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ABSTRACT

In recent years, substantial progress has been made on graph convolutional net-
works (GCN). In this paper, for the first time, we theoretically analyze the con-
nections between GCN and matrix factorization (MF), and unify GCN as matrix
factorization with co-training and unitization. Moreover, under the guidance of
this theoretical analysis, we propose an alternative model to GCN named Co-
training and Unitized Matrix Factorization (CUMF). The correctness of our anal-
ysis is verified by thorough experiments. The experimental results show that
CUMF achieves similar or superior performances compared to GCN. In addition,
CUMF inherits the benefits of MF-based methods to naturally support construct-
ing mini-batches, and is more friendly to distributed computing comparing with
GCN. The distributed CUMF on semi-supervised node classification significantly
outperforms distributed GCN methods. Thus, CUMF greatly benefits large scale
and complex real-world applications.

1 INTRODUCTION

In recent years, works on graph convolutional networks (GCN) (Kipf & Welling, 2017) have
achieved great success in many graph-based tasks, e.g., semi-supervised node classification (Kipf
& Welling, 2017), link prediction (Zhang & Chen, 2018) and recommendation systems (Ying et al.,
2018). GCN defines a graph convolution operation, which generates the embedding of each node by
aggregating the representations of its neighbors. Given a graph, GCN performs the graph convolu-
tion operation layer by layer to obtain the final node representations, which will be passed to neural
networks to support various tasks. To perform GCN on large scale graphs in constrained memory
or distributed computing environments, different sampling methods have been proposed, such as
neighbor sampling (Hamilton et al., 2017) and importance sampling (Chen et al., 2018b). Instead
of sampling, Cluster-GCN (Chiang et al., 2019) proposes an approach to convert computation on
a huge matrix to computing on a set of small matrices. However, these methods still suffer from
performance loss when conducting distributed computing. To take use of various contextual infor-
mation on edges in a graph, Relational GCN (RGCN) (Schlichtkrull et al., 2018) extends neighbor
aggregation by using edge types in link prediction. Besides the edge types, Edge-enhanced Graph
Neural Networks (EGNNs) (Gong & Cheng, 2019) takes more contextual features into consider-
ation. However, in general, GCN still has the efficiency problem when facing complex forms of
contextual information.

Besides GCN, graph embedding methods (Perozzi et al., 2014; Tang et al., 2015b;a; Grover &
Leskovec, 2016) are also widely applied. In general, these methods rely on first-order and second-
order proximity to embed very large information networks into low-dimensional vector spaces. The
first-order proximity in a graph is the local pairwise proximity between two vertices, and the second-
order proximity between a pair of vertices in a graph is the similarity between their neighborhood
structures. As for GCN, previous work shows that the graph convolution operation is actually a
special form of Laplacian smoothing (Li et al., 2018). Thus, as the converging of the model, the
smoothing process can keep the final representation of a node more and more similar to those of its
neighbors. Therefore, GCN is consistent with graph embedding methods in capturing the structural
information. According to previous work (Qiu et al., 2018), graph embedding methods have been
successfully unified as matrix factorization (MF). Thus, we believe that there might be some connec-
tions between GCN and MF. Meanwhile, comparing with GCN, MF-based methods are extremely
flexible and suitable for distributed computing (Gemulla et al., 2011; Zhuang et al., 2013; Yu et al.,
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2014). MF-based methods are also easy and efficient to be extended to tasks with complex forms of
contextual information on graph edges (Rendle et al., 2011; Rendle, 2012; Jamali & Lakshmanan,
2013; Shi et al., 2014; Liu et al., 2015). Thus, if we can unify the GCN model as a special form of
MF, large scale and complex real-world applications will benefit from this.

In this paper, we theoretically reveal the connections between GCN and MF, and unify GCN as
matrix factorization with co-training and unitization in section 2. Here, the co-training process
means co-training with the classification task of labeled nodes as in (Weston et al., 2012; Yang
et al., 2016), and the unitization indicates conducting vector unitization on node representations.
Then, under the guidance of our theoretical analysis, we formally propose an alternative model
to GCN named Co-training and Unitized Matrix Factorization (CUMF) in section 3. Extensive
experiments are conducted on several real-world graphs, and show co-training and unitization are
two essential components of CUMF. Under centralized computing settings, CUMF achieves similar
or superior performances comparing with GCN. These observations strongly verify the correctness
of our theoretical analysis. Moreover, GCN performs poor on dense graphs, while CUMF has
great performances. This is may caused by the over-smoothing of graph convolution on dense
graphs, while CUMF can balance the smoothing of neighbours and the classification of labeled
nodes through the co-training process. Experiments under distributed computing settings are also
conducted, and distributed CUMF significantly outperforms the state-of-the-art distributed GCN
method, i.e., cluster-GCN (Chiang et al., 2019). Thus, CUMF is extremely friendly to large scale
real-world graphs. Meanwhile, lots of works have been done to model contextual information in
MF-based methods (Rendle et al., 2011; Rendle, 2012; Jamali & Lakshmanan, 2013; Shi et al.,
2014; Liu et al., 2015), which have shown great effectiveness, efficiency and flexibility.

