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ABSTRACT

Defenses against adversarial attacks can be classified into certified and non-
certified. Certifiable defenses make networks robust within a certain `p-bounded
radius, so that it is impossible for the adversary to make adversarial examples
in the certificate bound. We present an attack that maintains the imperceptibility
property of adversarial examples while being outside of the certified radius. The
proposed ”Shadow Attack” can fool certifiably robust networks while simultane-
ously producing a strong “spoofed” certificate.

1 INTRODUCTION

Conventional training of natural networks has been shown to produce classifiers that are highly sen-
sitive to imperceptible adversarial perturbations (Szegedy et al., 2013; Biggio et al., 2013), “natural
looking” images that have been manipulated to causing misclassified by a neural network (Figure 1).
While a wide range of defenses exist that harden neural networks against such attacks (Madry et al.,
2017; Shafahi et al., 2019), many attacks based on heuristics and tricks have been shown to be easily
breakable Athalye et al. (2018). This has motivated work on certifiably secure networks — classi-
fiers that produce a classification, and also (when possible) a rigorous guarantee that the input is not
adversarially manipulated (Cohen et al., 2019; Zhang et al., 2019b).

To date, all work on certifiable defenses has focused on deflecting `p-bounded attacks, where p = 2
or∞ (Cohen et al., 2019; Gowal et al., 2018; Wong et al., 2018). After labelling an images, these
defenses then check that there exists an image with a different label within an `p ball of radius ε
centered on the input image, where ε is a security parameter chosen by the user. If no such image
exists, then they certify that the input image is not a `p adversarial example.
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Figure 1: All adversarial examples have the goal of fooling classifiers while looking “natural”. The
`p-bounded attacks limit the adversarial perturbation pixel values while semantic attacks are unre-
stricted in terms of `p-norms but they also produce natural looking images. Our Shadow Attack falls
within the category of unrestricted attacks and is assigned a large certified radii by the smoothed cer-
tified classifier it is attacking. Our attack is not `p-bounded and the example has `∞(δ) = 17.6/255
and `2(δ) = 5.5.
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In this work, we demonstrate how a system that relies on certificates as a measure of label security
can be exploited. We present a new class of adversarial examples that target not only the classifier
output label, but also the certificate. We do this by adding adversarial perturbations to images that
are large in the `p norm (larger than the ε used by the certificate generator), and result in an attack
image that is surrounded by a large `p ball exclusively containing images of the same (adversarially
chosen) label. The resulting attacks produce a “spoofed” certificate with a seemingly strong security
guarantee despite being adversarially manipulated. Note that the statement made by the certificate
(i.e., that the input image is not an ε adversarial example in chosen norm) is still technically correct,
however in this case the adversary is hiding behind a certificate to avoid detection by a certifiable
defense.

In summary, we consider methods that attack a certified classifier in the following sense:

• Imperceptibility: the adversarial example is “natural-looking” or “looks like” its corre-
sponding natural example,

• Misclassification: the certified classifier assigns an incorrect label to the adversarial exam-
ple, and

• Strongly certified: the certified classifier provides a strong/large-radius certificate for the
adversarial example.

While the existence of such an attack does not invalidate the certificates produced by certifiable
systems, it should serve as a warning that certifiable defenses are not inherently secure, and one
should not strongly rely on them as an indicator of label correctness.

BACKGROUND

In the white-box setting, where the attacker knows the victim’s network and parameters, adversarial
perturbation can often be constructed using first order gradient information (Carlini & Wagner, 2017;
Kurakin et al., 2016; Moosavi-Dezfooli et al., 2016) or using approximations of the gradient (Uesato
et al., 2018; Athalye et al., 2018). The prevailing optimization formulation for crafting adversarial
examples uses an additive adversarial perturbation, and perceptibility is minimized using an `p-
norm constraint. Different `p-norms result in different measures of imperceptibility. For example,
`∞-bounded adversarial attacks limit every pixel from being large , while `0 adversarial attacks do
not limit every individual pixel but limit the number of pixels that can be modified (Wiyatno & Xu,
2018).

