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ABSTRACT

Neural networks achieve human-level accuracy on many standard datasets used
in image classification. The next step is to achieve better generalization to nat-
ural (or non-adversarial) perturbations as well as known pixel-wise adversarial
perturbations of inputs. Previous work has studied generalization to natural ge-
ometric transformations (e.g., rotations) as invariance, and generalization to ad-
versarial perturbations as robustness. In this paper, we examine the interplay be-
tween invariance and robustness. We empirically study the following two cases:
(a) change in adversarial robustness as we improve only the invariance using
equivariant models and training augmentation, (b) change in invariance as we im-
prove only the adversarial robustness using adversarial training. We observe that
the rotation invariance of equivariant models (StdCNNs and GCNNs) improves by
training augmentation with progressively larger rotations but while doing so, their
adversarial robustness does not improve, or worse, it can even drop significantly
on datasets such as MNIST. As a plausible explanation for this phenomenon we
observe that the average perturbation distance of the test points to the decision
boundary decreases as the model learns larger and larger rotations. On the other
hand, we take adversarially trained LeNet and ResNet models which have good
`∞ adversarial robustness on MNIST and CIFAR-10, and observe that adversari-
ally training them with progressively larger norms keeps their rotation invariance
essentially unchanged. In fact, the difference between test accuracy on unrotated
test data and on randomly rotated test data upto ±θ◦, for all θ ∈ [0, 180], remains
essentially unchanged after adversarial training . As a plausible explanation for
the observed phenomenon we show empirically that the principal components of
adversarial perturbations and perturbations given by small rotations are nearly or-
thogonal.

1 INTRODUCTION

Neural networks achieve state of the art, human-level accuracy on several standard datasets used
in image classification. However, their performance in the wild depends on how well they can
handle natural or non-adversarial transformations of input seen in real-world data as well as known
deliberate, adversarial attacks created to fool the model.

Natural or non-adversarial transformations seen in real-world images include translations, rotations,
and scaling. Convolutional Neural Networks (CNNs) are translation-invariant or shift-invariant by
design. Invariance to other symmetries, and especially rotations, have received much attention
recently, e.g., Harmonic Networks (H-Nets) by Worrall et al. (2016), cyclic slicing and pooling
by Dieleman et al. (2016), Tranformation-Invariant Pooling (TI-Pooling) by Laptev et al. (2016),
Group-equivariant Convolutional Neural Networks (GCNNs) by Cohen & Welling (2016), Steerable
CNNs by Cohen & Welling (2017), Deep Rotation Equivariant Networks (DREN) by Li et al. (2017),
Rotation Equivariant Vector Field Networks (RotEqNet) by Marcos et al. (2017), Polar Transformer
Networks (PTN) by Esteves et al. (2018). For a given symmetry group G, a G-equivariant net-
work learns a representation or feature map at every intermediate layer such that any transformation
g ∈ G applied to an input corresponds to an equivalent transformation of its representations. Any
model can improve its invariance to a given group of symmetries through sufficient training aug-
mentation. Equivariant models use efficient weight sharing and require smaller sample complexity
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to achieve better invariance. Equivariant models such as CNNs and GCNNs too generalize well to
progressively larger random rotations but only when their training data is augmented similarly.

Adversarial attacks on neural network models are certain, deliberate changes to inputs that fool a
highly accurate model but are unlikely to fool humans. Given any neural network model, Szegedy
et al. (2013) show how to change the pixel values of images only slightly so that the change is almost
imperceptible to human eye but makes highly accurate models misclassify. Szegedy et al. (2013) find
these adversarial pixel-wise perturbations of small magnitude by maximizing the prediction error of
a given model using box-constrained L-BFGS. Goodfellow et al. (2015) propose Fast Gradient Sign
Method (FGSM) that applies the adversarial perturbation as x′ = x+ ε sign (∇xJ(θ, x, y)), where
x is the input, y represents the target, θ represents the model parameters, and J(θ, x, y) is the loss
function used to train the network. Moreover, Goodfellow et al. (2015) propose adversarial training,
or training augmented with points (x′, y), as a way to improve adversarial robustness of a model.

Subsequent work has introduced multi-step variants of FGSM, notably, an iterative method by Ku-
rakin et al. (2017) and Projected Gradient Descent (PGD) attack by Madry et al. (2018). Given any
model, these attacks produce adversarial perturbation for every test image x from a small `∞-ball
around it, namely, each pixel value xi is perturbed within [xi − ε, xi + ε]. PGD attack does so by
solving an inner optimization by projected gradient descent over `∞-ball of radius ε around x to
approximate the optimal perturbation. Adversarial training with PGD perturbations improves the
adversarial robustness of models, and it is one of the best known defenses to make models robust
to perturbations of bounded `∞ norm on MNIST and CIFAR-10 datasets, as shown in Madry et al.
(2018) and Athalye et al. (2018).

