur-
rent studies of affective video content analysis mainly adopt either decision-level fusion (Dobrisek:
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et al., 2013) or feature-level fusion (Wimmer et al., [2008)). The former combines results from each
modality through voting or weighted average methods. Each modality-specific model is trained
independently which can’t exploit the complementary information between modalities. The latter
concatenates multi-modal features and learn parameters for all modalities at the same time which
can easily lead to overfitting. We design a progressive training algorithm where each modality is
trained and fine-tuned stepwisely. Each modality is only responsible for completing the missing
parts of features extracted from previous modalities, thus the most discriminative modalities can be
dynamically selected for each movie clip and the complementarity of multi-modal features can be
fully utilized. The overfitting risk can also be suppressed since fewer parameters are learned at each
step.

Besides all the above, we also investigate how to utilize the temporal context of videos for senti-
ment prediction, which is lacking in most of the related works, where they simply apply LSTMs
(Hochreiter & Schmidhuber, [1997) or GRUs (Cho et al., 2014)) for temporal dependency. We pro-
pose two-time-scale model structures considering the video’s long-short temporal context. For the
short-time context, LSTMS are used for each modality. For the long-time dependency of the valence
task, a structure that is similar to the temporal segment network (TSN) (Wang et al.l 2016) is used
to capture the long temporal context. For the arousal task, a moving mean post-processing method
is adopted to utilize the trend of previous emotions.

The contributions of this paper are as follows: We propose an effective multi-modal fusion network
and design a two-time-scale model structure considering the video’s long-short temporal context for
affective impact prediction. Also, a residual-based progressive training strategy is used to train the
fusion network to fully utilize the complementary and representative capability of each modality.
Our model and training strategy achieve a new state-of-art on several related tasks.

2 RELATED WORKS

Video content involves both audio and visual elements. The basic part of affective video content
analysis involves extracting audio and visual features to characterize the video content. In early
stages, most works (Xu et al.} 2013; Moreira et al., 2015) extract handcrafted features such as Local
Binary Patterns (LBP), Histogram of oriented gradient (HOG), etc, to represent visual features, and
Linear Predictive Coding coefficients (LPC), Mel Frequency Cepstral Coefficient (MFCC) to repre-
sent audio features. In recent years, with the development of deep learning, semantics-meaningful
features extracted by deep models are becoming more and more popular in affective video content
analysis and many works extract features with pre-trained CNN models. For example, A VGG-like
model named VGGish (Hershey et al., 2017) is adopted for extracting audio features and CNN mod-
els trained on generic task datasets, such as ImageNet (Deng et al., 2009), RAF (Li et al.}2017) are
used for extracting visual features (Liu et al.,[2018).

Another focus of the emotion prediction is multi-modal fusion (Atrey et al., [2010). Multi-modal
fusion methods can be divided into two categories: feature-level fusion, and decision-level fusion.
The key difference between the above two categories is the stage when the fusion happens. [Rosas
et al.| (2013) concatenate linguistic, audio and visual features into a common feature vector and seek
to find the hyperplane that best separates positive examples from negative examples using SVMs
(Cortes & Vapnikl, [1995) with linear kernels. Wang & Cheong| (2000) characterized every scene
through concatenating audio and visual features to a vector and adopt a specially adapted variant of
SVM to recognize anger, sadness, surprise, happiness, disgust and neutral. Metallinou et al.[(2010)
model face, voice and head movement cues for emotion recognition and fuse the results of all clas-
sifiers using a Bayesian framework. While those models can outperform unimodal models, they fail
to utilize the dependencies among different modalities. |[Pang et al.|(2015)) use Deep Boltzmann Ma-
chine (DBM) to learn the highly non-linear relationships that exist among low-level features across
different modalities for emotion prediction. |Gan et al.| (2017) propose a multi-modal deep regres-
sion Bayesian network (MMDRBN) to capture the dependencies between visual elements and audio
elements and a fast learning algorithm is designed to learn the regression Bayesian network (RBN),
Then the MMDRBN is transformed into an inference network by minimizing the KL-divergence.