Limiting an adversarial image to have a small `p-norm is not the only way of maintaining natural
looking attacks. Consequently, unrestricted and non-bounded adversarial examples have been sub-
ject of recent studies (Brown et al., 2018). For example, Hosseini & Poovendran (2018) use shifting
color channels, and Engstrom et al. (2017) use rotation and translation to craft “semantic” adversarial
examples. In Figure 1, we produce the semantic adversarial examples using the method of Hosseini
& Poovendran (2018) which is a greedy approach that transforms the image into HSV space, and
then, while keeping V constant, tries to find the smallest S perturbation causing misclassification1.
Other variants use generative models to construct natural looking images causing misclassification
(Song et al., 2018; Dunn et al., 2019).

In practice, many of the defenses which top adversarial defense leader-board challenges are non-
certified defenses (Madry et al., 2017; Zhang et al., 2019a; Shafahi et al., 2019). The majority
of these defenses make use of adversarial training which is the process of training on adversarial
examples built for the network being trained. These non-certified defenses are mostly evaluated
against PGD-based attacks, which results in an upper-bound on robustness.

Certified defenses, on the other-hand, provably make networks resist `p-bounded perturbations of
a certain radius. For instance, randomized smoothing (Cohen et al., 2019) is a certifiable defense
against `2-norm bounded attacks, and CROWN-IBP (Zhang et al., 2019b) is a certifiable defense
against l∞-norm bounded perturbations.

1In fig. 1, the adversarial example has saturation=0
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To the best of our knowledge, prior works have focused on making adversarial examples that sat-
isfy the imperceptibility and misclassification conditions, but none have investigated manipulating
certificates, which is our focus here.

The reminder of this paper is organized as follows. In section 2 we introduce our new approach
Shadow Attack for generating adversarial perturbations. In section 3 we show our results on attack-
ing “randomized Smoothing” certificates (Cohen et al., 2019). Using “randomized smoothing” as
an example, in section 4 we do an ablation study and show why the elements of the Shadow Attack
are important for successfully manipulating certified models. In section 5 we generate adversar-
ial examples for “CROWN-IBP” (Zhang et al., 2019b). Finally, we discuss results and wrap up in
section 6.

2 THE SHADOW ATTACK

Because certificate spoofing requires large perturbations (larger than the `p ball of the certificate),
we propose a simple attack that enables numerous modes for creating large perturbations. Our attack
can be seen as the generalization of the well-known PGD attack, which creates adversarial images
by perturbing a clean base image. Given a loss function L and an `p-norm bound ε for some p ≥ 0,
PGD attacks solve the following optimization problem:

max
δ
L(θ, x+ δ) (1)

s.t. ‖δ‖p ≤ ε, (2)

where θ are the network parameters and δ is the adversarial perturbation to be added to the clean
input image x. Constraint 2 promoted imperceptibility of the resulting perturbation to the human
eye by limiting the perturbation size. In the shadow attack, instead of solving the above optimization
problem, we solve the following:

max
δ
L(θ, x+ δ)− λcC(δ)− λtvTV (δ)− λsSim(δ), (3)

where λc, λtv, λs are scalar penalty weights.

Constraint TV (δ) forces the perturbation δ to have a small total variation (TV ), and so be smooth.
This constraint forces the perturbation to appear more like a natural image, given that natural images
often have small TV. Constraint C(δ) limits the perturbation δ globally by constraining the change
in the mean of each color channel c. This constraint is needed since total variation is invariant to
constant/scalar additions to each color channel, and it is desirable to supress extreme changes in the
color balances of images.