2 GCN AS CO-TRAINING AND UNITIZED MF

In this section, we plan to theoretically unify GCN as a specific form of matrix factorization. First,
we need to start from the analysis of how node representations are learned in GCN. According to
the definition in previous work (Kipf & Welling, 2017), we can formulate each layer of GCN as

H
(l+1) = σ

(
∼
D
− 1

2 ∼
A
∼
D
− 1

2

H
(l)

W
(l)

)
, (1)

where
∼
A = A + IN is the adjacency matrix of the graph G with added self-connections, IN is the

identity matrix forN nodes in graphG,
∼
D is a diagonal degree matrix with

∼
Di,i =

∑
j

∼
Ai,j , H(l) is

the representation of each node at layer l, W(l) is a layer-specific trainable weight matrix, and σ (·)
denotes an activation function (such as ReLU (·) = max (0, ·)).
For a node classification task, we can obtain a classification loss

lclass = CrossEntropy
(
Y, softmax

(
H

(−1)
))

, (2)

where Y is the ground truth labels for the classification task, H(−1) is the representation of each
node at the final layer of GCN. Via optimizing Eq. (2), the cross-entropy error of the node classifi-
cation task can be minimized, and the GCN model can be learned.

As in the implementation in previous work (Kipf & Welling, 2017; Veličković et al., 2017; Wu et al.,
2019), there is no activation function on the last layer of GCN, and the final representations can be
formulated as

H
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∼
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(−2)

W
(−2) . (3)

In (Li et al., 2018), GCN has been proven to be a special form of Laplacian smoothing. The final
representations in Eq. (3) tends to converge to

H
(−1) =

∼
D
− 1

2 ∼
A
∼
D
− 1

2

H
(−1), (4)

which is an approximate solution of the final representations in GCN. Specifically, for each node i
in graph G, the approximate solution of the corresponding final representation is

h
(−1)
i =

∑
j

1√
(di +1) (dj +1)

∼
Ai,j h

(−1)
j , (5)
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(a) The average cosine similarity between nodes in the
graph and their neighbors during the training of GCN.

0 20 40 60 80
epoch

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

Cora
Pubmed

(b) The accuracy curves during the training of GCN.

Figure 1: Consistency estimation between the cosine similarity and the convergence of GCN during
training procedure on the Cora dataset and the Pubmed dataset.

from which we have

h
(−1)
i =

∑
j

1√
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Then, the representation of node i can be obtained as

h
(−1)
i =

∑
j

1

di

√
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Ai,j h

(−1)
j , (7)

where di is the degree of node i.

According to above analysis, to train an approximate GCN model with one loss, which simultane-
ously models the structure of graph convolution and the node classification task, we can minimize
the following loss function

l = α lclass +(1− α) lstructure, (8)
where α a hyper-parameter to control the balance between two losses, and the structure loss
lstructure refers to
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∑
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)
, (9)

where I denotes the set of all the nodes in graph G, and dis (·, ·) is a distance measurement. Here,
we apply the commonly used cosine similarity and obtain
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∑
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which is equivalent to
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To verify whether cosine similarity is consistent with the convergence of GCN during the training
procedure, we conduct empirical experiments and train GCN models on the Cora dataset and the
Pubmed dataset. Figure 1 demonstrates the average cosine similarity between nodes in the graph
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and their neighbors, as well as the convergence curves estimated by accuracy during the training of
GCN on the two datasets. It is obvious that, the curves on the same dataset share similar tendency.
That is to say, as we train a GCN model, the cosine similarity between nodes in the graph and
their neighbors is being optimized. This strongly proves that cosine similarity is consistent with the
convergence of the GCN model.