To utilize the temporal context, Kurpukdee et al.| (2017) extract phoneme-based features from raw
input speech signals using convolutional long short-term memory (LSTM), recurrent neural net-
work (ConvLSTM-RNN) and adopt support vector machines (SVM) or linear discriminant analysis
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(LDA) to classify four emotions (anger, happiness, sadness and neutral). |[Fan et al.| (2016) use RNNs
to fuse features extracted by the convolutional neutral network (CNN) over individual video frames
and use C3D (Tran et al.,2015) to encode appearance and motion information at the same time, then
the predicted scores from different models are combined in a weighted-sum rule.

3 PROPOSED METHODS

The overall framework consists of three major steps as shown in Fig[[] We divide the untrimmed
movies to non-overlap short clips with same length and predict valence and arousal for each clip.
First, we extract frame-level modality-specific features using commonly-used pre-trained audio and
image feature extractors. Then, the intra-clip feature fusion and inter-clip context fusion are used to
consider the short and long temporal context. For intra-clip feature fusion, we append LSTMs after
the frame-level feature extractor to consider the short-time temporal relation within the clip for each
modality. Then, all modality-specific features are summed into a vector, representing the clip-level
multi-modal features. For the inter-clip context, we adopt LSTMs based on the clip-level features to
capture the long-time dependency between clips for the valence task. For the arousal task, a more
simple but effective exponential moving average with decay weights is utilized. A residual-based
progressive training algorithm is designed to train the network.
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Figure 1: Part (a) describes our overall framework for valence and arousal tasks separately. Features
for multi-modal are extracted as detailed in part (b)

3.1 MULTI-MODAL FEATURES

The modal scope we could use for valence and arousal tasks in movie affective analysis is based on
the following observations. 1) The actors/Actress’ actions, dialogues, and facial expressions are the
key factors that affect the audience’s emotions. Scenes (such as environment, atmosphere) and back-
ground music also implicitly deliver emotions to audiences. 2) Valence and Arousal emotional states
depend on different modalities. For instance, Facial expressions are more related to the valence task
while actions are more related to the arousal task. The actors’ actions can affect the intensity of emo-
tions while they are less related to the direction of emotions (Detenber & Reeves|, [1996). Therefore,
for the valence task, audio, scene and facial expression modalities are finally used. For the arousal
task, audio, scene, and action modalities are finally used. Related experiments in section 4.2.1] and
[@.2.2]also support our observations.

3.1.1 AuDIO FEATURES

Audio information in a movie can be divided into two main parts: the physical characteristics of
sound and the content of language. We only focus on language-independent audio features. Here we
adopt VGGish to extract semantically meaningful features with all audio characteristics taken into
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consideration. The inputs are log Mel-spectrograms with shape 96x64 computed with 0.96s long
audio clips. We adopt the first 960 ms from every second of the audio. We adopt the output of the
128-wide fully connected layer followed by a PCA transformation and quantization as the compact
embedding features for audio. Thus, every second of audio is converted into a 128-dimension vector.

3.1.2 VISUAL FEATURES

Visual features consist of the human’ actions, expressions as well as scenes in videos. A sparse
sampling strategy, one frame per second, is adopted to sample frames from clips. Each feature will
be extracted in frame-level.

