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ABSTRACT

We present network embedding algorithms that capture information about a node
from the local distribution over node attributes around it, as observed over random
walks following an approach similar to Skip-gram. Observations from neighbor-
hoods of different sizes are either pooled (AE) or encoded distinctly in a multi-
scale approach (MUSAE). Capturing attribute-neighborhood relationships over
multiple scales is useful for a diverse range of applications, including latent fea-
ture identification across disconnected networks with similar attributes. We prove
theoretically that matrices of node-feature pointwise mutual information are im-
plicitly factorized by the embeddings. Experiments show that our algorithms are
robust, computationally efficient and outperform comparable models on social,
web and citation network datasets.

1 INTRODUCTION

Node embedding is a fundamental technique in network analysis that serves as a precursor to numer-
ous downstream machine learning and optimisation tasks, e.g. community detection, network visu-
alization and link prediction (Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015). Sev-
eral recent network embedding methods, such as Deepwalk (Perozzi et al., 2014), Node2Vec (Grover
& Leskovec, 2016) and Walklets (Perozzi et al., 2017), achieve impressive performance by learning
the network structure following an approach similar to Word2Vec Skip-gram (Mikolov et al., 2013b),
originally designed for word embedding. In these works, sequences of neighboring nodes are gener-
ated from random walks over a network, and representations are distilled from extracted node-node
proximity statistics that capture local neighbourhood information.

When the nodes of a network have attributes (or features), their embeddings can be used to capture
information about the attributes in their local neighbourhood. For a social network, attributes might
represent a person’s interests, habits, history or preferences. The pattern of node attributes are
often similar in a neighborhood, and conversely, nodes with similar attributes are more likely to be
connected. This property is known as homophily. Attributed network embedding methods (Yang
et al., 2015; Huang et al., 2017; Liao et al., 2018) leverage this additional information to supplement
that of node neighbourhood structure, benefiting many applications, e.g. recommender systems,
node classification and link prediction (Yang et al., 2018; Yang & Yang, 2018; Zhang et al., 2018).

The neighborhood of a node can be considered at different path lengths, or scales. In a social
network, near neighbors may correspond to classmates, whereas nodes separated by greater scales
may be in different cities or countries. Attributes of neighbors at different scales can be considered
separately (multi-scale) or pooled in some way (e.g. weighted average). Figure 1a shows how
the attribute distribution over neighbourhoods at different scales can indicate nodes with similar
network roles even if they are distant in the network, or even in different networks. Methods that
take attributes of nearby nodes into account generalizes those that do not, e.g. Perozzi et al. (2017),
for which feature vectors can be considered standard basis vectors.

Many embedding methods correspond to matrix factorization, indeed some attributed embedding
methods (e.g. Yang et al. (2018)) explicitly factorize a matrix of link-attribute information. Em-
beddings learned using Skip-gram are known to factorize a matrix of pointwise mutual information
(PMI) of co-occurrences between each word and local context words (Levy & Goldberg, 2014). Re-
lated network embedding methods (Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015;
Qiu et al., 2018) also implicitly factorize PMI matrices based on the probability of encountering each
(context) node on a random walk from each starting node (Qiu et al., 2018).
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(a) Attributed example graph.
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(b) Densification of the target matrix.

Figure 1: Phenomena affecting and inspiring the design of the multi-scale attributed network embed-
ding procedure. In Figure 1a attributed nodes D and G have the same feature set and their nearest
neighbours also exhibit equivalent sets of features, whereas features at higher order neighbourhoods
differ. Figure 1b shows that as the order of neighbourhoods considered (r) increases, the product
of the adjacency matrix power and the feature matrix becomes less sparse. This suggests that an
implicit decomposition method would be computationally beneficial.

Our key contributions are:

1. to introduce the first Skip-gram style embedding algorithms that consider attribute distributions
over local neighborhoods, both pooled (AE) and multi-scale (MUSAE), and their counterparts
that attribute distinct features to each node (AE-EGO and MUSAE-EGO);

2. to theoretically prove that their embeddings approximately factorize PMI matrices based on the
product of an adjacency matrix power and node-feature matrix;

3. to show that popular network embedding methods DeepWalk (Perozzi et al., 2014) and Walklets
(Perozzi et al., 2017) are special cases of our AE and MUSAE;

4. we show empirically that AE and MUSAE embeddings enable strong performance at regression,
classification, and link prediction tasks for real-world networks (e.g. Wikipedia and Facebook),
are computationally scalable and enable transfer learning between networks.

We provide reference implementations of AE and MUSAE, together with the datasets used for eval-
uation at https://github.com/iclr2020/MUSAE.

2 RELATED WORK

Efficient unsupervised learning of node embeddings for large networks has seen unprecedented de-
velopment in recent years. The current paradigm focuses on learning latent space representations
of nodes such that those that share neighbors (Perozzi et al., 2014; Tang et al., 2015; Grover &
Leskovec, 2016; Perozzi et al., 2017), structural roles (Ribeiro et al., 2017; Ahmed et al., 2018) or
attributes are located close together in the embedding space. Our work falls under the last of these
categories as our goal is to learn similar latent representations for nodes with similar sets of features
in their neighborhoods, both on a pooled and multi-scale basis.

Neighborhood preserving node embedding procedures place nodes with common first, second and
higher order neighbors within close proximity in the embedding space. Recent works in the neigh-
borhood preserving node embedding literature were inspired by the Skip-gram model (Mikolov
et al., 2013a;b), which generates word embeddings by implicitly factorizing a shifted pointwise mu-
tual information (PMI) matrix (Levy & Goldberg, 2014) obtained from a text corpus. This procedure
inspired DeepWalk (Perozzi et al., 2014), a method which generates truncated random walks over
a graph to obtain a “corpus” from which the Skip-gram model generates neighborhood preserving
node embeddings. In doing so, DeepWalk implicitly factorizes a PMI matrix, which can be shown,
based on the underlying first-order Markov process, to correspond to the mean of a set of normal-
ized adjacency matrix powers up to a given order (Qiu et al., 2018). Such pooling of matrices can be
suboptimal since neighbors over increasing path lengths (or scales) are treated equally or according
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to fixed weightings (Mikolov et al., 2013a; Grover & Leskovec, 2016); whereas it has been found
that an optimal weighting may be task or dataset specific (Abu-El-Haija et al., 2018). In contrast,
multi-scale node embedding methods such as LINE (Tang et al., 2015), GraRep (Cao et al., 2015)
and Walklets (Perozzi et al., 2017) separately learn lower-dimensional node embedding components
from each adjacency matrix power and concatenate them to form the full node representation. Such
un-pooled representations, comprising distinct but less information at each scale, are found to give
higher performance in a number of downstream settings, without increasing the overall number of
free parameters (Perozzi et al., 2017).

Attributed node embedding procedures refine ideas from neighborhood based node embeddings to
also incorporate node attributes (equivalently, features or labels) (Yang et al., 2015; Liao et al., 2018;
Huang et al., 2017; Yang et al., 2018; Yang & Yang, 2018). Similarities between both a node’s neigh-
borhood structure and features contribute to determining pairwise proximity in the node embedding
space. These models follow quite different strategies to obtain such representations. The most el-
emental procedure, TADW (Yang et al., 2015), decomposes a convex combination of normalized
adjacency matrix powers into a matrix product that includes the feature matrix. Several other mod-
els, such as SINE (Zhang et al., 2018) and ASNE (Liao et al., 2018), implicitly factorize a matrix
formed by concatenating the feature and adjacency matrices. Other approaches such as TENE (Yang
& Yang, 2018), formulate the attributed node embedding task as a joint non-negative matrix factor-
ization problem in which node representations obtained from sub-tasks are used to regularize one
another. AANE (Huang et al., 2017) uses a similar network structure based regularization approach,
in which a node feature similarity matrix is decomposed using the alternating direction method of
multipliers. The method most similar to our own is BANE (Yang et al., 2018), in which the prod-
uct of a normalized adjacency matrix power and a feature matrix is explicitly factorized to obtain
attributed node embeddings. Many other methods exist, but do not consider the attributes of higher
order neighborhoods (Yang et al., 2015; Liao et al., 2018; Huang et al., 2017; Zhang et al., 2018;
Yang & Yang, 2018).

