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ABSTRACT

In most real-world scenarios, training datasets are highly class-imbalanced, where
deep neural networks suffer from generalizing to a balanced testing criterion. In
this paper, we explore a novel yet simple way to alleviate this issue via synthe-
sizing less-frequent classes with adversarial examples of other classes. Surpris-
ingly, we found this counter-intuitive method can effectively learn generalizable
features of minority classes by transferring and leveraging the diversity of the ma-
jority information. Our experimental results on various types of class-imbalanced
datasets in image classification and natural language processing show that the pro-
posed method not only improves the generalization of minority classes signifi-
cantly compared to other re-sampling or re-weighting methods, but also surpasses
other methods of state-of-art level for the class-imbalanced classification.

1 INTRODUCTION

Deep neural networks (DNNs) trained by large-scale datasets have enabled many breakthroughs in
machine learning, especially in various classification tasks such as image classification (He et al.,
2016a), object detection (Redmon & Farhadi, 2017), and speech recognition (Park et al., 2019).
Here, a practical issue in this large-scale training regime, however, is at the difficulty in data acqui-
sition process across labels, e.g. some labels are more abundant and easier to collect (Mahajan et al.,
2018). This often leads a dataset to have “long-tailed” label distribution, as frequently found in
modern real-world large-scale datasets. Such class-imbalanced datasets make the standard training
of DNN harder to generalize (Wang et al., 2017; Ren et al., 2018; Dong et al., 2018), particularly if
one requires a class-balanced performance metric for a practical reason.

A natural approach in attempt to bypass this class-imbalance problem is to re-balance the training
objective artificially in class-wise with respect to their numbers of samples. Two of such methods
are representative: (a) “re-weighting” the given loss function by a factor inversely proportional to
the sample frequency in class-wise (Huang et al., 2016; Khan et al., 2017), and (b) “re-sampling”
the given dataset so that the expected sampling distribution during training can be balanced, either
by “over-sampling” the minority classes (Japkowicz, 2000; Cui et al., 2018) or “under-sampling”
the majority classes (He & Garcia, 2008).

The methods on this line, however, usually result in harsh over-fitting to minority classes, since in
essence, they cannot handle the lack of information on minority data. Several attempts have been
made to alleviate this over-fitting issue: Cui et al. (2019) proposed the concept of “effective number”
of samples as alternative weights in the re-weighting method. In the context of re-sampling, on the
other hand, SMOTE (Chawla et al., 2002) is a widely-used variant of the over-sampling method
that mitigates the over-fitting via data augmentation, but generally this direction has not been much
explored recently. Cao et al. (2019) found that both re-weighting and re-sampling can be much more
effective when applied at the later stage of training, in case of neural networks.

Another line of the research attempts to prevent the over-fitting with a new regularization scheme
that minority classes are more regularized, where the margin-based approaches generally suit well as
a form of data-dependent regularizer (Zhang et al., 2017; Dong et al., 2018; Khan et al., 2019; Cao
et al., 2019). There have also been works that view the class-imbalance problem in the framework
of active learning (Ertekin et al., 2007; Attenberg & Ertekin, 2013) or meta-learning (Wang et al.,
2017; Ren et al., 2018; Shu et al., 2019; Liu et al., 2019).
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Contribution. In this paper, we revisit the over-sampling framework and propose a new way of
generating minority samples, coined Adversarial Minority Over-sampling (AMO). In contrast to
other over-sampling methods, e.g. SMOTE (Chawla et al., 2002) that applies data augmentation to
minority samples to mitigate the over-fitting issue, we attempt to generate minority samples in a
completely different way: AMO does not use the existing minority samples for synthesis, but use
adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015) of non-minority samples made
from another, baseline classifier (potentially, over-fitted to minority classes) independently trained
using the given imbalanced dataset. This motivation leads us to a very counter-intuitive method at
a first glance: it results in labeling minority class on an adversarial example of a majority class at
last. Our key finding is that, this method actually can be very effective on learning generalizable
features in the imbalanced learning: it does not overly use the minority samples, and leverages the
richer information of the majority samples simultaneously.