We adopt pose-related features to represent the human’ actions. Specifically, we append two groups
of convolution/maxpool layers and a 128-wide fully connected layer after the last convolution layer
of the pre-trained OpenPose’s backbone (Cao et al., 2018])). The weights of the OpenPose’s backbone
are fixed and the newly-added layers will be fine-tuned on the target dataset. To represent the actors’
expressions, we pre-train an Xception network (Chollet, [2017)) with fully connected layers on RAF
to extract emotional facial features. To extract facial expression feature, we first detect faces from
frames by MTCNN (Zhang et al., 2016). Then we crop the largest face detected and resize it to
160x160. The face image is fed into the pre-trained model and is represented by a 3072-dimension
vector extracted from the last fully connected layer. If no faces are detected, the average face across
the whole training dataset is used. A pre-trained VGG16 network on Places365 is adopted to extract
features of the movies’ scenes. We resize the frames to 224x224 and extract 512-dimension features
at the last pooling layer.

3.2 FEATURE FUSION WITH LONG-SHORT TEMPORAL CONTEXT
3.2.1 INTRA-CLIP SHORT TEMPORAL FUSION

Since each modality has its own time-dependency, we first carry out short-temporal fusion for each
modality. After the frame-level features for each modality are obtained, we adopt two layers of
bidirectional LSTMs for each modality inside the clip to fuse the temporal information. The hidden
state of the final step of the LSTMs is adopted as the clip-level modality-specific features. Having
obtained the modality-specific features, we sum all the features together for each clip. Then a fully
connected layer is followed, forming the final clip-level multi-modal features.

3.2.2 INTER-CLIP LONG TEMPORAL FUSION

We adopt two different methods to utilize the temporal context among clips for valence and arousal
tasks. For the valence task, we adopt a TSN-like structure to utilize the temporal context among con-
tinuous clips. Specifically, we use two-layers bidirectional LSTMs to combine the temporal context
among continuous clips. The input for each step is the clip-level multi-modal features obtained in
the intra-clip short temporal fusion. The hidden state for each step is the final embedding features
combining long temporal context for the corresponding clip. A fully connected layer with Tanh
activation is adopted to make a final valence value prediction for each clip.

For arousal value prediction, we directly append one fully connected layer with Tanh activation
as the raw arousal prediction after the intra-clip features. Then a simple but effective exponential
moving average with decay weights is utilized to consider the temporal context. The reason we
use moving average instead of LSTMs like the valence task is that the arousal value represents the
intensity of emotions, which cannot dramatically change in relative short time, while for valence,
the emotion direction might be more context-related.

3.3 TRAINING STRATEGY

Training the whole network, which has multiple stages with several sub-structures, in an end-to-
end way is not an easy task, which can easily lead to be over-fitting because of the large number
parameters. Thus, we train the whole network part by part. For VGGish, facial expression model,
VGG16 pre-trained on Places365, and the modified OpenPose model, the weights are always fixed
in our tasks using the pre-trained weights. For the LSTMs that and feature fusion network, we use a
residual-based progressive training strategy.
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3.3.1 RESIDUAL-BASED PROGRESSIVE TRAINING STRATEGY

To learn the LSTMs for every modality in short temporal fusion and effectively fuse multi-modal
features, we design a two-stage residual based progressive training strategy as shown in Fig[2]

Residual-based progressive training algorithm for intra-clip feature fusion

| Trainable}
| layers |

Figure 2: Residual-based progressive training strategy for intra-clip feature fusion of valence

Stage 1: Modality-specific pre-training

The main role of this step is to obtain the importance of each modality and determine the training
order for each modality in the next stage. We append two fully connected layers for auxiliary
training after the LSTMs of each modality to form the modality-specific model. Then we train each
modality-specific model by minimizing the Mean Square Error (MSE) loss. The loss function can
be computed as follows:

m

1
L(y7G)=ZE||yj—GjH§ (1)

Jj=1

Where y; is the prediction for clip j. G represents the ground truth for clip j. It is the mean of
labels for every second within the clip. m denotes the batch size.

After the models are trained, we sort modalities in descending order according to their performance.
Thus, modality ¢ means the modality with the ith high performance and the LSTMs for it will be
trained in sequence of i.