The relationship between our pooled (AE) and multi-scale (MUSAE) attributed node embedding
methods mirrors that between graph convolutional neural networks (GCNNs) and multi-scale GC-
NNs. Widely used graph convolutional layers, such as GCN (Kipf & Welling, 2017), GraphSage
(Hamilton et al., 2017), GAT (Veličković et al., 2018), APPNP (Klicpera et al., 2019), SGCONV
(Wu et al., 2019) and ClusterGCN (Chiang et al., 2019), create latent node representations that pool
node attributes from arbitrary order neighborhoods, which are then inseparable and unrecoverable.
In contrast, MixHop (Abu-El-Haija et al., 2019) learns latent features for each proximity.

3 ATTRIBUTED EMBEDDING MODELS

We now define algorithms to learn node embeddings using the attributes of nearby nodes, that allows
both node and attribute embeddings to be learned jointly. The aim is to learn similar embeddings for
nodes that occur in neighbourhoods of similar attributes; and similar embeddings for attributes that
often occur in similar neighbourhoods of nodes. Let G = (V,L) be an undirected graph of interest
where V and L are the sets of vertices and edges (or links) respectively; and let F be the set of all
possible node features (i.e. attributes). We define Fv ⊆ F as the subset of features belonging to
each node v ∈V. An embedding of nodes is a mapping g : V→Rd that assigns a d-dimensional
representation g(v) (or simply gv) to each node v and is fully described by a matrix G ∈ R|V|×d.
Similarly, an embedding of the features (to the same latent space) is a mapping h : F → Rd with
embeddings denoted h(f) (or simply hf ), and is fully described by a matrix H∈R|F|×d.

3.1 ATTRIBUTED EMBEDDING

The Attributed Embedding (AE) procedure is described by Algorithm 1. We sample n nodes w1,
from which to start attributed random walks on G, with probability proportional to their degree
(Line 2). From each starting node, a node sequence of length l is sampled over G (Line 3), where
sampling follows a first order random walk. For a given window size t, we iterate over each of the
first l−t nodes of the sequence termed source nodes wj (Line 4). For each source node, we consider
the following t nodes as target nodes (Line 5). For each target node wj+r, we add the tuple (wj , f)
to the corpus D for each target feature f ∈Fwj+r (Lines 6 and 7). We also consider features of the
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Data: G = (V,L) – Graph to be embedded.
{Fv}V – Set of node feature sets.
n – Number of sequence samples.
l – Length of sequences.
t – Context size.
d – Embedding dimension.
b – Number of negative samples.

Result: Node embedding g and feature embedding h.

1 for i in 1 : n do

2 Pick w1 ∈ V according to P (w1) ∼ deg(w1)/vol(G).
3 (w1, w2, . . . , wl)← Sample Nodes(G, w1, l)
4 for j in 1 : l − t do

5 for r in 1 : t do
6 for f in Fwj+r do
7 Add tuple (wj , f) to multiset D.
8 end
9 for f in Fwj do

10 Add tuple (wj+r, f) to multiset D.
11 end
12 end
13 end
14 end
15 Run SGNS on D with b negative samples and d dimensions.
16 Output gv, ∀v ∈ V, and hf , ∀f ∈ F = ∪VFv .

Algorithm 1: AE sampling and training procedure

Data: G = (V,L) – Graph to be embedded.
{Fv}V – Set of node feature sets.
n – Number of sequence samples.
l – Length of sequences.
t – Context size.
d – Embedding dimension.
b – Number of negative samples.

Result: Node embeddings gr and feature embeddings hr for r = 1, . . . , t.
1 for i in 1 : n do

2 Pick w1 ∈ V according to P (w1) ∼ deg(w1)/vol(G).
3 (w1, w2, . . . , wl)← Sample Nodes(G, w1, l)
4 for j in 1 : l − t do
5 for r in 1 : t do
6 for f in Fwj+r do
7 Add the tuple (wj , f) to multiset D→

r
.

8 end
9 for f in Fwj do

10 Add the tuple (wj+r, f) to multiset D←
r

.
11 end
12 end
13 end
14 end
15 for r in 1 : t do
16 Create Dr by unification of D→

r
and D←

r
.

17 Run SGNS on Dr with b negative samples and d
t

dimensions.
18 Output grv, ∀v ∈ V, and hr

f , ∀f ∈ F = ∪VFv .
19 end

Algorithm 2: MUSAE sampling and training procedure

source node f ∈Fwj , adding each (wj+r, f) tuple to D (Lines 9 and 10). Running Skip-gram on D
with b negative samples (Line 15) generates the d-dimensional node and feature embeddings.

3.2 MULTI-SCALE ATTRIBUTED EMBEDDING

The AE method (Algorithm 1) pools feature sets of neighborhoods at different proximities. Inspired
by the performance of (unattributed) multi-scale node embeddings, we adapt the AE algorithm to
give multi-scale attributed node embeddings (MUSAE). The embedding component of a node v∈V
for a specific proximity r ∈ {1, ..., t} is given by a mapping gr : V → Rd/t (assuming t divides
d). Similarly, the embedding component of feature f ∈ F at proximity r is given by a mapping
hr : F→ Rd/t. Concatenating gives a d-dimensional embedding for each node and feature.

The Multi-Scale Attributed Embedding procedure is described by Algorithm 2. We again sample n
starting nodes w1 with a probability proportional to node degree (Line 2) and, for each, sample a
node sequence of length l over G (Line 3) according to either a first or second order random walk.
For a given window size t, we iterate over the first l − t (source) nodes wj of the sequence (Line 4)
and for each source node we iterate through the t (target) nodes wj+r that follow (Line 5). We again
consider each target node feature f ∈Fwj+r , but now add tuples (wj , f) to a sub-corpus D r→ (Lines
6 and 7). We add tuples (wj+r, f) to another sub-corpus D r← for each source node feature f ∈Fwj

(Lines 9 and 10). Running Skip-gram on each sub-corpus Dr = D r→ ∪D r← with b negative samples
(Line 16) output t (dt )-dimensional node and feature embeddings that are concatenated.

4 ATTRIBUTED EMBEDDING AS IMPLICIT MATRIX FACTORIZATION

Levy & Goldberg (2014) showed that the loss function of Skip-gram with negative sampling (SGNS)
is minimized if the embedding matrices factorize a matrix of pointwise mutual information (PMI)
of word co-occurrence statistics. Specifically, for a word dictionary V with |V|=n, SGNS (with b
negative samples) outputs two embedding matrices W ,C ∈ Rd×n such that ∀w, c∈V:

w>wcc ≈ log
(#(w,c)|D|
#(w)#(c)

)
− log b ,

where #(w, c), #(w), #(c) denote counts of word-context pair (w, c), w and c over a corpus D;
and word embeddings ww, cc∈Rd are columns of W and C corresponding to w and c respectively.
Considering #(w)

|D| , #(c)
|D| , #(w,c)

|D| as empirical estimates of p(w), p(c) and p(w, c) respectively shows:

W>C ≈ [PMI(w, c)− log b ]w,c∈V ,

i.e. an approximate low-rank factorization of a shifted PMI matrix (low rank since typically d�n).
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Qiu et al. (2018) extended this result to node embedding models that apply SGNS to a “corpus”
generated from random walks over the graph. In the case of DeepWalk where random walks are
first-order Markov, the joint probability distributions over nodes at different stages of a random
walk can be expressed in closed form. A closed form then follows for the factorized PMI matrix.
We show that AE and MUSAE implicitly perform analogous matrix factorizations.