Our minority over-sampling method consists of three components to improve the sampling quality.
First, we propose an optimization objective for generating synthetic samples, so that a majority input
can be translated into a synthetic minority sample via optimizing it, while not affecting the perfor-
mance of the majority class (even the sample is labeled to the minority class). Second, we design a
sample rejection criteria based on the observation that generation from more majority class is more
preferable. Third, based on the proposed rejection criteria, we suggest an optimal distribution for
sampling the initial seed points of the generation.

We evaluate our method on various imbalanced classification problems, including synthetically im-
balanced CIFAR-10/100 (Krizhevsky, 2009), and real-world imbalanced datasets including Twit-
ter dataset (Gimpel et al., 2011) and Reuters dataset (Lewis et al., 2004) in natural language pro-
cessing. Despite its simplicity, our method of adversarial minority over-sampling significantly im-
proves the balanced test accuracy compared to previous re-sampling or re-weighting methods across
all the tested datasets. These results even surpass the results from state-of-the-art margin-based
method (LDAM; Cao et al. 2019). We also highlight that our method is fairly orthogonal to the
regularization-based methods, by showing that joint training of our method with LDAM could fur-
ther improve the balanced test accuracy as well.

Despite the great generalization ability of DNNs, they are known to be susceptible to adversarial
examples, which makes it difficult to deploy them in real-world safety-critical applications (Szegedy
et al., 2014; Goodfellow et al., 2015). The broad existence of adversarial examples in DNNs is still
a mysterious phenomenon (Gilmer et al., 2019; Galloway et al., 2019; Ilyas et al., 2019), and we
think our results can be of independent interest to shed new insight on understanding their property.

2 ADVERSARIAL MINORITY OVER-SAMPLING

We consider a classification problem with K classes from a dataset D = {(xi, yi)}Ni=1, where
x ∈ Rd and y ∈ {1, · · · ,K} denote an input and the corresponding class label, respectively. Let
f : Rd → RK be a classifier designed to output K logits, which we want to train against the class-
imbalanced dataset D. We denote N :=

∑
kNk to be the total sample size of D, where Nk is that

of class k. Without loss of generality, we assume N1 ≥ N2 ≥ · · · ≥ NK . In the class-imbalanced
classification, the class-conditional data distributionsPk := p(x | y = k) are assumed to be invariant
across training and test time, but they have different prior distributions, say ptrain(y) and ptest(y),
respectively: ptrain(y) is highly imbalanced while ptest(y) is usually assumed to be the uniform
distribution. The primary goal of the class-imbalanced learning is to train f from D ∼ Ptrain that
generalizes well under Ptest compared to the standard training, e.g., empirical risk minimization
(ERM) with an appropriate loss function L(f):

min
f

E(x,y)∼D[L(f ;x, y)]. (1)

Our method is primarily based on over-sampling technique (Japkowicz, 2000), a traditional and
principled way to balance the class-imbalanced training objective via sampling minority classes
more frequently. In other words, we assume a “virtually balanced” training dataset Dbal made from
D such that the class k has N1 −Nk more samples, and f is trained on Dbal instead of D.

A key difficulty in over-sampling is to prevent over-fitting on minority classes, as the objective
modified is essentially much biased to a few samples of minority classes. In contrast to prior work
that focuses on applying data augmentation to minority samples to mitigate this issue (Chawla et al.,
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2002; Liu et al., 2019), we attempt to synthesize minority samples in a completely different way:
our method does not use the minority samples for synthesis, but use adversarial examples of non-
minority samples made from another classifier g : Rd → RK independently trained on D.