Recent work has looked at simultaneous robustness to multiple adversarial attacks. Engstrom
et al. (2017) show that adversarial training with PGD makes CNNs robust against perturbations
of bounded `∞ norm but an adversarially chosen combination of a small rotation and a translation
can still fool these models nevertheless. Recent work of Schott et al. (2019) shows that PGD adver-
sarial training is a good defense against perturbations of bounded `∞ norm but can be broken with
adversarial perturbations of small `0 or `2 norm that are also imperceptible to humans or have little
semantic meaning for humans. Schott et al. (2019) show how to build models for MNIST dataset
that are simultaneously robust to perturbations of small `0, `2 and `∞ norms.

1.1 OUR RESULTS

In this paper, we study the simultaneous interplay between invariance of models to images randomly
rotated by an angle between [−θ◦,+θ◦], and their adversarial robustness to pixel-wise perturbations
of `∞ norm at most ε. Unlike previous studies, we do not fix the magnitude ε (e.g., say ε = 0.3) of
pixel-wise perturbations nor limit ourselves to small rotations upto ±30◦. Instead, we compute the
accuracy of a given model on input rotated by a random angle between [−θ◦,+θ◦] for θ in the range
[0, 180]. Similarly, we compute the accuracy of a given model for an adversarial attack of `∞ norm
at most ε for ε in the range [0, 1] (and the underlying dataset is normalized).

We empirically study the following: (a) change in `∞ adversarial robustness as we improve only ro-
tation invariance using equivariant models (StdCNNs and GCNNs) and training augmentation with
progressively larger rotations, (b) change in invariance as we improve only adversarial robustness
using PGD adversarial training with progressively larger `∞-norm of pixel-wise perturbations.

We observe that the rotation invariance of equivariant models (StdCNNs and GCNNs) improves
by training augmentation with progressively larger rotations but while doing so, their adversarial
robustness does not improve, or worse, it can even drop significantly on datasets such as MNIST.
On the other hand, we take adversarially trained LeNet and ResNet models which have good `∞
adversarial robustness on MNIST and CIFAR-10, and observe that adversarially training them with
progressively larger norms keeps their rotation invariance essentially unchanged. In fact, the differ-
ence between test accuracy on unrotated test data and on randomly rotated test data upto ±θ◦, for
all θ ∈ [0, 180], remains essentially unchanged after adversarial training with progressively larger
bounds on the `∞ norm of pixel-wise perturbations. We support these two observations with plau-
sible empirical reasons for their occurrence - distance to the decision boundary of the test points
reducing in the first case, and orthogonality of adversarial perturbations with perturbations caused
by small rotations of test points.
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Related Work Schott et al. (2019) study simultaneous robustness to adversarial perturbations of
small `0, `2, and `∞-norm. Tramèr & Boneh (2019) show an impossibility result by exhibiting data
distribution where no model can have substantially better-than-random accuracy for binary classifi-
cation simultaneously against both `∞ and `1 perturbations, and also against both `∞ perturbations
and spatial perturbations, given by an adversarial permutation of coordinates that models an adver-
sarially chosen combination of a small rotation and a small translation. They show an empirical
validation of this claim on MNIST and CIFAR-10 datasets for simultaneous robustness against `∞
adversarial perturbation and an adversarially chosen combination of translation upto ±3 pixels and
rotation upto ±30◦.

2 ROTATION INVARIANCE VS. `∞ ADVERSARIAL ROBUSTNESS

In this section, we present our main result about the interplay between rotation invariance and `∞
adversarial robustness of models on MNIST, Fashion MNIST, and CIFAR-10 data. In Subsection
2.2, we study how the robustness of equivariant models (StdCNNs and GCNNs) to `∞ adversarial
perturbations changes as they become more rotation invariant through training augmentation with
random rotations of progressively larger degree. In Subsection 2.3, we study how the rotation in-
variance of LeNet and ResNet based architectures change as they become robust to `∞ adversarial
perturbations through PGD adversarial training. The models used in Subsection 2.2 were shown to
achieve good rotational invariance with augmentation by Cohen & Welling (2016). The LeNet and
ResNet models used in Subsection 2.3 were shown to be adversarially robust by Madry et al. (2018)
and reconfirmed in recent work by Athalye et al. (2018).