Notation: A∈Rn×n denotes the adjacency matrix and D∈Rn×n the diagonal degree matrix of
a graph G, i.e. Dw,w = deg(w) =

∑
v Aw,v . We denote the volume of G by c =

∑
v,w Av,w. We

define the binary attribute matrix F ∈ {0, 1}|V|×|F| by Fw,f = 1f∈Fw
, ∀w ∈V, f ∈ F. For ease of

notation, we let P =D−1A and E=diag(1>DF ), where diag indicates a diagonal matrix.

Interpretation: Assuming G is ergodic: p(w) = deg(w)
c , w ∈ V is the stationary distribution

over nodes, i.e. c−1D = diag(p(w)); and c−1A is the stationary joint distribution over consecu-
tive nodes p(wj , wj+1). Fw,f can be considered a Bernoulli parameter describing the probability
p(f |w) of observing a feature f at a node w and so c−1DF describes the stationary joint distri-
bution p(f, wj) over nodes and features. Accordingly, P is the matrix of conditional distributions
p(wj+1|wj); and E is a diagonal matrix proportional to the probability of observing each feature at
the stationary distribution p(f) (note that p(f) need not sum to 1, whereas p(w) necessarily must).

4.1 MULTI-SCALE CASE (MUSAE)

We know that the SGNS aspect of MUSAE (Algorithm 2, Line 17) is minimized when the learned
embeddings grv , hrf satisfy grw

>hrf ≈ log
(#(w,f)r|Dr|
#(w)r#(f)r

)
− log b ∀w∈V, f ∈F. Our aim is to express

this factorization in terms of known properties of the graph G and its features.

Lemma 1. The empirical statistics of node-feature pairs obtained from random walks give unbiased
estimates of joint probabilities of observing feature f ∈F r steps (i) after; or (ii) before node v ∈ V,
as given by:

plim
l→∞

#(w,f)→
r

|D→
r
| = c−1(DP rF )w,f plim

l→∞

#(w,f)←
r

|D←
r
| = c−1(F>DP r)f,w

Proof. See Appendix.

Lemma 2. Empirical statistics of node-feature pairs obtained from random walks give unbiased
estimates of joint probabilities of observing feature f ∈F r steps either side of node v∈V, given by:

plim
l→∞

#(w,f)r
|Dr| = c−1(DP rF )w,f ,

Proof. See Appendix.

Marginalizing gives unbiased estimates of stationary probability distributions of nodes and features:

plim
l→∞

#(w)
|Dr| = deg(w)

c = c−1Dw,w and plim
l→∞

#(f)
|Dr| =

∑
w|f∈Fw

deg(w)
c = c−1Ef,f

Theorem 1. MUSAE embeddings approximately factorize the node-feature PMI matrix:

log
(
cP rFE−1

)
− log b, for r = 1, ... , t.

Proof.

#(w,f)r|Dr|
#(f)r#(w)r

=
(#(w,f)r
|Dr|

)
/
(#(f)r
|Dr|

#(w)r
|Dr|

)
p−→
(
(cD−1)(c−1DP rF )(cE−1)

)
w,f

= c(P rFE−1)w,f
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4.2 POOLED CASE (AE)

Lemma 3. The empirical statistics of node-feature pairs learned by the AE algorithm give unbiased
estimates of mean joint probabilities over different path lengths as follows:

plim
l→∞

#(w,f)
|D| = c

t

(
D(

t∑
r=1

P r)F
)
w,f

(1)

Proof. By construction, |D|=
∑

r |Dr|, #(w, f)=
∑

r #(w, f)r, |Dr|= |Ds| ∀ r, s∈{1, . . . , t} and
so |Ds|= t−1|D|. Combining with Lemma 2, the result follows.

Theorem 2. AE embeddings approximately factorize the pooled node-feature matrix:

log
(
c
t (

t∑
r=1

Pr)FE−1
)
− log b .

Proof. The proof is analogous to the proof of Theorem 1.

Remark 1. DeepWalk is a corner case of AE with F =I|V|.

That is, DeepWalk is equivalent to AE if each node has a single unique feature. Thus E =
diag(1>DI)=D and, by Theorem 2, DeepWalk’s embeddings factorize log

(
c
t (
∑t

r=1 Pr)D−1
)
−

log b, as previously noted by Qiu et al. (2018).

Remark 2. Walklets is a corner case of MUSAE with F =I|V|.

Thus, for r = 1, . . . , t, the embeddings of Walklets factorise log
(
cPrD−1

)
− log b.

Remark 3. Appending an identity matrix I to the feature matrices F of AE and MUSAE (denoted
[F ; I]) adds a unique feature to each node. The resulting algorithms, named AE-EGO and MUSAE-
EGO, learn embeddings that, respectively, approximately factorize the node-feature PMI matrices:

log
(
cP r [F ; I]E−1

)
− log b, ∀r∈{1, ..., t}; and log

(
c
t (

t∑
r=1

P r) [F ; I]E−1
)
− log b .

4.3 COMPLEXITY ANALYSIS

Under the assumption of a constant number of features per source node and first-order attributed
random walk sampling, the corpus generation has a runtime complexity of O(n l t x/y), where
x =

∑
v∈V |Fv| the total number of features across all nodes (including repetition) and y = |V|

the number of nodes. Using negative sampling, the optimization runtime of a single asynchronous
gradient descent epoch on AE and the joint optimization runtime of MUSAE embeddings is described
by O(b d n l t x/y). If one does p truncated walks from each source node, the corpus generation
complexity is O(p y l t x) and the model optimization runtime is O(b d p y l t x). Our later runtime
experiments in Section 5 will underpin optimization runtime complexity discussed above.

Corpus generation has a memory complexity of O(n l t x/y) while the same when generating p
truncated walks per node has a memory complexity of O(p y l t x). Storing the parameters of an AE
embedding has a memory complexity ofO(y d) and MUSAE embeddings also useO(y d) memory.

5 EXPERIMENTAL EVALUATION

In order to evaluate the quality of created representations we test the embeddings on supervised
downstream tasks such as node classification, transfer learning across networks, regression, and link
prediction. Finally, we investigate how changes in the input size affect the runtime. For doing so
we utilize social networks and web graphs that we collected from Facebook, Github, Twitch and
Wikipedia. The data sources, collection procedures and the datasets themselves are described with
great detail in Appendix B. In addition we tested our methods on citation networks widely used for
model evaluation (Shchur et al., 2018). Across all experiments we use the same hyperparameter
settings of our own model, competing unsupervised methods and graph neural networks – these are
respectively listed in Appendices C, E and F.
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5.1 NODE CLASSIFICATION

We evaluate the node classification performance in two separate scenarios. In the first one we do
k-shot learning by using the attributed embedding vectors with logistic regression to predict labels
on the Facebook, Github and Twitch Portugal graphs. In the second one we test the predictive
performance under a fixed size train-test split to compare against various embedding methods and
competitive neural network architectures.

5.1.1 K-SHOT LEARNING

In this experiment we take k randomly selected samples per class, and use the attributed node em-
beddings to train a logistic regression model with l2 regularization and predict the labels on the
remaining vertices. We repeated the above procedure with seeded splits 100 times to obtain robust
comparable results (Shchur et al., 2018). From these we calculated the average of micro averaged
F1 scores to compare our own methods with other unsupervised node embedding procedures. We
varied k in order to show the efficacy of the methods – what are the gains when the training set size
is increased. These results are plotted on subplots of Figure 2 for the Facebook, Github and Twitch
Portugal networks.

Based on these plots it is evident that MUSAE and AE embeddings have little gains in terms of
micro F1 score when additional data points are added to the training set when k is larger than 12.
This implies that our method is data efficient. Moreover, MUSAE-EGO and AE-EGO have a slight
performance advantage, which means that including the nodes in the attributed random walks helps
when a small amount of labeled data is available in the downstream task.
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Figure 2: Node classification k-shot learning performance as a function of training samples per class
evaluated by average micro F1 scores calculated from a 100 seeded train-test splits.