Stage 2: Training intra-clip model

At the first step, we train the LSTMs for modality 1. At the second step, we sum the features
extracted by the LSTMs for modality 1 and modality 2 and only train the LSTMs for modality 2.
The remaining modalities’ LSTMs are learned similarly. At each step, two new fully connected
layers are appended after the summed features to make predictions. Note that all the fully connected
layers are only used for auxiliary LSTMs pre-training. After we get the weights for all modalities’
LSTMs, we add two fully connected layers after the LSTMs and fine-tune the entire model. For the
valence task, the output of the first fully connected layer is used as the clip-level embedding features.
For the arousal task, the fully connected layers are used to make the prediction for each clip. The
training process for the valence task is shown in Fig|2|as an example.

With the residual-based progressive training strategy, the model can dynamically select important
modalities. Formally, assuming that we are training the ¢¢h modality, the features combining the
first 7 — 1 modalities are denoted as f;_1. Thus the LSTMs for modality i fit the mapping H;(x) :=
fi — fi—1. If f;_1 is discriminative enough to make correct predictions and modality 4 is of low
importance, it would push the mapping to zero. If modality 7 plays an important role, it would push
the mapping to complete the f;_; towards f; to get better performance.
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3.3.2 LONG TEMPORAL FUSION

For arousal, there is no parameters to train for long temporal fusion since we adopt an exponential
moving average post-processing method over the predictions made for intra-clip part. Formally, the
final prediction can be computed as follows:

ema; = Bxema;—1 + (1 =) xy; 2)

where y; is the prediction for clip ¢, ema; denotes the exponential moving average value for clip ¢
which is used as the final prediction, 3 is the weight decay.

For valence, we keep the weights for the intra-clip part fixed and only train the LSTMs and fully
connected layer for the inter-clip part. The loss function can be computed as follows:

m

L
1 i i
L(Y,G):Zm*LZHZ/j_Gj”g (3)
i=1

j=1

Where y; and G denote the prediction and ground truth for the ith clip in the jth example respec-
tively. m represents the batch size. L is the number of clips in an example.

4 EXPERIMENTS AND RESULTS

4.1 DATASET AND METRICS

The LIRIS-ACCEDE dataset is the largest dataset for affective video content analysis, which is used
in the MediaEval 2018 emotional impact of movies task. The LIRIS-ACCEDE dataset contains
videos from a set of 160 professionally made and amateur movies. Several movie genres are repre-
sented in this collection of movies such as horror, comedy, drama, action and so on. Languages are
mainly English with a small set of Italian, Spanish, French, and others. A total of 54 movies (total
duration of 26 hours and 49 minutes) from the set of 160 movies are provided as the development
set. 12 other movies (total duration of 8 hours and 56 minutes) consist the test set. The scores
of valence and arousal which range from -1 to 1 are provided continuously (every second) along
movies. Valence is defined on a continuous scale from most negative to most positive emotions,
while arousal is defined continuously from calmest to most active emotions. The official metric is
the Mean Square Error (MSE), which is the common measure generally used to evaluate regression
models. However, we also consider Pearson’s Correlation Coefficient (PCC) for the emotional trend
analysis of movies.

4.2 RESULTS

4.2.1 MODALITY-SPECIFIC PERFORMANCE

To evaluate the importance of every modality for each task, we train a set of modality-specific
models, i.e. only using one modality in the overall prediction framework. The performance for
modality-specific model is shown in Table[I] To better demonstrate each modality’s effectiveness,
we visualize the features representations of each modality in the test set. T-SNE is adopted for
dimensionality reduction.

As shown in Table[I] the modality-specific model trained on audio features has the best performance
for both valence and arousal tasks. This demonstrates that audio signals contain more emotional
information. For the valence task, expressions and scenes play similar importance while actions have
the worst performance. For the arousal task, actions and scenes have equal status while expressions
are useless. The importance of each modality can also be revealed by the discriminative of features
extracted through the modality-specific models as shown in Fig[3] This demonstrates our analysis

in section

4.2.2 MULTI-MODAL PERFORMANCE FOR INTRA-CLIP PART

Here, we compare the performance of different multi-modal combinations and fusion strategies in
intra-clip prediction. According to the analysis and experiments, audio and scenes are used for both
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Table 1: Performance for each modality-specific models.