2.1 OVERVIEW OF ADVERSARIAL MINORITY OVER-SAMPLING

Consider a scenario of training a neural network f on a class-imbalanced dataset D. The proposed
Adversarial Minority Over-sampling (AMO) attempts to construct a new balanced dataset Dbal for
training of f , by adding adversarial examples (Szegedy et al., 2014) of another classifier g. Here,
we assume the classifier g is a pre-trained neural network on D so that performs well (at least) on
the training imbalanced dataset, e.g., via standard ERM training. Therefore, g may be over-fitted to
minority classes and perform badly under the balanced testing dataset. On the other hand, f is the
target network we aim to train to perform well on the balanced testing criterion.

During the training f , AMO utilizes the classifier g to generate new minority samples, and the
resulting samples are added to D to construct Dbal on the fly. To obtain a single synthetic minority
point x∗ of class k, our method solves an optimization problem starting from another training sample
x0 of a (relatively) major class k0 < k:

x∗ = arg min
x:=x0+δ

LCE(g;x, k) + λ · fk0(x), (2)

Figure 1: An illustration of
AMO via solving (2).

where LCE denotes the standard cross entropy loss and λ > 0 is
a hyperparameter. In other words, our method “translates” a seed
point x0 into x∗, so that g confidently classifies it as class k. It is not
required for f to classifies x∗ to k as well, but the optimization ob-
jective restricts that f to have lower confidence at the original class
k0. The generated sample x∗ is then labeled to class k, and fed into
f for training to perform better on Dbal. Here, the regularization
term λ · fk0(x) on logit reduces the risk when x∗ is labeled to k,
whereas it may contain significant features of x0 in the viewpoint
of f . Intuitively, one can regard the overall process as teaching the
minority classifiers of f to learn new features which g considers
it significant, i.e., via extension of the decision boundary from the
knowledge g. Figure 1 illustrates the basic idea of our method.

One may understand our method better by considering the case when g is an “oracle” (possibly the
Bayes optimal) classifier, e.g., (roughly) humans. Here, solving (2) essentially requires a transition
of the original input x0 of class k0 with 100% confidence to another class k with respect to g: this
would let g “erase and add” the features related to the class k0 and k, respectively. Hence, in this
case, our process corresponds to collecting more in-distribution minority data, which may be argued
as the best way one could do to resolve the class-imbalance problem.

An intriguing point here is, however, that neural network models are very far from this ideal behav-
ior, even for that achieves super-human performance. Instead, when f and g are neural networks, (2)
often finds x∗ at very close to x0, i.e., similar to the phenomenon of adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015). Nevertheless, we found our method still effectively improves
the generalization of minority classes even in such cases. This observation is, in some sense, aligned
to a recent claim that adversarial perturbation is not a “bug” in neural networks, but a “generalizable”
feature (Ilyas et al., 2019).

2.2 DETAILED COMPONENTS OF AMO

Sample rejection criteria. An important factor that affects the quality of the synthetic minority
samples in our method is the quality of g, especially for gk0 : a better gk0 would more effectively
“erase” important features of x0 during the generation, thereby making the resulting minority sam-
ples more reliable. In practice, however, g is not that perfect so the synthetic samples still contain
some discriminative features of the original class k0, in which it may even harm the performance of
f . This risk of “unreliable” generation becomes more harsh when Nk0 is small, as we assume that g
is also trained on the given imbalanced data D.
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Algorithm 1 Adversarial Minority Over-sampling (AMO)

Input: A dataset D = {(xi, yi)}Ni=1 with N =
∑K
k=1Nk. A receiving classifier f . A generating

classifier g. λ, γ > 0 and β ∈ [0, 1).
Output: A class-balanced dataset Dbal

1: Initialize Dbal ← D
2: for k = 2 to K do
3: ∆← N1 −Nk
4: for i = 1 to ∆ do
5: k0 ∼ P (k0|k) ∝ 1− β(Nk0

−Nk)
+

6: x0 ← A randomly-chosen sample of class k0 in D
7: x∗ = arg minx:=x0+δ L(g;x, k) + λ · fk0(x)

8: R ∼ Bernoulli(β(Nk0
−Nk)