5.1.2 FIXED RATIO TRAIN-TEST SPLITS

In this series of experiments we created a 100 seeded train test splits of nodes (80% train - 20%
test) and calculated weighted, micro and macro averaged F1 scores on the test set to compare our
methods to various embedding and graph neural network methods. Across procedures the same
random seeds were used to obtain the train-test split this way the performances are directly compa-
rable. We attached these results on the Facebook, Github and Twitch Portugal graphs as Table 5 of
Appendix G. In each column red denotes the best performing unsupervised embedding model and
blue corresponds to the strongest supervised neural model. We also attached additional supporting
results using the same experimental setting with the unsupervised methods on the Cora, Citeseer,
and Pubmed graphs as Table 6 of Appendix G.

In terms of micro F1 score our strongest method outperforms on the Facebook and GitHub networks
the best unsupervised method by 1.01% and 0.47% respectively. On the Twitch Portugal network the
relative micro F1 advantage of ASNE over our best method is 1.02%. Supervised node embedding
methods outperform our and other unsupervised methods on every dataset for most metrics. In terms
of micro F1 this relative advantage over our best performing model variant is the largest with 4.67%
on the Facebook network, and only 0.11% on Twitch Portugal.
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One can make four general observations based on our results (i) multi-scale representations can help
with the classification tasks compared to pooled ones; (ii) the addition of the nodes in the ego aug-
mented models to the feature sets does not help the performance when a large amount of labeled
training data is available; (iii) based on the standard errors supervised neural models do not nec-
essarily have a significant advantage over unsupervised methods (see the results on the Github and
Twitch datasets); (iv) attributed node embedding methods that only consider first-order neighbour-
hoods have a poor performance.

5.2 TRANSFER LEARNING ON TWITCH SOCIAL NETWORKS

Neighbourhood based methods such as DeepWalk (Perozzi et al., 2014) are transductive and the
function used to create the embedding cannot map nodes that are not connected to the original graph
to the latent space. However, vanilla MUSAE and AE are inductive and can easily map nodes to the
embedding space if the attributes across the source and target graph are shared. This also means that
supervised models trained on the embedding of a source graph are transferable. Importantly those
attributed embedding methods such as AANE or ASNE that explicitly use the graph are unable to do
this transfer.

Using the disjoint Twitch country level social networks (inter country edges are not present) we did a
transfer learning experiment. First, we learn an embedding function given the social network from a
country with the standard parameter settings. Second, we train regularized logistic regression on the
embedding to predict whether the Twitch user streams explicit content. Third, using the embedding
function we map the target graph to the embedding space. Fourth, we use the logistic model to
predict the node labels on the target graph. We evaluate the performance by the micro F1 score
based on 10 experimental repetitions. These averages with standard error bars are plotted for the
Twitch Germany, England and Spain datasets as target graphs on Figure 3. We added additional
results with France, Portugal and Russia being the target country in Appendix H as Table 5.
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Figure 3: Mean micro F1 scores and standard errors calculated from 10 transfer learning runs with
MUSAE and AE on the Twitch graphs using Germany, England and Spain as target for the transfer.

These results support that MUSAE and AE create features that are transferable across disjoint graphs
that share vertex features. Moreover, the transfer of the downstream model is also possible across
datasets. There is no clear evidence that either MUSAE or AE gives better results on this specific
problem. We also see some evidence that upstream and downstream models that we trained on
graphs with more vertices transfer better.

5.3 REGRESSION ON WIKIPEDIA GRAPHS

We created embeddings of the Wikipedia webgraphs with all of our methods and the unsupervised
baselines. Using a 80% train - 20% test split we predict the log of average traffic for each page using
an elastic net model. The hyperparameters of the downstream model are available in Appendix D.
In Table 7 of Appendix I we report average test R2 and standard error of the predictive performance
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over 100 seeded train-test splits. Our key observation are: (i) that MUSAE outperforms all bench-
mark neighbourhood preserving and attributed node embedding methods, with the strongest MUSAE
variant outperforming the best baseline between 2.05% and 10.03% (test R2); (ii) that MUSAE sig-
nificantly outperforms AE by between 2.49% and 21.64% (test R2); and (iii) the benefit of using
the vertices as features (ego augmented model) can improve the performance of embeddings, but
appears to be dataset specific phenomenon.

5.4 LINK PREDICTION ON WEB GRAPHS AND SOCIAL NETWORKS

The final series of experiments dedicated to the representation quality is about link prediction. We
carried out an attenuated graph embedding trial to predict the removed edges from the graph. First,
we randomly removed 50% of edges while the connectivity of the graph was not changed. Second,
an embedding is created from the attenuated graph. Third, we calculate features for the removed
edges and the same number of randomly selected pairs of nodes (negative candidates) with binary
operators to create d-dimensional edge features. We use the binary operators applied by Grover &
Leskovec (2016). Specifically, we calculated the average, element-wise product, element-wise l1
norm and the element-wise l2 norm of vectors. Finally, we created a 100 seeded 80% train - 20%
test splits and used logistic regression to predict whether an edge exists.

We compared to attributed and neighbourhood based embedding methods and average AUC scores
are presented in Tables 8 and 9 of Appendix J. Our results show that Walklets (Perozzi et al., 2017)
the multi-scale neighbourhood based embedding method materially outperforms every other method
on most of the datasets and attributed embedding methods generally do poorly in terms of AUC
compared to neighbourhood based ones.

5.5 SCALABILITY

In order to show the efficacy of our algorithms we run a series of experiments on synthetic graphs
where we are able to manipulate the input size. Specifically, we look at the effect of changing the
number of vertices and features per vertex. Our detailed experimental setup was as follows. Each
point in Figure 4 is the mean runtime obtained from 100 experimental runs on Erdos-Renyi graphs.
The base graph that we manipulated had 211 nodes, 23 edges and the same number of unique features
per node uniformly selected from a feature set of 211. Our experimental settings were the same as
the ones described in Appendix C except for the number of epochs. We only did a single training
epoch with asynchronous gradient descent on each graph. We tested the runtime with 1, 2 and 4
cores and included a dashed line as the linear runtime reference in each subfigure.
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Figure 4: Optimization time as a function of average feature count / number of vertices.

We observe that doubling the average number of features per vertex doubles the runtime of AE and
MUSAE. Moreover, the number of cores used during the optimization does not decrease the runtime
when the number of unique features per vertex compared to the cardinality of the feature set is
large. When we look at the change in the vertex set size we also see a linear behaviour. Doubling
the input size simply results in a doubled optimization runtime. In addition, if one interpolates
linearly from these results it comes that a network with 1 million nodes, 8 edges per node, 8 unique
features per node can be embedded with MUSAE on commodity hardware in less than 5 hours. This
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interpolation assumes that the standard parameter settings proposed in Appendix C and 4 cores were
used for optimization.

6 DISCUSSION AND CONCLUSION

We investigated attributed node embedding and proposes efficient pooled (AE) and multi-scale
(MUSAE) attributed node embedding algorithms with linear runtime. We proved that these algo-
rithms implicitly factorize probability matrices of features appearing in the neighbourhood of nodes.
Two widely used neighbourhood preserving node embedding methods Perozzi et al. (2014; 2017)
are in fact simplified cases of our models. On several datasets (Wikipedia, Facebook, Github, and
citation networks) we found that representations learned by our methods, in particular MUSAE, out-
perform neighbourhood based node embedding methods (Perozzi et al. (2014); Grover & Leskovec
(2016)), multi-scale algorithms (Tang et al. (2015); Perozzi et al. (2017)) and recently proposed at-
tributed node embedding procedures (Yang et al. (2015); Liao et al. (2018); Huang et al. (2017);
Yang et al. (2018); Yang & Yang (2018)).