Constraint Sim(δ) enforces the perturbation δ to have similar values in each color channel.In the
case of an RGB image of shape 3 × W × H , if Sim(δ) is small, the perturbation roughly adds
the same amount to the Red, Green, and Blue channels at every spatial pixel location: δR,w,h ≈
δG,w,h ≈ δB,w,h, ∀(w, h) ∈ W × H . Adding/subtracting the same amount to RGB channels
results in making the corresponding pixels darker/lighter, without changing the color balance of the
image.

Later, in section 3, we suggest two ways of enforcing such similarity between RGB channels and
we find both of them effective:

• 1-channel attack: strictly enforces δR,i ≈ δG,i ≈ δB,i, ∀i by using a single-channel
matrix to represent δW×H and duplicate δ to make a 3-channel image. In this case,
Sim(δ) = 0, and perturbation is greyscale.

• 3-channel attack: use a 3-channel perturbation δ3×W×H and define a function that mea-
sures dissimilarity such as: Sim(δ) = ‖δR − δB‖p + ‖δR − δG‖p + ‖δB − δG‖p.

All together, the three constraints enforce the perturbation to be (a) small (b) smooth and (c) without
dramatic color changes (e.g. swapping blue to red).
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2.1 SPOOFING A CERTIFICATE

The goal of our attack is not only to find natural looking images that misclassify, but also to gen-
erate strong certificates. To achieve this goal, we need a loss penalty that promotes an increased
certification radius.

We focus on spoofing certificates for untargeted attacks in which the attacker does not specify the
class into which the attack image moves. In the untargeted case, we can generate an adversarial
perturbation for all possible wrong classes ȳ and choose the best one as our strong attack:

max
ȳ 6=y,δ

−L(θ, x+ δ‖ȳ)− λcC(δ)− λtvTV (δ)− λsSim(δ) (4)

where y is the true label/class for the clean image x, and L is a spoofing loss that promotes a large
certificate. We examine different choices for L for different certificates below.

3 ATTACKS ON RANDOMIZED SMOOTHING

The randomized Smoothing method, first proposed by Lecuyer et al. (2018) and later improved by
Li et al. (2018), is an adversarial defense against l2-norm bounded attacks. Cohen et al. (2019) prove
a tight robustness gaurantee under the `2 norm for smoothing with gaussian noise. Their study was
the first certifiable defense for the ImageNet dataset (Deng et al., 2009). The method constructs
certificates by first creating many copies of an input image contaminated with random Gaussian
noise of standard deviation σ. Then, it uses a base classifier (a neural net) to make a prediction for
all of the images in the randomly augmented batch. Depending on the level of the consensus of the
class labels at these random images, a certified radius is calculated that can be at most 4σ.

Intuitively, if the image is far away from the decision boundary, the base classifier should predict the
same label for each noisy copy of the test image, in which case the certificate is strong. On the other
hand, if the image is adjacent to the decision boundary (i.e. it is easy for the adversary to generate
adversarial perturbations), the base classifier’s predictions for the Guassian augmented copies may
vary ( ˆx+ gi 6= ˆx+ gj , g ∼ N (0, σ2) for augmented copies i & j). If the variation is large, the
smoothed classifier abstains from making a prediction.

Consequently, for an adversary to engineer strong certificates for wrong classes (produce a large
certified radius), they must make sure that the majority of a batch of Gaussian augmented images
around the adversarial image vote for the same wrong label. Predicting the same label motivates the
use of targeted attacks. Therefore, we try to minimize the cross-entropy given a wrong label instead
of maximizing the cross-entropy loss which is common for non-targeted attacks.