+

)
9: if L(g;x∗, k) > γ or R = 1 then

10: x∗ ← A randomly-chosen sample of class k in D
11: end if
12: Dbal ← Dbal ∪ {(x∗, k)}
13: end for
14: end for

To alleviate this risk, we consider a simple criteria for rejecting each of the synthetic samples ran-
domly with probability depending on k0 and k:

P(Reject x∗|k0, k) := β(Nk0
−Nk)

+

, (3)

where (·)+ := max(·, 0), and β ∈ [0, 1) is a hyperparameter which controls the reliability of g: the
smaller β, the more reliable g. For example, if β = 0.999, the synthetic samples are accepted with
probability more than 99% if Nk0 −Nk > 4602. When β = 0.9999, on the other hand, it requires
Nk0 − Nk > 46049 to achieve the same goal. This exponential modeling of rejection probability
is motivated by the effective number of samples (Cui et al., 2019), a heuristic recently proposed to
model the observation that the impact of adding a single data point exponentially decreases at larger
datasets. When a synthetic sample is rejected, we simply replace it with another minority point
over-sampled from the original D to maintain the loss balance.

Optimal seed-point sampling. Another design choice of our method is how to choose an initial
seed point x0 for each generation in (2). This is important since it also affects the final quality of the
generation, as the choice of x0 corresponds to the sampling distribution of k0. Based on the rejection
policy proposed in (3), we design a sampling distribution for selecting the class of initial point x0
given target class k, namelyQ(k0|k), considering two aspects: (a)Qmaximizes the acceptance rate
under our rejection policy, and at the same time (b) Q chooses diverse classes as much as possible,
i.e., the entropy H(Q) is maximized. In our over-sampling scenario, i.e., the marginal sampling
distribution is uniform in class-wise, these objectives lead Q to be equal to the distribution P (k0|k)
such that each class is sampled proportional to its acceptance rate:

P (k0|k) ∝ 1− β(Nk0
−Nk)

+

, (4)

as it maximizes a joint objective of (a) and (b) above, which turns out to be equivalent to the KL-
divergence of P and Q when (a) is formulated to EQ[logP ], i.e., the expected value of the log-
probability of P :

max
Q

[
EQ[logP ]︸ ︷︷ ︸

(a)

+H(Q)︸ ︷︷ ︸
(b)

]
= min

Q

[
H(Q,P )−H(Q)

]
= min

Q
DKL(Q‖P ), (5)

where DKL(·‖·) denotes the KL-divergence. Therefore, we use (4) to sample a seed point for each
generation, as the sample-wise re-weighting factor with respect to its class and the given target
minority class.

Practical implementation via re-sampling. In practice of training a neural network f , e.g., stochas-
tic gradient descent (SGD) with mini-batch sampling, AMO is implemented using batch-wise re-
sampling: more precisely, in order to simulate the generation of N1 − Nk samples for the class k,
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Figure 2: An illustration of histograms on training sample sizes for the datasets used in this paper.

we first obtain a balanced mini-batch B = {(xi, yi)}mi=1 via standard re-sampling, and randomly
select the indices i to perform the generation with probability N1−Nyi

N1
= 1−Nyi/N1. The genera-

tion is only performed for the selected indices, where each yi acts as the target class k. For a single
generation, we select a seed image x0 inside the given mini-batch following (4): we found sampling
seed images per each mini-batch does not degrades the effectiveness of AMO. Starting from the
selected x0, we solve the optimization (2) by performing gradient descent for a fixed number of
iterations T . We only accept the result sample x∗ only if L(g;x∗, k) is less than γ > 0 for stability.
The overall procedure of AMO is summarized in Algorithm 1.