Our proposed embedding models are differentiated from other methods in that they encode fea-
ture information from higher order neighborhoods. The most similar previous model BANE (Yang
et al., 2018) encodes node attributes from higher order neighbourhoods but has non-linear runtime
complexity and the product of adjacency matrix power and feature matrix is decomposed explicitly.
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A PROOFS

Lemma 1. The empirical statistics of node-feature pairs obtained from random walks give unbiased
estimates of joint probabilities of observing feature f ∈F r steps (i) after; or (ii) before node v ∈ V,
as given by:

plim
l→∞

#(w,f)→
r

|D→
r
| = c−1(DP rF )w,f plim

l→∞

#(w,f)←
r

|D←
r
| = c−1(F>DP r)f,w

Proof. The proof is analogous to that given for Theorem 2.1 in Qiu et al. (2018). We show that the
computed statistics correspond to sequences of random variables with finite expectation, bounded
variance and covariances that tend to zero as the separation between variables within the sequence
tends to infinity. The Weak Law of Large Numbers (S.N.Bernstein) then guarantees that the sample
mean converges to the expectation of the random variable. We first consider the special case n = 1,
i.e. we have a single sequence w1, ..., wl generated by a random walk (see Algorithm 1). For a
particular node-feature pair (w, f ), we let Yi, i ∈ {1, ..., l − t}, be the indicator function for the
event wi = w and f ∈ Fi+r. Thus, we have:

#(w,f)→
r

|D→
r
| = 1

l−t

l−t∑
i=1

Yi, (2)

the sample average of the Yis. We also have:

E[Yi] = deg(w)
c (P rF )w,f = 1

c (DP rF )w,f

E[YiYj ] = Prob[wi = w, f ∈ Fi+r, wj = w, f ∈ Fj+r]

= deg(w)
c︸ ︷︷ ︸

p(wi=w)

P r
:w︸︷︷︸

p(wi+r|wi=w)

diag(F:f )︸ ︷︷ ︸
p(f∈Fi+r|wi+r)

P j−(i+r)
:w︸ ︷︷ ︸

p(wj=w|wi+r)︸ ︷︷ ︸
p(wj=w,f∈Fi+r|wi=w)

P r
w:F:f︸ ︷︷ ︸

p(f∈Fj+r|wj=w)

for j > i+ r. This allows us to compute the covariance:

Cov(Yi, Yj) = E[YiYj ]− E[Yi]E[Yj ]

= deg(w)
c P r

w:diag(F:f )
(
P j−(i+r)

:w − deg(w)
c 1

)︸ ︷︷ ︸
tends to 0 as j−i→∞

P r
w:F:f , (3)

where 1 is a vector of ones. The difference term (indicated) tends to zero as j − i → ∞ since
then p(wj = w|wi+r) tends to the stationary distribution p(w) = deg(w)

c , regardless of wi+r.
Thus, applying the Weak Law of Large Numbers, the sample average converges in probability to the
expected value, i.e.:

#(w,f)→
r

|D→
r
| = 1

l−t

l−t∑
i=1

Yi
p→ 1

l−t

l−t∑
i=1

E[Yi] = 1
c (DP rF )w,f
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A similar argument applies to
#(w,f)←

r

|D←
r
| , with expectation term 1

c (F
>DP r)f,w. In both cases, the

argument readily extends to the general setting where n > 1 with suitably defined indicator functions
for each of the n random walks (see Qiu et al. (2018)).

Lemma 2. Empirical statistics of node-feature pairs obtained from random walks give unbiased
estimates of joint probabilities of observing feature f ∈F r steps either side of node v∈V, given by:

plim
l→∞

#(w,f)r
|Dr| = c−1(DP rF )w,f ,

Proof.
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|
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2
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1
c (DP rF )w,f + 1
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)
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2c
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DP rF + P r>DF

)
w,f

= 1
2c
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(DP r + (A>D−1)rD)F

)
w,f

= 1
2c

(
(DP r +D(D−1A>)r)F

)
w,f

= 1
c (DP rF )w,f .

The final step follows by symmetry of A, indicating how the Lemma can be extended to directed
graphs.

B DATASETS AND DESCRIPTIVE STATISTICS

Our method was evaluated on a variety of social networks and web page-page graphs that we col-
lected from openly available API services. In Table 1 we described the graphs with widely used
statistics with respect to size, diameter, and level of clustering. We also included the average num-
ber of features per vertex and unique feature count in the last columns. These datasets are available
with the source code of MUSAE and AE at https://github.com/iclr2020/MUSAE.

Table 1: Descriptive statistics of the networks used in our experimental evaluation.

Dataset Nodes Edges Diameter Clustering
Coefficient Density Average

Feature
Unique

Features
Facebook Page-Page 22,470 171,002 15 0.232 0.001 14.000 4,714
GitHub Web-ML 37,700 289,003 7 0.013 0.001 18.312 4,005
Wikipedia Chameleon 2,277 31,421 11 0.314 0.012 21.547 3,132
Wikipedia Crocodile 11,631 170,918 11 0.026 0.003 75.161 13,183
Wikipedia Squirrel 5,201 198,493 10 0.348 0.015 26.474 3,148
Twitch DE 9,498 153,138 7 0.047 0.003 20.397 2,545
Twitch EN 7,126 35,324 10 0.042 0.002 20.799 2,545
Twitch ES 4,648 59,382 9 0.084 0.006 19.391 2,545
Twitch FR 6,549 112,666 7 0.054 0.005 19.758 2,545
Twitch PT 1,912 31,299 7 0.131 0.017 19.944 2,545
Twitch RU 4,385 37,304 9 0.049 0.004 20.635 2,545

B.1 FACEBOOK PAGE-PAGE DATASET

This webgraph is a page-page graph of verified Facebook sites. Nodes represent official Facebook
pages while the links are mutual likes between sites. Node features are extracted from the site
descriptions that the page owners created to summarize the purpose of the site. This graph was col-
lected through the Facebook Graph API in November 2017 and restricted to pages from 4 categories
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which are defined by Facebook. These categories are: politicians, governmental organizations, tele-
vision shows and companies. As one can see in Table 1 it is a highly clustered graph with a large
diameter. The task related to this dataset is multi-class node classification for the 4 site categories.

B.2 GITHUB WEB AND MACHINE LEARNING DEVELOPERS DATASET

The largest graph used for evaluation is a social network of GitHub developers which we collected
from the public API in June 2019. Nodes are developers who have starred at least 10 repositories
and edges are mutual follower relationships between them. The vertex features are extracted based
on the location, repositories starred, employer and e-mail address. The task related to the graph
is binary node classification – one has to predict whether the GitHub user is a web or a machine
learning developer. This target feature was derived from the job title of each user. As the descriptive
statistics show in Table 1 this is the largest graph that we use for evaluation with the highest sparsity.

B.3 WIKIPEDIA DATASETS

The datasets that we use to perform node level regression are Wikipedia page-page networks col-
lected on three specific topics: chameleons, crocodiles and squirrels. In these networks nodes are
articles from the English Wikipedia collected in December 2018, edges are mutual links that exist
between pairs of sites. Node features describe the presence of nouns appearing in the articles. For
each node we also have the average monthly traffic between October 2017 and November 2018. In
the regression tasks used for embedding evaluation the logarithm of average traffic is the target vari-
able. Table 1 shows that these networks are heterogeneous in terms of size, density, and clustering.

B.4 TWITCH DATASETS

These datasets used for node classification and transfer learning are Twitch user-user networks of
gamers who stream in a certain language. Nodes are the users themselves and the links are mutual
friendships between them. Vertex features are extracted based on the games played and liked, loca-
tion and streaming habits. Datasets share the same set of node features, this makes transfer learning
across networks possible. These social networks were collected in May 2018. The supervised task
related to these networks is binary node classification – one has to predict whether a streamer uses
explicit language.

C STANDARD HYPERPARAMETER SETTINGS OF OUR EMBEDDING MODELS

In MUSAE and AE models we have a set of parameters that we use for model evaluation. Our param-
eter settings listed in Table 2 are quite similar to the widely used general settings of random walk
sampled implicit factorization machines (Perozzi et al., 2014; Grover & Leskovec, 2016; Ribeiro
et al., 2017; Perozzi et al., 2017). Each of our models is augmented with a Doc2Vec (Mikolov et al.,
2013a;b) embedding of node features – this is done such way that the overall dimension is still 128.