Then, to simplify the form of Eq. (11), we conduct vector unitization in the learned representations
H(−1), and thus each representation h

(−1)
i has similar l2-norm. Accordingly, through unitization,

Eq. (11) is equivalent to

lstructure = −
∑
i∈I

h
(−1)
i

(∑
j

1
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√
di +1

dj +1
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(−1)
j

)>
, (12)

which leads to
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∑
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∑
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1
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√
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>
j , (13)

where Ci denotes all the nodes that node i is connected to, and vi = h
(−1)
i for simplicity. Moreover,

for better optimization, we can incorporate negative log likelihood and minimize the following loss
function equivalently to Eq. (13)

lstructure = −
∑
i∈I

∑
j∈Ci

1

di

√
di +1

dj +1
Ai,j log

(
λ
(
vi v
>
j

))
, (14)

where λ (·) = sigmoid (·).
So far, the structure loss lstructure is equivalent to factorizing all the positive edges in the graph G
weighted by βi,j = d

−1
i (di +1)

1/2
(dj +1)

−1/2.

Usually, in graph embedding methods (Perozzi et al., 2014; Tang et al., 2015b;a; Grover & Leskovec,
2016), negative edges sampling is used, for better convergence. Thus, we can randomly sample
negative edges for each edge in graph G. Following previous work in unifying word embedding
(Levy & Goldberg, 2014) and graph embedding (Qiu et al., 2018) as implicit matrix factorization,
we can rewrite Eq. (14) as
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∑
i∈I
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(
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))
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,

(16)
where k is the number of negative samples for each edge, and PG denotes the distribution that
generates negative samples in graph G. For each node j, PG (j) = dj / |G|, where |G| is the
number of edges in graph G. Then, we can explicitly express the expectation term as
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from which we have
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Via combining Eq. (16) and Eq. (18), we can obtain the local structure loss lstructure for a specific
edges (i, j)

lstructure (i, j) = −βi,j Ai,j log
(
λ
(
vi v
>
j

))
−
k βi,j di dj

|G|
log
(
λ
(
− vi v>j

))
. (19)
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Figure 2: Overview of our proposed CUMF model.

To optimize the objective, we need to calculate the partial derivative of lstructure with respect to
vi v

T
j

∂ lstructure

∂
(
vi v>j

) = −βi,j Ai,j λ
(
− vi v>j

)
+
k βi,j di dj

|G|
λ
(
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)
. (20)

After setting Eq. (20) to zero, we can obtain

e2 vi v
>
j −

(
|G|Ai,j

k di dj
− 1

)
evi v

>
j −|G|Ai,j

k di dj
= 0, (21)

which has two solutions, evi v
>
j = −1 and

evi v
>
j =

|G|Ai,j

k di dj
, (22)

which leads to

vi v
>
j = log

(
|G|Ai,j

k di dj

)
. (23)

Accordingly, the GCN model can be unified as the following matrix factorization

VV> = log
(
|G|D−1 AD

−1)− log (k) , (24)

co-training with the classification loss lclass, where node representations in V are unitized. D is a
diagonal degree matrix with Di,i = di. Moreover, according to the conclusion in (Qiu et al., 2018),
the unified matrix of GCN in Eq. (24) is as the same as the unified matrix of LINE with the second
order proximity (Tang et al., 2015b), except there are two representation matrices in LINE. More
specifically, the matrix factorization in Eq. (24) is as the same as LINE with the first order proximity,
which is implicit matrix factorization.

Our theoretical analysis on GCN is summarized as:

Conclusion 2.1 Given a connected graph G with adjacency matrix A, graph convolutional net-
works can be unified as implicit matrix factorization with (1) co-training with labeled node classifi-
cation; (2) unitization of node representations.

3 CUMF ARCHITECTURE

In this section, based on above analysis, we propose an alternative model to GCN named Co-training
and Unitized Matrix Factorization (CUMF). Figure 2 provides an overview of the proposed CUMF
model, which will be described in detail below.
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Let xi ∈ Rd denote the feature vector of node i and f1 denote the first MLP in Figure 2. Accord-
ing to our theoretical analysis, given xi, we conduct vector unitization in f1(xi) to obtain vi (the
representation of node i) as

vi =
f1(xi)

‖f1(xi)‖
. (25)

According to the theoretical analysis in section 2, the structural part in our proposed CUMF model
should be implicit matrix factorization with negative sampling. Thus, lstructure can be formulated
as

lstructure = −
∑
i∈I

∑
j∈Ci

(
Ai,j log

(
λ
(
vi v
>
j

))
+ kEj′∼PG

[
log
(
λ
(
− vi v>j′

))])
. (26)

Furthermore, as in GCN, the classification loss lclass can be obtained as

lclass =
∑
i∈IL

CrossEntropy (yi, softmax (f2(vi))) , (27)

where IL is the set of labeled nodes, yi is the classification label of node i and f2 is the second MLP
in Figure 2. Combining Eq. (8), Eq. (26) and Eq. (27), we obtain the loss function of the proposed
CUMF model. That is to say, the proposed CUMF model needs to co-train the classification loss
lclass with the structural loss lstructure.