3 EXPERIMENTS

We evaluate our method on various class-imbalanced classification tasks in visual recognition and
natural language processing: synthetically-imbalanced CIFAR-10/100 (Krizhevsky, 2009), Twitter
(Gimpel et al., 2011), and Reuters (Lewis et al., 2004) datasets. Figure 2 illustrates the class-wise
sample distributions for each dataset considered in our experiments. In overall, our results clearly
demonstrate that minority synthesis via adversarial examples consistently improves the efficiency
of over-sampling, in terms of the significant improvement of the generalization in minority classes
compared to other re-sampling baselines, across all the tested datasets. We also perform an ablation
study to verify the effectiveness of our main ideas. Throughout this section, we divide the classes
in a given dataset into “majority” and “minority” classes, so that the majority classes consist of
top-k frequent classes with respect to the training sample size where k is the minimum number that∑
kNk exceeds 50% of the total. We denote the minority classes as the remaining classes.

3.1 EXPERIMENTAL SETUP

Baseline methods. We consider a wide range of baseline methods, as listed in what follows: (a) em-
pirical risk minimization (ERM): training on standard loss without any re-balancing; (b) re-sampling
(RS; Japkowicz 2000): balancing the objective from different sampling probability for each sample;
(c) SMOTE (Chawla et al., 2002): a variant of re-sampling with data augmentation; (d) re-weighting
(RW; Huang et al. 2016): balancing the objective from different weights on sample-wise loss; (e)
class-balanced re-weighting (CB-RW; Cui et al. 2019): a variant of re-weighting that uses the in-
verse of effective number for each class, defined as (1− βNk)/(1− β). Here, we use β = 0.9999;
(f ) deferred re-sampling (DRS; Cui et al. 2019): re-sampling is deferred until the later stage of the
training; (g) focal loss (Focal; Lin et al. 2017): the objective is up-weighted for relatively hard exam-
ples to focus more on the minority; (h) label-distribution-aware margin (LDAM; Lin et al. 2017): the
classifier is trained to impose larger margin to minority classes. Roughly, the considered baselines
can be classified into three categories: (i) “re-sampling” based methods - (b, c, f ), (ii) “re-weighting”
based methods - (d, e), and (iii) different loss functions - (a, g, h).

Training details. We train every model via stochastic gradient descent (SGD) with momentum of
weight 0.9. For CIFAR-10/100 datasets, we train ResNet-32 (He et al., 2016b) for 200 epochs with
mini-batch size 128, and set a weight decay of 2× 10−4. We follow the learning rate schedule used
by Cui et al. (2019) for fair comparison: the initial learning rate is set to 0.1, and we decay it by a
factor of 100 at 160-th and 180-th epoch. Although it did not affect much to our method, we also
adopt the linear warm-up strategy on the learning rate (Goyal et al., 2017) in the first 5 epochs, as
some of the baseline methods, e.g. re-weighting, highly depend on this strategy. For Twitter and
Reuters datasets, on the other hand, we train a 2-layer fully connected network for 15 epochs with
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Table 1: Comparison of test accuracy on the two long-tailed CIFAR-10 datasets. The number of
majority and minority classes are reported in parentheses. All the values and error bars are mean
and standard deviation across 3 trials upon randomly chosen seeds, respectively.