Table 2: Standard hyperparameter settings of the AE and MUSAE embeddings.

Parameter Value Notation
Dimensions 128 d
Walk length 80 l
Number of walks per node 10 p
Number of epochs 5 k
Window size 3 t
Initial learning rate 0.05 αmax

Final learning rate 0.025 αmin

Negative samples 5 b
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D HYPERPARAMETER SETTINGS OF THE DOWNSTREAM MODELS

The downstream tasks uses logistic and elastic net regression from Scikit-learn (Pedregosa et al.,
2011) for node level classification, regression and link prediction. For the evaluation of every em-
bedding model we use the standard settings of the library except for the regularization and norm
mixing parameters. These are described in Table 3.

Table 3: Standard hyperparameter settings of the downstream logistic and elastic net regression
models that use the embeddings for classification, link prediction and regression.

Parameter Value Notation
Regularization coefficient 0.01 λ
Norm mixing parameter 0.5 γ

E HYPERPARAMETER SETTINGS OF COMPETING UNSUPERVISED
EMBEDDING METHODS

Our purpose was a fair evaluation compared to other unsupervised neighbourhood based and at-
tributed node embedding procedures. Because of this each we tried to use hyperparameter settings
that give similar expressive power to the competing methods with respect to target matrix approxi-
mation (Perozzi et al., 2014; Grover & Leskovec, 2016; Perozzi et al., 2017) and number of dimen-
sions.

• DeepWalk (Perozzi et al., 2014): We used the hyperparameter settings described in Table
2. While the original DeepWalk model uses hierarchical softmax to speed up calculations
we used a negative sampling based implementation. This way DeepWalk can be seen as a
special case of Node2Vec (Grover & Leskovec, 2016) when the second-order random walks
are equivalent to the firs-order walks.

• LINE2 (Tang et al., 2015): We created 64 dimensional embeddings based on first and sec-
ond order proximity and concatenated these together for the downstream tasks. Other hy-
perparameters are taken from the original work.

• Node2Vec (Grover & Leskovec, 2016): Except for the in-out and return parameters that
control the second-order random walk behavior we used the hyperparameter settings de-
scribed in Table 2. These behavior control parameters were tuned with grid search from
the {4, 2, 1, 0.5, 0.25} set using a train-validation split of 80% − 20% within the training
set itself.

• Walklets (Perozzi et al., 2017): We used the hyperparameters described in Table 2 except
for window size. We set a window size of 4 with individual embedding sizes of 32. This
way the overall number of dimensions of the representation remained the same.

• The attributed node embedding methods AANE, ASNE, BANE, TADW, TENE all use
the hyperparameters described in the respective papers except for the dimension. We
parametrized these methods such way that each of the final embeddings used in the down-
stream tasks is 128 dimensional.

F HYPERPARAMETER SETTINGS OF COMPETING GRAPH NEURAL NETWORKS

Each model was optimized with the Adam optimizer (Kingma & Ba, 2015) with the standard mov-
ing average parameters and the model implementations are sparsity aware modifications based on
PyTorch Geometric (Fey & Lenssen, 2019). We needed these modifications in order to accommo-
date the large number of vertex features – see the last column in Table 1. Except for the GAT model
(Veličković et al., 2018) we used ReLU intermediate activation functions (Nair & Hinton, 2010)
with a softmax unit in the final layer for classification. The hyperparameters used for the training
and regularization of the neural models are listed in Table 4.
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Table 4: Hyperparameter settings used for training the graph neural network baselines.

Parameter Value
Epochs 200
Learning rate 0.01
Dropout 0.5
l2 Weight regularization 0.001
Depth 2
Filters per layer 32

Except for the APPNP model each baseline uses information up to 2-hop neighbourhoods. The
model specific settings when we needed to deviate from the basic settings which are listed in Table
4 were as follows:

• Classical GCN (Kipf & Welling, 2017): We used the standard parameter settings described
in this section.

• GraphSAGE (Hamilton et al., 2017): We utilized a graph convolutional aggregator on the
sampled neighbourhoods, samples of 40 nodes per source, and the standard hyperparameter
settings.

• GAT (Veličković et al., 2018): The negative slope parameter of the leaky ReLU function
was 0.2 and we applied a single attention head. Besides these, we used the standard hyper-
parameter settings.

• MixHop (Abu-El-Haija et al., 2019): We took advantage of the 0th, 1st and 2nd powers of
the normalized adjacency matrix with 32 dimensional convolutional filters for creating the
first hidden representations. This was fed to a feed-forward layer to classify the nodes.

• ClusterGCN (Chiang et al., 2019): Just as Chiang et al. (2019) did, we used the METIS
procedure (Karypis & Kumar, 1998). We clustered the graphs into disjoint clusters, and the
number of clusters was the same as the number of node classes (e.g. in case of the Facebook
page-page network we created 4 clusters). For training we used the earlier described setup.

• APPNP (Klicpera et al., 2019): The top level feed-forward layer had 32 hidden neurons,
the teleport probability was set as 0.2 and we used 20 steps for approximate personalized
pagerank calculation.

• SGCONV (Wu et al., 2019): We used the 2nd power of the normalized adjacency matrix
for training the classifier.
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G CLASSIFICATION PERFORMANCE

Table 5: Node classification test performance evaluated by weighted, micro and macro F1 scores
calculated from 10 seeded train-test splits. We included standard errors of the scores and used 80%
of nodes for training / 20% of nodes for testing. Red numbers denote the best performing node
embedding method and blue ones denote the best performing supervised graph neural network.