One could modify the optimization problem of equation 4 to accommodate the randomized smooth-
ing as:

max
ȳ 6=y,δ

−Lbatch(θ, x+ δ‖ȳ)− λcC(δ)− λtvTV (δ)− λsSim(δ) (5)

We note that Lbatch refers to the average cross-entropy over the randomized Gaussian augmented
batch of copies of x (b), and θ are the parameters of the base classifier which is trained with Gaussian
data augmentation:

Lbatch =
1

|b|
∑
xi∈b

L(θ, xi + δ‖ȳ) (6)

The adversaries optimization problem aims to find a targeted universal adversarial perturbation for
all the Gaussian augmented copies of the clean image x in batch b (Moosavi-Dezfooli et al., 2017).
We follow Shafahi et al. (2018) to generate the universal perturbation.

RESULTS

Cohen et al. (2019) show the performance of the Gaussian smoothed classifier on CIFAR-10
(Krizhevsky et al.) and ImageNet (Deng et al., 2009). To attack the CIFAR and ImageNet
smoothed classifiers, we use |b| = 400, λtv = 0.3, λc = 1.0, and perform 300 steps of SGD
with step-size = 0.1.

Our choices for the functional regularizers in constraints C(δ) and TV (δ) are:
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Table 1: Shadow Attack results on Randomized Smoothing.

Dataset σ(l2)
Randomized Smoothed Shadow Attack
Mean STD Mean STD

CIFAR-10

0.12 0.14 0.056 0.22 0.005
0.25 0.30 0.111 0.35 0.062
0.50 0.47 0.234 0.65 0.14
1.00 0.78 0.556 0.85 0.442

ImageNet
0.25 0.30 0.109 0.31 0.109
0.50 0.61 0.217 0.38 0.191
1.00 1.04 0.519 0.64 0.322

(a) Natural image (x)
-

(b) Adversarial perturbation (δ)
-

(c) Adversarial example (x+ δ)

Figure 2: The adversarial example built using our Shadow Attack for the smoothed ImageNet clas-
sifier for which the certifiable classifier produces a large certified radii and its corresponding adver-
sarial perturbation. The adversarial noise is smooth and natural looking even-though it is large when
measured using `p-metrics. True class: black swan; misclassified as: hook. Also see appendix 16.

C(δ) = ‖Avg(|δR|),Avg(|δG|),Avg(|δB |)‖22 , TV (δi,j) = anisotropic-TV(δi,j)
2

where | · | is the element-wise absolute value operator, and Avg computes the average. For the Sim
regularizer, we experiment with both the (a) 1-Channel attack that ensures always Sim(δ) = 0 and
the (b) 3-Channel attack by setting Sim(δ) = ‖(δR−δG)2, (δR−δB)2, (δG−δB)2‖2 and λs = 0.5.
For the validation examples which the smooth classifier does not abstain (see Cohen et al. (2019)
for more details), the less-constrained 3-channel attack is always able to find an adversarial example
while the 1-channel attack performs great as well and achieves 98.5% success. In section 4 we will
discuss in more details other differences between 1-channel and 3-channel attacks. The results are
summarized in Table 1. For the various base-models and choices of σ, our adversarial examples are
able to produce certified radii which are on average larger than the certified radii produced for their
natural parallel. For ImageNet, since attacking all 999 remaining target classes were computationally
intractable, we only attacked target class ids 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000.

Figure 2 depicts a sample adversarial example built for the smoothed ImageNet classifier which
produces a large certificate. The adversarial noise is a universal noise which causes the batch of
gaussian augmented black swan images to get misclassified as hooks. For more, see appendix 16.

4 ABLATION STUDY OF THE ATTACK PARAMETERS

In this section we perform ablation study on the parameters of Shadow Attack to evaluate (a) re-
quired PGD steps to find a successful attack, (b) the importance of λSim or alternatively using
1-channel attacks, and last but not least, (c) the effect of λtv .

The default parameters for all of the experiments are as follows unless explicitly mentioned: We use
n = 30 SGD steps and with step-size s = 0.1 for the optimization. All experiments except part
(b) use 1-channel attacks for the sake of simplicity and efficiency (since it has less parameters). We
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0 1 2 3 4 5 6 7 8 9 10 original

Figure 3: The first 10 steps of the optimization vs the original image.

assume λtv = 0.3, λc = 20.0 and universal batch-size |b| = 50. The dataset we use is a subset of
CIFAR-10 dataset which including one example per each class (we selected the first example from
each class in the CIFAR-10 evaluation data).