CIFAR-LT-10 N1/NK = 100 N1/NK = 10

Loss Re-balancing Major (2) Minor (8) Average Major (3) Minor (7) Average

ERM - 95.3±1.34 62.1±1.82 68.7±1.43 93.7±0.65 82.8±0.73 86.0±0.69

ERM RS 92.8±1.50 64.8±1.18 70.4±1.15 92.3±0.60 84.1±0.28 86.6±0.37

ERM SMOTE 91.2±1.17 66.6±0.90 71.5±0.57 92.1±0.37 83.0±0.49 85.7±0.25

ERM RW 91.4±1.66 68.2±0.34 72.8±0.33 91.7±0.48 84.5±0.26 86.6±0.18

ERM CB-RW 90.2±3.34 66.4±1.77 71.2±1.14 92.1±0.05 84.6±0.72 86.8±0.49

ERM DRS 97.3±0.35 69.7±0.29 75.2±0.26 92.4±0.36 84.9±0.53 87.1±0.26

ERM AMO (ours) 93.3±0.85 74.6±0.34 78.3±0.16 92.3±0.36 86.0±0.39 87.9±0.21

Focal - 95.4±2.23 61.5±1.64 68.3±1.19 93.2±0.13 82.0±0.70 85.3±0.47

LDAM - 97.9±0.10 66.6±0.47 72.8±0.37 93.1±0.05 83.2±0.17 86.2±0.12

LDAM DRW 96.1±0.75 72.4±0.52 77.1±0.49 91.6±0.71 85.2±0.21 87.1±0.28

LDAM AMO (ours) 95.3±0.31 75.1±0.17 79.1±0.19 91.3±0.44 86.0±0.04 87.5±0.15

Table 2: Comparison of test accuracy on the two long-tailed CIFAR-100 datasets. The number of
majority and minority classes are reported in parentheses. All the values and error bars are mean
and standard deviation across 3 trials upon randomly chosen seeds, respectively.

CIFAR-LT-100 N1/NK = 100 N1/NK = 10

Loss Re-balancing Major (15) Minor (85) Average Major (26) Minor (74) Average

ERM - 70.8±1.43 31.3±1.11 37.2±1.12 72.3±0.65 50.5±0.73 56.2±0.69

ERM RS 59.6±2.10 26.7±1.21 31.6±1.26 66.8±0.61 50.6±0.57 54.8±0.47

ERM SMOTE 61.7±0.09 29.1±0.41 34.0±0.33 66.7±1.25 49.3±0.81 53.8±0.93

ERM RW 50.2±2.83 27.1±0.45 30.1±0.59 67.8±0.54 51.8±0.30 56.0±0.35

ERM CB-RW 71.6±1.42 32.8±0.45 38.6±0.46 68.2±0.49 51.6±0.48 55.9±0.24

ERM DRS 67.6±0.95 36.9±0.40 41.5±0.21 68.6±0.72 53.9±0.30 57.7±0.40

ERM AMO (ours) 65.0±0.24 39.0±0.10 42.9±0.16 67.4±0.61 55.0±0.33 58.2±0.08

Focal - 70.0±2.12 32.0±1.42 37.7±1.38 71.7±0.23 49.5±0.52 55.3±0.42

LDAM - 73.5±0.71 33.5±0.88 39.5±0.69 73.5±0.30 48.1±0.30 54.7±0.16

LDAM DRW 70.2±0.73 37.2±0.22 42.1±0.09 70.0±0.39 52.3±0.18 56.9±0.15

LDAM AMO (ours) 67.0±0.93 39.3±0.15 43.5±0.22 70.3±0.43 53.2±0.10 57.6±0.14

mini-batch 64, with a weight decay of 5 × 10−5. The initial learning rate is also set to 0.1, but we
decay it by a factor of 10 at 10-th epoch.

Details on AMO. When our method is applied in the experiments, we use another classifier g
of the same architecture that is pre-trained on the given (imbalanced) dataset via standard ERM
training. Also, in a similar manner to that of Cao et al. (2019), we use the deferred scheduling to
our method, i.e., we start to apply our method after the standard ERM training of 160 epochs. We
choose hyperparameters in our method from a fixed set of candidates, namely β ∈ {0.99, 0.999},
λ ∈ {0.1, 0.5} and γ ∈ {0.9, 0.99}, based on its validation accuracy.

3.2 LONG-TAILED CIFAR DATASETS

CIFAR-10/100 datasets (Krizhevsky, 2009) consist of 60,000 images of size 32 × 32, 50,000 for
training and 10,000 for test. Although the original datasets are balanced across 10 and 100 classes,
respectively, we consider some “long-tailed” variants of CIFAR-10/100 (CIFAR-LT-10/100), in or-
der to evaluate our method on various levels of imbalance. To simulate the long-tailed distribution
frequently appeared in imbalanced datasets, we control the imbalance ratio ρ > 1 and artificially
reduce the training sample sizes of each class except the first class, so that: (a) N1/NK equals to ρ,
and (b) Nk in between N1 and NK follows an exponential decay across k. We keep the test dataset
unchanged during this process, thereby the evaluation can be done in the balanced setting.
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Table 3: Comparison of test accuracy on the two naturally imbalanced NLP datasets: Twitter and
Reuters. The number of majority and minority classes are reported in parentheses. All the values and
error bars are mean and standard deviation across 3 trials upon randomly chosen seeds, respectively.