Datasets
Facebook Page-Page GitHub WebML Twitch Portugal

Weighted Micro Macro Weighted Micro Macro Weighted Micro Macro
DeepWalk 0.861

±0.001
0.863
±0.001

0.848
±0.001

0.852
±0.001

0.858
±0.001

0.801
±0.002

0.650
±0.008

0.672
±0.007

0.594
±0.009

LINE2 0.874
±0.001

0.875
±0.001

0.862
±0.001

0.852
±0.001

0.858
±0.001

0.800
±0.002

0.636
±0.006

0.670
±0.005

0.571
±0.005

Node2Vec 0.889
±0.001

0.890
±0.001

0.880
±0.001

0.853
±0.001

0.859
±0.001

0.802
±0.001

0.665
±0.004

0.686
±0.004

0.612
±0.004

Walklets 0.886
±0.001

0.887
±0.001

0.875
±0.001

0.854
±0.001

0.860
±0.001

0.804
±0.002

0.652
±0.006

0.671
±0.006

0.599
±0.005

TADW 0.760
±0.002

0.765
±0.002

0.740
±0.003

0.650
±0.001

0.748
±0.001

0.528
±0.007

0.459
±0.001

0.659
±0.005

0.406
±0.003

AANE 0.793
±0.001

0.796
±0.001

0.775
±0.001

0.848
±0.001

0.856
±0.001

0.794
±0.002

0.636
±0.006

0.661
±0.006

0.577
±0.006

ASNE 0.794
±0.001

0.797
±0.001

0.776
±0.001

0.829
±0.001

0.839
±0.001

0.766
±0.002

0.670
±0.006

0.685
±0.006

0.620
±0.006

BANE 0.868
±0.001

0.868
±0.001

0.859
±0.002

0.711
±0.001

0.762
±0.001

0.576
±0.001

0.644
±0.006

0.664
±0.006

0.587
±0.006

TENE 0.724
±0.002

0.731
±0.002

0.699
±0.002

0.842
±0.001

0.850
±0.001

0.785
±0.002

0.613
±0.005

0.664
±0.006

0.536
±0.006

AE 0.887
±0.001

0.888
±0.001

0.879
±0.001

0.858
±0.001

0.863
±0.001

0.807
±0.001

0.653
±0.005

0.672
±0.004

0.598
±0.006

AE-EGO 0.898
±0.001

0.899
±0.001

0.890
±0.001

0.857
±0.001

0.863
±0.001

0.807
±0.002

0.652
±0.007

0.671
±0.007

0.599
±0.009

MUSAE 0.886
±0.001

0.887
±0.001

0.877
±0.001

0.859
±0.001

0.864
±0.001

0.810
±0.001

0.654
±0.006

0.672
±0.006

0.6
±0.007

MUSAE-EGO 0.893
±0.001

0.894
±0.001

0.884
±0.001

0.859
±0.001

0.864
±0.001

0.810
±0.001

0.655
±0.003

0.671
±0.002

0.604
±0.003

GCN 0.931
±0.001

0.932
±0.001

0.928
±0.001

0.859
±0.001

0.865
±0.001

0.809
±0.002

0.650
±0.013

0.695
±0.007

0.577
±0.02

GraphSAGE 0.812
±0.002

0.814
±0.002

0.795
±0.002

0.848
±0.001

0.854
±0.001

0.794
±0.002

0.618
±0.003

0.631
±0.004

0.563
±0.005

GAT 0.918
±0.001

0.919
±0.001

0.912
±0.001

0.856
±0.001

0.864
±0.001

0.803
±0.002

0.648
±0.008

0.678
±0.007

0.588
±0.009

MixHop 0.940
±0.001

0.941
±0.002

0.937
±0.001

0.847
±0.0

0.85
±0.001

0.800
±0.001

0.626
±0.003

0.630
±0.004

0.576
±0.003

ClusterGCN 0.937
±0.001

0.937
±0.001

0.934
±0.001

0.855
±0.001

0.859
±0.001

0.807
±0.001

0.647
±0.004

0.654
±0.004

0.602
±0.005

APPNP 0.938
±0.001

0.938
±0.001

0.935
±0.001

0.860
±0.002

0.868
±0.001

0.811
±0.002

0.683
±0.009

0.702
±0.012

0.623
±0.010

SGCONV 0.832
±0.002

0.836
±0.002

0.812
±0.002

0.816
±0.001

0.829
±0.001

0.747
±0.002

0.652
±0.003

0.663
±0.003

0.604
±0.004

Table 6: Node classification test performance evaluated by weighted, micro and macro F1 scores
calculated from 10 seeded train-test splits. We included standard errors of the scores and used 80%
of nodes for training / 20% of nodes for testing. Red numbers denote the best performing node
embedding method.

Datasets
Cora Citeseer Pubmed

Weighted Micro Macro Weighted Micro Macro Weighted Micro Macro
DeepWalk 0.832

±0.003
0.833
±0.004

0.823
±0.004

0.597
±0.007

0.603
±0.007

0.560
±0.006

0.801
±0.001

0.802
±0.001

0.789
±0.002

LINE2 0.775
±0.004

0.777
±0.004

0.768
±0.005

0.529
±0.006

0.542
±0.006

0.486
±0.005

0.798
±0.001

0.799
±0.001

0.785
±0.001

Node2Vec 0.840
±0.003

0.840
±0.003

0.826
±0.003

0.616
±0.005

0.622
±0.005

0.581
±0.005

0.809
±0.002

0.810
±0.002

0.797
±0.002

Walklets 0.843
±0.003

0.843
±0.003

0.827
±0.003

0.624
±0.005

0.630
±0.006

0.590
±0.005

0.815
±0.001

0.815
±0.001

0.804
±0.002

TADW 0.819
±0.004

0.819
±0.004

0.804
±0.005

0.725
±0.004

0.734
±0.004

0.685
±0.004

0.862
±0.002

0.862
±0.002

0.863
±0.002

AANE 0.793
±0.006

0.793
±0.006

0.777
±0.006

0.728
±0.005

0.733
±0.004

0.693
±0.005

0.867
±0.001

0.867
±0.001

0.867
±0.002

ASNE 0.831
±0.003

0.83
±0.003

0.812
±0.004

0.713
±0.004

0.718
±0.004

0.677
±0.004

0.846
±0.002

0.846
±0.002

0.843
±0.002

BANE 0.807
±0.005

0.807
±0.005

0.787
±0.005

0.707
±0.003

0.713
±0.003

0.67
±0.004

0.823
±0.002

0.823
±0.002

0.822
±0.002

TENE 0.829
±0.005

0.829
±0.005

0.815
±0.004

0.664
±0.004

0.681
±0.003

0.611
±0.002

0.842
±0.001

0.842
±0.001

0.843
±0.002

AE 0.835
±0.005

0.835
±0.005

0.815
±0.006

0.730
±0.005

0.739
±0.005

0.688
±0.006

0.839
±0.002

0.839
±0.002

0.840
±0.002

AE-EGO 0.835
±0.005

0.835
±0.006

0.816
±0.005

0.729
±0.004

0.739
±0.005

0.690
±0.007

0.840
±0.002

0.840
±0.003

0.839
±0.002

MUSAE 0.848
±0.004

0.848
±0.004

0.832
±0.005

0.737
± 0.004

0.742
±0.004

0.706
±0.004

0.853
±0.001

0.853
±0.001

0.854
±0.002

MUSAE-EGO 0.849
±0.004

0.849
±0.004

0.833
±0.004

0.736
±0.004

0.741
±0.004

0.706
±0.004

0.850
±0.002

0.851
±0.002

0.850
±0.002
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H ADDITIONAL TRANSFER LEARNING RESULTS ON THE TWITCH GRAPHS
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Figure 5: Mean micro F1 scores and standaard errors calculated from 10 transfer learning runs with
MUSAE and AE on the Twitch graphs using France, Portugal and Russia as targets for the transfer.

I REGRESSION RESULTS ON WIKIPEDIA PAGE-PAGE GRAPHS

Table 7: Average test R2 values and standard errors on the Wikipedia traffic prediction tasks. Red
numbers denote the best results on each page-page network.

Datasets

Method Wikipedia
Chameleons

Wikipedia
Crocodiles

Wikipedia
Squirrels

DeepWalk 0.375
±0.004

0.553
±0.001

0.170
±0.002

LINE2 0.381
±0.003

0.586
±0.001

0.232
±0.002

Node2Vec 0.414
±0.003

0.574
±0.001

0.174
±0.002

Walklets 0.426
±0.003

0.625
±0.001

0.249
±0.002

TADW 0.527
±0.003

0.636
±0.001

0.271
±0.002

AANE 0.598
±0.007

0.732
±0.002

0.287
±0.002

ASNE 0.440
±0.009

0.572
±0.003

0.229
±0.005

BANE 0.464
±0.003

0.617
±0.001

0.168
±0.002

TENE 0.494
±0.02

0.701
±0.003

0.321
±0.007

AE 0.642
±0.006

0.743
±0.003

0.291
±0.006

AE-EGO 0.644
±0.009

0.732
±0.002

0.283
±0.006

MUSAE 0.658
±0.004

0.736
±0.003

0.338
±0.007

MUSAE-EGO 0.653
±0.011

0.747
±0.003

0.354
±0.009
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J LINK PREDICTION RESULTS ON SOCIAL AND WEB NETWORKS

Table 8: Link prediction results evaluated by average AUC scores on the test set using attributed
node embedding techniques and regularized logistic regression. We created a 100 seeded splits
(80% training - 20% test). Standard errors of the AUC score are included below. Red denotes the
best performing embedding model on a given dataset considering both the neighbourhood based and
attributed techniques. We used 4 different element-wise operators to create edge features.