In practice, like many semi-supervised models (Weston et al., 2012; Yang et al., 2016), when we do
co-training, the structural loss lstructure and the classification loss lclass are alternately optimized.
To be more specific, we frist pick b batches of positive and negative edges, where we sample k
additional negative edges for each positive edge according to Eq. (26). For each batch, we take a
gradient step for lstructure. Then we pick a batch of labeled instances and take a gradient step for
lclass. We repeat this process until convergence.

In summary, the proposed CUMF model is based entirely on our theoretical analysis in section 2.
Comparing with previous graph modeling methods (Weston et al., 2012; Perozzi et al., 2014; Tang
et al., 2015b;a; Grover & Leskovec, 2016; Yang et al., 2016), the unique features of our proposed
CUMF method are mainly illustrated in the unitization of node representations, which is derived
exactly from our theoretical analysis. Therefore, under the effective guidance of our theoretical
analysis on GCN, the proposed CUMF model is extremely clear, concise and reasonable.

4 RELATED WORK

GCN (Kipf & Welling, 2017) updates node representations with the aggregation of its neighbors.
Based on GCN, Graph Attention Network (GAT) (Veličković et al., 2017) proposes to aggregate
neighbors with taking the diversity of nodes into account.

The GCN model needs the whole graph structure. However, in large scale and complex real-world
applications, we have millions of nodes and billions of graph edges. Thus, GCN is both time and
space consuming, and is hard to perform in constrained memory or distributed computing. Random
sampling (Hamilton et al., 2017) and importance sampling (Chen et al., 2018b) propose sampling
approaches to reduce the computation of aggregation. Instead of approximating the node represen-
tations, variance controlled GCN (Chen et al., 2018a) uses sampled node to estimate the change of
node representations in every updating step. Cluster-GCN (Chiang et al., 2019) uses graph partition
method to split the whole graph into a set of small sub-graphs, where aggregation happens within
each small sub-graph. Thus, Cluster-GCN supports constructing mini-batches and distributed com-
puting.

The original GCN only considers node features, while the features on edges are also important in
a graph. To take contextual features on edges into account, RGCN (Schlichtkrull et al., 2018) uses
edge types to identify nodes’ transition matrix. It achieves good performances in link prediction and
entity classification. EGNN (Gong & Cheng, 2019) treats edge features as a tensor and proposes
the doubly stochastic normalization to avoid the element values of output features too big. Based on
GCN and GAT, EGNN proposes EGNN(C) and EGNN(A) to handle edge tensor respectively.
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Table 1: Statistcs of the datasets.
Dataset Type #Nodes #Edges #Features #Classes

Cora Citation network 2,708 5,429 1,433 7
Citeseer Citation network 3,327 4,732 3,703 6
Pubmed Citation network 19,717 44,338 500 3

BlogCatalog Social network 5,196 171,743 8,189 6
Flickr Social network 7,575 239,738 12,047 9
USA Air-traffic network 1,190 13,599 / 4

Europe Air-traffic network 399 5,995 / 4

5 EXPERIMENTS

In this section, we empirically evaluate the performance of the proposed CUMF model in an all-
round way. We first describe the datasets and settings of the experiments, then report and analyze
the experimental results. Thorough and empirical evaluations are conducted to answer the following
research questions:

• Q1 What are the roles of different components in the CUMF model (co-training & unitiza-
tion)?

• Q2 How does the performance of our CUMF model compare to that of GCN on different
datasets?

• Q3 How the two hyper-parameters effect the performance of our method?

• Q4 Comparing with GCN, is our proposed CUMF model more friendly to distributed com-
puting?