Real-world Twitter (N1/NK ≈ 148) Reuters (N1/NK = 710)

Loss Re-balancing Major (5) Minor (18) Average Major (2) Minor (34) Average

ERM - 92.5±0.25 69.7±0.66 74.7±0.46 97.6±0.07 57.6±1.23 59.8±1.17

ERM RS 87.8±2.19 72.5±0.94 75.8±0.30 97.2±0.41 61.3±0.98 63.3±0.90

ERM SMOTE 91.2±0.35 65.7±0.89 70.7±0.67 97.2±0.46 60.4±1.36 62.5±1.30

ERM RW 84.5±1.62 73.9±0.80 76.2±0.95 95.3±1.60 63.2±1.17 65.0±1.08

ERM CB-RW 88.5±0.53 74.4±0.61 77.5±0.40 97.4±0.24 62.9±0.47 64.8±0.45

ERM DRS 90.9±0.40 74.1±1.20 77.8±0.85 97.6±0.09 60.3±0.41 62.4±0.39

ERM AMO (ours) 90.8±0.72 74.7±0.37 78.2±0.35 97.3±0.18 64.5±0.45 66.3±0.42

Focal - 82.3±0.63 72.0±2.91 74.2±2.35 97.8±0.11 57.1±0.43 59.4±0.42

LDAM - 92.1±0.35 69.7±1.53 74.6±0.40 97.7±0.43 61.0±1.46 63.0±1.36

LDAM DRW 91.0±0.42 74.4±1.08 78.0±0.87 97.2±0.27 62.2±0.32 64.1±0.31

LDAM AMO (ours) 90.5±0.47 75.6±0.28 78.8±0.21 96.3±0.46 68.5±0.71 70.0±0.68

We compare the (balanced) test accuracy of various training methods (including ours) on CIFAR-
LT-10 and 100, considering two imbalance ratios ρ ∈ {100, 10} for each (See Figure 2(a) and
2(b) for an illustration of the sample distribution). For all the tested methods, we also report the
test accuracies computed only on major and minor classes, to identify the relative impacts of each
method on the major and minor classes, respectively.

Table 1 and 2 summarize the main results. In overall, the results show that our method consistently
improves the test accuracy by a large margin, across all the tested baselines. For example, in the case
when N1/NK = 100 on CIFAR-10, our adversarial minority over-sampling method applied on the
baseline ERM improves the test accuracy by 14.0% in the relative gain. This result even surpasses
the “LDAM+DRW” baseline (Cao et al., 2019), which is known to be a state-of-the-art to the best of
our knowledge. Moreover, we point out, in most cases, our method could further improve the overall
test accuracy when applied upon the LDAM training scheme (see “LDAM+AMO”): this indicates
that the accuracy gain from our method is fairly orthogonal to that of LDAM, i.e., the margin-based
approach, which suggests a new promising direction of improving the generalization when a neural
network suffers from a problem of small data.

3.3 REAL-WORLD IMBALANCED DATASETS

Next, we further verify the effectiveness of AMO on real-world imbalanced dataset, especially fo-
cusing on two natural language processing (NLP) tasks: Twitter (Gimpel et al., 2011) and Reuters
(Lewis et al., 2004) datasets. Twitter dataset is for a part-of-speech (POS) tagging task. There are
14,614 training examples with 23 classes, and the imbalance ratio, i.e., N1/Nk, naturally made is
about 150 (see Figure 2(c) for the details). Reuters dataset, on the other hand, is for a text catego-
rization task which is originally composed of 52 classes. For a reliable evaluation, we discarded the
classes that have less than 5 test examples, and obtained a subset of the full dataset of 36 classes with
6436 training samples. Nevertheless, the distribution of the resulting dataset is still extremely im-
balanced, e.g. N1/Nk = 710 (see Figure 2(d) for the details). Unlike CIFAR-10/100, we found that
the two datasets have imbalance issue even in the test samples. Therefore, we report the averaged
value of the class-wise accuracy instead of the standard test accuracy.