Datasets

Operator Method Facebook
Page-Page

GitHub
Web-ML

Twitch
Spain

Twitch
Germany

Wikipedia
Chameleons

Wikipedia
Crocodiles

TADW 0.517
±0.004

0.553
±0.004

0.541
±0.007

0.556
±0.008

0.573
±0.012

0.625
±0.006

Average

AANE 0.523
±0.003

0.539
±0.003

0.536
±0.001

0.554
±0.004

0.552
±0.013

0.577
±0.005

ASNE 0.547
±0.005

0.596
±0.002

0.562
±0.007

0.579
±0.005

0.650
±0.005

0.723
±0.004

BANE 0.625
±0.003

0.630
±0.002

0.616
±0.001

0.634
±0.003

0.617
±0.011

0.671
±0.003

TENE 0.547
±0.004

0.515
±0.004

0.532
±0.011

0.555
±0.006

0.555
±0.011

0.644
±0.003

AE 0.572
±0.006

0.719
±0.002

0.679
±0.006

0.723
±0.003

0.669
±0.007

0.834
±0.002

MUSAE 0.642
±0.003

0.780
±0.001

0.733
±0.004

0.771
±0.002

0.810
±0.006

0.899
±0.001

AE-EGO 0.514
±0.007

0.546
±0.005

0.523
±0.011

0.545
±0.007

0.563
±0.011

0.660
±0.006

MUSAE-EGO 0.511
±0.005

0.542
±0.003

0.533
±0.005

0.546
±0.008

0.622
±0.008

0.699
±0.003

TADW 0.973
±0.001

0.915
±0.001

0.886
±0.003

0.884
±0.001

0.964
±0.002

0.967
±0.001

Hadamard

AANE 0.911
±0.002

0.772
±0.002

0.833
±0.003

0.811
±0.002

0.917
±0.005

0.892
±0.005

ASNE 0.973
±0.001

0.912
±0.001

0.883
±0.003

0.866
±0.002

0.945
±0.005

0.940
±0.001

BANE 0.653
±0.002

0.664
±0.003

0.659
±0.009

0.816
±0.002

0.578
±0.014

0.738
±0.002

TENE 0.735
±0.012

0.878
±0.009

0.722
±0.007

0.748
±0.003

0.883
±0.003

0.872
±0.015

AE 0.926
±0.001

0.814
±0.002

0.743
±0.003

0.702
±0.003

0.939
±0.002

0.949
±0.001

MUSAE 0.945
±0.001

0.917
±0.002

0.871
±0.005

0.863
±0.002

0.950
±0.005

0.968
±0.001

AE-EGO 0.928
±0.001

0.786
±0.002

0.727
±0.006

0.687
±0.003

0.935
±0.002

0.939
±0.001

MUSAE-EGO 0.938
±0.001

0.911
±0.002

0.881
±0.003

0.859
±0.001

0.952
±0.007

0.969
±0.001

TADW 0.971
±0.001

0.909
±0.002

0.882
±0.003

0.881
±0.001

0.959
±0.002

0.962
±0.001

l1 Norm

AANE 0.866
±0.002

0.720
±0.001

0.771
±0.004

0.768
±0.001

0.944
±0.002

0.913
±0.001

ASNE 0.815
±0.002

0.866
±0.001

0.836
±0.002

0.849
±0.001

0.869
±0.001

0.874
±0.001

BANE 0.653
±0.002

0.664
±0.003

0.658
±0.009

0.816
±0.002

0.578
±0.014

0.74
±0.002

TENE 0.940
±0.001

0.942
±0.001

0.857
±0.004

0.837
±0.001

0.945
±0.003

0.927
±0.001

AE 0.968
±0.001

0.889
±0.001

0.871
±0.001

0.870
±0.002

0.955
±0.002

0.952
±0.002

MUSAE 0.973
±0.001

0.908
±0.001

0.885
±0.002

0.879
±0.002

0.956
±0.003

0.967
±0.001

AE-EGO 0.973
±0.001

0.891
±0.001

0.872
±0.002

0.872
±0.002

0.953
±0.002

0.955
±0.001

MUSAE-EGO 0.977
±0.001

0.911
±0.001

0.891
±0.002

0.884
±0.002

0.955
±0.003

0.963
±0.001

TADW 0.972
±0.001

0.913
±0.001

0.883
±0.003

0.879
±0.001

0.961
±0.002

0.964
±0.001

l2 Norm

AANE 0.877
±0.001

0.732
±0.001

0.779
±0.003

0.774
±0.002

0.941
±0.005

0.901
±0.002

ASNE 0.806
±0.004

0.872
±0.001

0.839
±0.003

0.852
±0.002

0.875
±0.006

0.880
±0.001

BANE 0.653
±0.002

0.664
±0.003

0.659
±0.009

0.816
±0.0002

0.578
±0.014

0.738
±0.002

TENE 0.893
±0.001

0.884
±0.016

0.826
±0.009

0.797
±0.005

0.930
±0.003

0.863
±0.013

AE 0.968
±0.001

0.881
±0.001

0.872
±0.001

0.867
±0.002

0.954
±0.003

0.953
±0.001

MUSAE 0.973
±0.001

0.905
±0.001

0.884
±0.002

0.877
±0.002

0.952
±0.005

0.965
±0.001

AE-EGO 0.973
±0.001

0.884
±0.001

0.873
±0.001

0.871
±0.002

0.952
±0.003

0.956
±0.001

MUSAE-EGO 0.977
±0.001

0.907
±0.001

0.891
±0.003

0.881
±0.002

0.951
±0.006

0.961
±0.001
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Table 9: Link prediction results evaluated by average AUC scores on the test set using attributed
node embedding techniques and regularized logistic regression. We created a 100 seeded splits
(80% training - 20% test). Standard errors of the AUC score are included below. Red denotes the
best performing embedding model on a given dataset considering both the neighbourhood based and
neighbourhood based embedding techniques. We used 4 different element-wise operators to create
edge features.

Datasets

Operator Method Facebook
Page-Page

GitHub
Web-ML

Twitch
Spain

Twitch
Germany

Wikipedia
Chameleons

Wikipedia
Crocodiles

DeepWalk 0.526
±0.006

0.550
±0.004

0.568
±0.009

0.575
±0.005

0.635
±0.002

0.661
±0.007

Average

LINE2 0.517
±0.007

0.551
±0.003

0.540
±0.011

0.544
±0.004

0.627
±0.001

0.708
±0.004

Node2Vec 0.534
±0.005

0.573
±0.003

0.575
±0.012

0.584
±0.006

0.641
±0.009

0.669
±0.007

Walklets 0.518
±0.008

0.552
±0.003

0.541
±0.006

0.545
±0.004

0.635
±0.015

0.716
±0.003

DeepWalk 0.981
±0.001

0.799
±0.001

0.781
±0.002

0.750
±0.003

0.974
±0.002

0.966
±0.001

Hadamard

LINE2 0.979
±0.001

0.899
±0.001

0.843
±0.003

0.755
±0.001

0.939
±0.003

0.938
±0.001

Node2Vec 0.982
±0.001

0.822
±0.001

0.810
±0.005

0.780
±0.003

0.979
±0.001

0.973
±0.001

Walklets 0.984
±0.001

0.925
±0.001

0.873
±0.003

0.819
±0.001

0.966
±0.004

0.980
±0.001

DeepWalk 0.921
±0.001

0.658
±0.001

0.723
±0.004

0.711
±0.002

0.950
±0.002

0.896
±0.001

l1 Norm

LINE2 0.924
±0.001

0.913
±0.002

0.882
±0.002

0.855
±0.001

0.922
±0.003

0.930
±0.001

Node2Vec 0.928
±0.001

0.725
±0.001

0.761
±0.004

0.745
±0.001

0.953
±0.003

0.913
±0.001

Walklets 0.980
±0.001

0.932
±0.001

0.898
±0.002

0.870
±0.001

0.961
±0.004

0.976
±0.001

DeepWalk 0.922
±0.001

0.663
±0.001

0.731
±0.004

0.717
±0.002

0.951
±0.002

0.899
±0.002

l2 Norm

LINE2 0.924
±0.001

0.910
±0.001

0.880
±0.002

0.855
±0.001

0.925
±0.003

0.936
±0.001

Node2Vec 0.929
±0.002

0.731
±0.001

0.768
±0.007

0.750
±0.001

0.954
±0.002

0.920
±0.001

Walklets 0.981
±0.001

0.930
±0.001

0.897
±0.002

0.870
±0.002

0.960
±0.005

0.978
±0.001
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