5.1 DATASETS

We evaluate our proposed method based on seven datasets. The statistic of the datasets are shown in
Table 1. Cora, Citeseer and Pubmed (Sen et al., 2008) are three standard citation network benchmark
datasets. BlogCatalog and Flickr (Huang et al., 2017) are social networks. The posted keywords or
tags in BlogCatalog and Flickr networks are used as node features. Therefore, these five datasets
all have node features. By removing their node features and preserving only the node itself, we
made Cora-F, Citeseer-F, Pubmed-F, BlogCatalog-F and Flickr-F. In addition, USA and Europe are
two air-traffic networks (Ribeiro et al., 2017), where each node corresponds to an airport and edge
indicates the existence of flights between the airports. So these two datasets do not contain node
features.

In summary, in terms of whether or not node features are included, we test our model on two types
of datasets:

• Structural Datasets: Cora-F, Citeseer-F, Pubmed-F, BlogCatalog-F, Flickr-F, USA and
Europe.

• Attributed Datasets: Cora, Citeseer, Pubmed, BlogCatalog and Flickr.

5.2 EXPERIMENTAL SET-UP

Firstly, to verify the roles of co-training and unitization, we include CUMF-C (Our method without
co-training), CUMF-U (Our method without unitization) and CUMF-C-U (Our method without co-
training and unitization) in our comparisons. Specifically, minus C in name means that the model
training is conducted in two stages. That is to say, we first optimize the structure loss independently
to obtain the final representations of nodes. Then we keep these representations fixed and only
update the parameters of classification model when optimizing the classification loss. Accordingly,
minus U in name means that the node representation will not be unitized. Secondly, we compare
against the strong baseline (Planetoid*) and the state-of-the-art approach (GCN) as in (Kipf &
Welling, 2017). Lastly, to test the performace of distributed CUMF, we also include the baseline
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Table 2: Summary of results in terms of classification accuracy (in percent) on structural datasets.
CUMF-C-U CUMF-C CUMF-U CUMF GCN

Cora-F 50.78 55.13 51.17 69.11 65.64
Citeseer-F 33.32 35.46 35.36 46.24 44.36
Pubmed-F 43.62 42.23 44.41 66.15 58.26

BlogCatalog-F 45.76 52.94 60.85 67.64 67.07
Flickr-F 24.61 23.03 38.62 43.16 30.86

USA 42.47 50.35 60.61 58.26 53.93
Europe 41.13 40.38 50.00 50.98 41.43

Table 3: Summary of results in terms of classification accuracy (in percent) on attributed datasets.
Cora Citeseer Pubmed BlogCatalog Flickr

Planetoid* 75.73 64.72 77.20 84.71 70.90
GCN 81.20 70.30 79.00 65.20 62.8

CUMF 81.14 70.91 80.39 91.62 77.84

(Random-GCN) and the state-of-the-art method (Cluster-GCN) as in (Chiang et al., 2019) in our
comparisons.

We implement our methods on Tensorflow. For the other methods, we use the original papers’ code
from their github pages. We use the Adam optimizer for all methods with weight decay as zero. And
for all methods, we report the mean accuracy of 10 runs with random weight initializations. For our
methods: mini-batch size is 256, the dimension of embedding is 0.1∗ the dimension of feature,
dropout rate is 0.5, learning rate ∈ [0.001, 0.01]. As mentioned in section 3, there are two other
important hyper-parameters: the number of negative edges (k) and the balance between structure
loss and classification loss (b). We will analyze the effects of k and b in next section.

5.3 PERFORMANCE ANALYSIS

Results of our experiments are summarized in Table 2, Table 3, Table 4 and Figure 3, which will be
described in detail below.

The Roles of Co-training and Unitization (Q1)

Firstly, we mainly examine the roles of different components of our proposed method (co-training
& unitization). Specifically, the impact of different components on the capturing of structural in-
formation needs to be verified. Thus we conduct experiments on structural datasets. According to
Table 2, CUMF for semi-supervised node classification outperforms other versions of CUMF by a
significant margin. This fully verifies that unitization and co-training are two essential components
of CUMF. Therefore, the correctness of our theoretical analysis is also verified. Meanwhile, to be
noted that, CUMF is superior to GCN on all structural datasets. This shows that CUMF is most
likely to make better use of structural information than GCN.

CUMF vs. GCN (Q2)

After verifying that our proposed CUMF model is not inferior to GCN in capturing structural in-
formation, we directly compare CUMF, GCN and Planetoid* on attributed datasets. Based on the
results shown in Table 3, the performance of CUMF is consistent to that of GCN on Cora, Citeseer
and Pubmed, and it has significant improvement on BlogCatalog and Flickr. It is important to note
that the average node degree of BlogCatalog or Flickr is much higher than that of the former three
datasets. That is to say, BlogCatalog and Flickr are denser graphs. Therefore, CUMF is consistent
with GCN on sparse graphs and significantly outperforms GCN on dense graphs.