Table 3 demonstrates the results. Again, AMO performed best amongst other baseline methods,
demonstrating a wider applicability of our algorithm beyond image classification. Remarkably, the
results on Reuters dataset suggest our method can be even more effective under regime of extremely
imbalanced datasets, as the Reuters dataset has much larger imbalance ratio than the others.

3.4 ABLATION STUDY

We conduct an ablation study on the proposed method, investigating the detailed analysis on it. All
the experiments throughout this study are performed with ResNet-32 models, trained on CIFAR-LT-
10 with the imbalance ratio 100.
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(a) ERM (b) SMOTE (c) LDAM+DRW (d) AMO (ours)

Figure 3: Visualization of t-SNE embeddings of the penultimate features computed from a balanced
subset of training samples in CIFAR-LT-10 with ResNet-32 on different methods.

Methods Major (2) Minor (8) Average

AMO 93.3±0.85 74.6±0.34 78.3±0.16

AMO (λ = 0) 92.8±0.97 73.0±0.10 76.9±0.15

AMO-Clean 78.4±2.45 72.7±0.60 73.5±0.81

Table 4: Comparison of test accuracy across vari-
ous types of ablation methods. All the values and
error bars are mean and standard deviation across
3 trials upon randomly chosen seeds, respectively.
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Figure 4: An illustration of a synthetic sam-
ple generated by AMO. The noise image is
amplified by 10 for better visibility.

The use of adversarial examples. The most intriguing component that consists our method would
be the use of “adversarial examples”, i.e., to label an adversarial example of majority class to a mi-
nority class, e.g. as illustrated in Figure 4. To understand more on how the adversarial perturbations
affect our method, we consider a simple ablation, which we call “AMO-Clean”: recall that our al-
gorithm synthesizes a minority sample x∗ from a seed image x0. Instead of using x∗, this ablation
uses the “clean” initial point x0 as the synthesized minority when accepted. Under the identical
training setup, we notice a significant reduction in the overall accuracy of AMO-Clean compared to
the original AMO (see Table 4). This observation reveals that the adversarial perturbations ablated
are extremely crucial to make our algorithm to work, regardless of how the noise is small.

The effect of λ. In the optimization objective (2) for the synthesis in AMO, we impose a regular-
ization term λ · fk0(x) to improve the quality of synthetic samples as they might confuse f if it still
contains important features of the original class in a viewpoint of f . To verify the effect of this term,
we consider an ablation that λ is set to 0, and compare the performance to the original method. As
reported in Table 4, we found a certain level of degradation in test accuracy at this ablation, which
shows the effectiveness of the proposed regularization.

Comparison of t-SNE embeddings. To further validate the effectiveness of our method, we visu-
alize and compare the penultimate features learned from various training methods (including ours)
using t-SNE (Maaten & Hinton, 2008). Each embedding is computed from a randomly-chosen sub-
set of training samples in the CIFAR-LT-10 (ρ = 100), so that it consists of 50 samples per each
class. Figure 3 illustrates the results, and shows that the embedding from our training method (AMO)
is of much separable features compared to other methods: one could successfully distinguish each
cluster under the AMO embedding (even though they are from minority classes), while others have
some obscure region.

4 CONCLUSION

We propose a new over-sampling method for imbalanced classification, called Advserarial Minority
Over-sampling (AMO). The problems we explored in this paper lead us to an essential question
that whether an adversarial perturbation could be a good feature. Our findings suggest that it could
be at least to improve imbalanced learning, where the minority classes suffer over-fitting due to
insufficient data. We believe our method could open a new direction of research both in imbalanced
learning and adversarial examples.
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