Figure 3 shows how the adversarial example evolves during the first few steps of the optimization
(See appendix 13 for more examples). Also, figures 4, 5, and 6, show the average Lb(δ), TV (δ), and
C(δ) respectively (Note that we use 1-channel attacks, so Sim(δ) is always 0). We empirically show
that taking a few (even n = 10) pgd-steps is enough for the sake of convergence for CIFAR-10, but
for our main results (i.e. attacking Randomized Smoothing in section 3 and attacking CROWN-IBP
in section 5) we take n = 300 steps to be safe.
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Figure 4: Average Lb(δ) in
the first 10 steps.
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Figure 5: Average TV (δ) in
the first 10 steps.
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Figure 6: Average C(δ) in the
first 10 steps.
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Figure 7: The effect of λSim
on the resulting Sim(δ)
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Figure 8: The effect of λtv on
the resulting TV (δ)

To explore the importance of λsim, we use 3-channel attacks and vary λsim to produce different
images in figure 112.

Also, figure 7 shows the mean Sim(δ) for different values of λsim(0 ≤ λsim ≤ 5.0). We also plot
the histogram of the certificate radii in figure 9. Figure 10 compares 1-Channel vs 3-Channel attacks
resulting images for some of randomly selected CIFAR-10 images.
Last but not least, we explore the effect of λtv on imperceptibility of the perturbations in Figure 12.
See table 15 for more images and 8 to see it’s effects on TV (δ).

2See appendix 14 for more images.
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Figure 9: Histogram of random-
ized smoothed certificate radii for
100 randomly sampled CIFAR-10
validation images vs those calcu-
lated for their adversarial examples
crafted using our 1-channel and 3-
channel adversarial Shadow Attack
attacks. The attacked base classifier
used for the smoothed classifier is
the Resnet-110 with σ = 0.50. 1-
channel attacks are almost as good
as the less-restricted 3-channel at-
tacks.

natural
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Figure 10: The visual effect of Shadow Attack on 9 randomly selected CIFAR-10 examples using
1-Channel and 3-Channel attacks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 original

Figure 11: The visual effect of λSim on imperceptibility of the perturbations. The first row indicates
the value of λSim.

0.0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 original

Figure 12: The visual effect of λtv on the on imperceptibility of the perturbations. The first row
shows the value of λtv
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Table 2: Errors calculated based on the estimated distance to the boundary on natural and adversarial
examples produces by Shadow Attack for the CIFAR-10 CROWN-IBP released models. Smaller is
better.

ε(l∞) Model Family Method Robustness Errors
Min Mean Max

2/255
9 small models CROWN-IPB 52.46 57.55 60.67

Shadow Attack 68.91 74.77 82.09

8 large models CROWN-IBP 52.52 53.9 56.05
Shadow Attack 79.7 82.28 85.09

8/255
9 small models CROWN-IBP 71.28 72.15 73.66

Shadow Attack 66.14 69.3 72.12

8 large models CROWN-IBP 70.79 71.17 72.29
Shadow Attack 67.9 70.36 73.03

5 ATTACKS ON CROWN-IBP

Interval Bound Propagation (IBP) methods have been recently studied as a defense against `∞-
bounded attacks. Many recent studies such as Gowal et al. (2018); Xiao et al. (2018); Wong et al.
(2018); Mirman et al. (2018) have investigated IBP methods to train provably robust networks. To
the best of our knowledge, the CROWN-IBP method by Zhang et al. (2019b) achieves state-of-
the-art performance for MNIST (LeCun & Cortes, 2010), Fashion-MNIST (Xiao et al., 2017), and
CIFAR-10 datasets among certifiable `∞ defenses. In this section we focus on attacking Zhang et al.
(2019b) using CIFAR-10.