Previous work shows that the graph convolution operation is actually a special form of Laplacian
smoothing, and starcking many convolution layers may lead to over-smoothing (Li et al., 2018).
From this perspective, the reason might be that dense graphs are easier to make GCN becoming
over-smoothing than sparse gaphs. As mentioned in section 3, we optimize the structure loss by
mini-batch gradient descent. Comparing with the graph convolution operation in GCN, the capturing
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(a) Testing performances w.r.t. the number of negative
samples for each positive edge.

5 10 15 20 25 30
b

50

55

60

65

70

75

80

85

90

95

ac
cu

ra
cy

 o
n 

te
st

 se
t

Cora
Citeseer
Pubmed
Blog
Flickr

(b) Testing performances w.r.t. the balance between
structure loss and classification loss.

Figure 3: Testing performances w.r.t parameters introduced by our method (see section 3).

Table 4: Summary of results of distributed methods on attributed datasets.
Cora Citeseer Pubmed

Random-GCN 71.67 61.91 71.78
Cluster-GCN 77.10 64.87 76.60

CUMF 81.11 70.88 80.32

of structural information in our approach is much more flexible. Thus, our proposed CUMF model is
less likely converge to over-smoothing. The following experimental phenomena in stability analysis
also support this view.

Stability Analysis (Q3)

We also formally analyze the effects of two important hyper-parameters (b & k) on model perfor-
mance. As mentioned in section 3, b controls the balance between classification loss and structure
loss, and k is the number of negative samples for each positive edge. We conduct empirical exper-
iments on attributed datasets, and the results are shown in Figure 3. The flat lines in Figure 3(a)
demonstrates that k has little effect on the testing performances of our proposed CUMF model. As
shown in Figure 3(b), for sparse datasets, b has little impact on the testing performances of CUMF.
For dense datasets, i.e., BlogCatalog and Flickr, the performances of CUMF model decrease with
the increasing of b. The larger value of b indicates the CUMF model pays more attention on cap-
turing structural information. This may give a reason of the poor performances of GCN on dense
datasets: the graph convolution operation is easily to be extremely over-smoothing for capturing
structural information on dense datasets. On the other hand, CUMF is flexible with the sparsity of
graphs via adjusting the parameter b, which is relatively stable.

Distributed CUMF vs. Distributed GCN (Q4)

In the end, we verify the capacity of CUMF (our proposed method) and GCN on distributed com-
puting in our experiments. Specifically, as the performances of centralized GCN is close to those
of centralized CUMF on Cora, Citeseer and Pubmed, we only conduct empirical experiments on
these datasets for convenience of comparisons. And we include Random-GCN and Cluster-GCN as
baselines. Besides, our distributed experiments are conducted in synchronous mode. Experimental
results are shown in Table 4. On these datasets, distributed CUMF does not suffer performance
loss, but distributed GCN methods greatly do, comparing with results in Table 3. The reason is that
CUMF is MF-based, and MF-based methods naturally support constructing mini-batches (Zhuang
et al., 2013; Yu et al., 2014). However, for GCN, constructing mini-batches is equivalent to solv-
ing graph partitioning problem (Chiang et al., 2019), which is actually a quite challenging work
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(Karypis & Kumar, 1998; Dhillon et al., 2007). Moreover, it is most likely that only a small portion
of each mini-batch is labeled, which may greatly affect the convergence of GCN.

6 CONCLUSION

To the best of our knowledge, CUMF is the first work that connects GCN to MF. We theoretically
unify GCN as co-training and unitized matrix factorization, and a CUMF model is therefore pro-
posed. We conduct thorough and empirical experiments, which strongly verify the correctness of
our theoretical analysis. The experimental results show that CUMF achieve similar or superior per-
formances compared to GCN. We also observe that GCN performs poor on dense graphs, while
CUMF has great performances. This is may caused by the over-smoothing of graph convolution
on dense graphs, while CUMF can balance the smoothing of neighbours and the classification of
labeled nodes via co-training. Moreover, due to the MF-based architecture, CUMF is extremely
flexible and easy to be applied to distributed computing for large scale real-world applications, and
significantly outperforms state-of-the-art distributed GCN methods.
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