] Valence Arousal
Modality used | —rer=—pccTMSE | pCC
Audio 0.098 | 0.264 | 0.140 | 0.172
Scene 0.103 | 0.192 | 0.152 | 0.140
Expression 0.110 | 0.150 | 0.162 | 0.061
Action 0.132 | 0.057 | 0.156 | 0.158
Scene | Emotion Pose

valence

Arousal

Figure 3: Features extracted from movie clips in the test set by the modality-specific models. T-SNE
is adopted for dimensionality reduction. The red points represent the features with label greater than
0 and the blue points represent the features with label less than 0.

valence and arousal tasks while expressions are only used in the valence task and actions are only
used in the arousal task. The training process is described in section [3.3.1}

To compare the different modal combinations, we carry out several experiments with different se-
tups, i.e. audio + scene, audio + action, audio + scene + human expression and audio + action +
scene using the same training strategy. We also conduct two baseline experiments to investigate
performance of different the modal fusion strategies: feature-level fusion with traditional training
method, i.e. training the entire model at the same time, which is referred as Baseline 1, and decision-
level fusion, i.e. learning modality-specific models independently and averaging the results, which
is referred as Baseline 2. For the valence task, both baseline models use audio, scenes, and expres-
sions. For the arousal task, we use audio, scenes, and actions. The results of various methods are
listed in Table

As shown in Table[2] our proposed modal selection and feature-level fusion with our residual-based
progressive training algorithm get better performance compared with traditional training method and
also outperforms the decision-level fusion.

4.2.3 PARAMETER SELECTION FOR LONG TEMPORAL FUSION

The methods to utilize the long temporal context are described in section [3.2.2]and [3.3.2] in which,
the number of clips for the valence task and the decay weights (3 for the arousal task are the param-
eters that should be determined beforehand. Here we numerically evaluate the performance under
different parameter values.
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Table 2: Performance of different modal combinations & feature fusions.

Valence Arousal
MSE | PCC | MSE | PCC

Audio+Scene 0.091 | 0.348 - -
Audio+Action - - 0.140 | 0.293

Audio+Scene+Expression | 0.089 | 0.358 - -
Audio+Action+Scene - - 0.138 | 0.314
Baseline 1 0.104 | 0.284 | 0.148 | 0.257
Baseline 2 0.090 | 0.300 | 0.142 | 0.278

Table 3: Performance with long temporal context. The left part shows performance for the valence
task with different number of clips; the right part shows performance for the arousal task with
different decay weights.

number of clips MS\SICH%CC C decay weights 3 MSAErouslz;IC C
3 0.073 | 0.406 0.96 0.136 | 0.400
4 0.071 | 0.444 0.97 0.136 | 0.409
5 0.072 | 0.419 0.98 0.137 | 0.419
6 0.077 | 0.380 0.99 0.140 | 0.427

For the valence task, using 4 continuous movie clips gets the best result, which is shown in the left
part of Table[3] Using fewer clips can’t get enough long time information while using more clips
weakens the flow of information and may introduce noises by obvious emotional change between
clips. For the arousal task, the best choice of the decay weight is 0.98 as shown in the right part of
Table[3] The larger decay weight will pull the arousal value of every second towards the mean value
resulting the higher MSE.

Table 4: Performance compared with the state-of-the-art.