IBP methods estimate how much a small `∞-bounded noise in the input can propagate into the
classification layer. By estimating the propagated error, they can find provable bounds for robustness
in the input layer. To train robust networks, IBP methods include a term in their loss function that
encourages the estimated bound on the training data from the decision boundary to increase.

Given that our attack also requires the estimated bound to be large, we directly use the loss func-
tion used in IBP training methods to attack the CROWN-IBP pre-trained models from Zhang et al.
(2019b).

We attack 4 classes of networks released by the CROWN-IBP creators for CIFAR-10. There are
two classes for IBP architectures, one of them consists of 9 small models and the other consists of
8 larger models. For each class of architectures, there are two sets of pre-trained models: one for
ε = 2/255 and one for ε = 8/255. We use the same hyper-parameters and regularizers as in 3. For
the sake of efficiency, we only do 1-channel attacks. We attack the 4 classes of models and for each
class, we report the min, mean, and max of the robustness errors and compare them with those of
the CROWN-IBP paper.

In the IBP literature, an “error” refers to an example that either has been misclassified or has been
correctly classified but with an estimated robustness bound less than ε. We use a similar definition
for robustness error, so that if misclassification does not happen or if the estimated distance to the
boundary is smaller than ε, we count it as an error for the attack. Table 2 shows the results for each
set of experiments. For the CROWN-IBP models trained on ε = 8/255, our attack is capable of
finding adversarial examples resulting in stronger certificates (i.e. smaller robustness errors) that
natural images.

6 CONCLUSION

We demonstrate that it is possible to produce adversarial examples with strong certified robustness
by using large-norm perturbations. This work suggests that the certificates produced by certifiably
robust classifiers, which mathematically rigorous, are not always good indicators of robustness or
accuracy. Our adversarial examples are built using our Shadow Attack which produces smooth
and natural looking perturbations that are often less perceptible than those of the commonly used
loosely-norm-bounded `p perturbations, while being large enough in norm to escape the certification
regions of state of the art principled defenses.
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A APPENDIX

In this section, we include the complete results of our ablation study. As we mentioned in section
4, we use is a subset of CIFAR-10 dataset, including one example per each class. For the sake of
simplicity, we call the dataset Tiny-CIFAR-10. Here, we show the complete results for the ablation
experiments on all of Tiny-CIFAR-10 examples. Figure 13 shows that taking a few optimization
steps is enough for the resulting images to look natural-looking. Figure 14 and 15, respectively
show the effect of λSim and λTV on the imperceptability of the perturbations.
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Figure 13: The first 10 steps of the optimization vs the original image for Tiny-CIFAR-10. See
section 4 for the details of the experiments.
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Figure 14: The visual effect of λSim on Sim(δ) on Tiny-CIFAR-10. See section 4 for the details of
the experiments.
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Figure 15: The visual effect of λtv on the perturbation Tiny-CIFAR-10. See section 4 for the details
of the experiments.
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IMAGENET RESULTS

Many of the recent studies have explored the semantic attacks. Semantic attacks are powerful for
attacking defenses (Engstrom et al., 2017; Hosseini & Poovendran, 2018; Laidlaw & Feizi, 2019).
Many of semantic attacks are applicable to Imagenet, however, none of them consider increasing the
radii of the certificates generated by the certifiable defenses.

Some other works focus on using generative models to generate adversarial examples (Song et al.,
2018), but unfortunately none of the GAN’s are expressive enough to capture the manifold of the
ImageNet.

In this section, we show some of the successful examples generated by Shadow Attack to attack
Randomized Smoothed classifiers for Imagenet.
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Figure 16: Natural looking Imperceptible ImageNet adversarial images which produce large certi-
fied radii for the ImageNet Gaussian smoothed classifier.
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