Valence Arousal
MSE | PCC | MSE | PCC
CERTH-ITI (Batziou et al.|[2018) | 0.117 | 0.098 | 0.138 | 0.054
THUHCSI (Ma et al.[[2018) 0.092 | 0.305 | 0.140 | 0.087
Quan et al.|(2018) 0.115 | 0.146 | 0.171 | 0.091
Yi et al.[(2018) 0.090 | 0.301 | 0.136 | 0.175
GLA (Sun et al.|[2018) 0.084 | 0.278 | 0.133 | 0.351
Ko et al.[(2018) 0.102 | 0.114 | 0.149 | 0.083
Ours 0.071 | 0.444 | 0.137 | 0.419

4.2.4 COMPARISON WITH THE STATE-OF-THE-ART

We present our whole emotion prediction result in Table ] It shows that our method gets signifi-
cantly better performance compared with the other works. To further prove the effectiveness of our
model structure and residual-based training strategy, we also carry out experiments on classification
task of the LIRIS-ACCEDE dataset which is used in MediaEval 2015 (Sjoberg et al.l [2015). We
use the same backbone network and the same training strategy with only the last layer changed to
the softmax layer for classification. The performance compared with the other works are shown in
Table [5] It can be seen that our backbone network and training strategy can still outperform the
state-of-art in this task, which further demonstrates the effectiveness of our extracted features and
residual-based progressive training algorithm.
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Table 5: Performance compared with MediaEval 2015 related works.

Valence (acc) Arousal (acc)
MIC-TJU (Yi et al.|2015) 0.420 0.559
NII-UIT (Vu Lam & Le) 0.430 0.559
ICL-TUM-PASSAU (Trigeorgis et al.,2015) 0.415 0.557
Fudan-Huawei (Dai et al./[2015) 0.418 0.488
TCS-ILAB (Chakraborty et al.,[2015) 0.357 0.490
UMons (Seddati et al.}[2015) 0.373 0.524
RFA (Mironica et al.}2015) 0.330 0.450
KIT (Marin Vlastelica et al.,[2015) 0.385 0.519
Ours 0.459 0.575

5 CONCLUSION AND FUTURE WORK

In this work, we propose a comprehensive video emotion impact prediction framework. For va-
lence and arousal tasks, modalities are carefully selected through evaluating the importance of every
modality to reduce noise introduced by less task-related modalities, then the pre-trained models
are used to extract semantically meaningful features. Two-time-scale structures for for valence
and arousal tasks are adopted to capture the shot-long temporal context. An effective and effi-
cient residual-based progressive training algorithm is proposed. The experimental results on LIRIS-
ACCEDE dataset with several comparative studies demonstrate the effectiveness of our methods.
Future work might involve how to incorporate more sophisticated time dependency models of human
emotion states and explore more discriminative features such as linguistic content, visual relation,
etc.
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A CASES ANALYSIS
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Figure 4: The predictions of movies in test set for the valence task. The left one is for
MEDIAEVAL18_54; the right one is for MEDIAEVAL18_62.
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Figure 5: The predictions of movies in the test set for the arousal task. The left one is for
MEDIAEVALI18_60; The right one is for MEDIAEVALI18_63.
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Figure 6: Bad cases in the test set. The left one is the valence predictions for MEDIAEVAL18_65
from 3000s to 4000s; The right one is the arousal predictions for MEDIAEVAL18_60.

In this part, we show both good and bad cases of the result for LIRIS-ACCEDE dataset in detail.
Fig [] and Fig [5] show the good cases, where our model can precisely predict the trend of movies’
impact on audiences. Fig[6|shows some bad cases. In the left chart of Fig[6] the ground truth for most
of the time are positive while the corresponding predictions are negative. This movie is a comedy,
where the fighting and quarrels have positive(hilarious) emotional impact but they are difficult to
identify just by the modals of our model. In the right chart, the prediction fluctuates much more
than the ground truth. This is due to there are fighting and shouting in that movie clips, but the low
arousal labels result from human understanding of the movie story. Those bad cases indicate the
difficulty of this task since too many factors might be missing by the computer models and there is
still a large gap to use machine to understand human emotions.
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