Before we begin our experiments we first give details of the plots that our experiments will yield.

Rotation invariance means that the predicted labels of an image and any of its rotations should be
the same. Since most datasets are centered, we restrict our attention to rotations around the center
of the image. One way to quantify rotation invariance is to look at the accuracy of a given model
on randomly rotated test data. This is visualized by plotting the accuracy on test inputs rotated
by a random angle between [−θ◦,+θ◦], as θ varies in the range [0, 180]. We call this the rotation
invariance profile of the given model.

Adversarial robustness means that the predicted labels of an image and its adversarial pixel-wise
perturbation should be the same. Adversarial robustness of a given model to a fixed adversarial
attack (e.g., FGSM, PGD) and a fixed `∞ norm (say, 0 ≤ ε ≤ 1) is quantified by the accuracy of the
given model on perturbed test data with a perturbation of `∞ norm at most ε generated by the attack.
The resulting plot of the accuracy of the model as ε varies over [0, 1] is the robustness profile of the
given model.

Convention used in the legends of our figure: We use the following convention in the legends of
our plots. A coloured line labeled A/B indicates that the training data is augmented with random
rotations from [−A◦, A◦] and the test data is augmented with random rotations from [−B◦, B◦]. If
A (resp. B) is zero it means the training data (resp. test data) is unrotated.

2.1 IMPROVING ROTATION INVARIANCE

Any model improves its rotation invariance profile when its training data is augmented with progres-
sively larger random rotations. Equivariant models (e.g., GCNNs, H-Nets, PTNs, RotEqNets) are
designed to achieve better rotation invariance thought clever weight sharing. However, models such
as GCNNs and H-Nets cannot achieve rotation invariance, if their training data is not sufficiently
augmented. This appears to be folklore so we do not elaborate on this in the main paper. In Ap-
pendix E we confirm this on many popular rotation equivariant models and also show empirically
that they become equivariant to rotations by training with a small sample of data augmented with
random rotations.

2.2 EFFECT OF ROTATION INVARIANCE ON l∞ ADVERSARIAL ROBUSTNESS

For any fixed θ ∈ [0, 180], we take an equivariant model, namely, StdCNN or GCNN, and augment
its training data by random rotations from [−θ◦,+θ◦]. Figures 1 and 2 show how the robustness
profiles of StdCNN and GCNN models change on MNIST, Fashion MNIST, and CIFAR-10 datasets,
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Figure 1: Robustness profiles of StdCNNs - (top left) PGD attack on MNIST, (top right) PGD
attack on Fashion MNIST, (bottom left) FGSM attack on CIFAR-10, (bottom right) PGD attack on
CIFAR-10.

Figure 2: Robustness profiles of GCNNs - (top left) PGD attack on MNIST, (top right) PGD attack
on Fashion MNIST, (bottom left) FGSM attack on CIFAR-10, (bottom right) PGD attack on CIFAR-
10.
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as we increase the degree θ used in training augmentation of the model (thereby improving their
rotation invariance). We use PGD adversarial attack for MNIST and Fashion MNIST, FGSM and
PGD attack for CIFAR-10 dataset. FGSM is a weaker attack for these models on CIFAR-10. In
the above experiments, the test data is unrotated but adversarially perturbed. For completeness,
Figures 9, 10 in Appendix B, show the robustness profile of the same networks when the test is also
augmented with random rotations before applying adversarial perturbations.

Our experiments show that training augmentation with progressively larger rotations improves the
rotation invariance of StdCNNs and GCNNs. For example the red line in Figure 20(bottom) for
CIFAR-10 in Appendix E.2 shows that the accuracy of GCNNs drops below 70% when it is not
trained with rotations but when the test has random rotations upto±30◦. However when the training
data is augmented with random rotations upto ±30◦ the accuracy improves to about 88% as can be
seen from the black line in the same figure.

However training with rotations does not improve their `∞ adversarial robustness, and can even
worsen as in the case of MNIST. On MNIST, the `∞ adversarial robustness of StdCNNs and GCNNs
drops sharply when they are trained with larger rotation augmentations. When GCNN’s are trained
on MNIST with rotations upto 30◦ (light blue line in Figure 2 (top left)) their accuracy drops to
90% under a PGD attack with ε = 0.3, whereas their accuracy is about 97% with the same PGD
attack when they are not trained with random rotations (dark blue line in Figure 2 (top left)). We
observe the same trend when the test is augmented with rotations, Figure 10 (left) in Appendix B. It
is alarming to note that even seemingly innocuous training augmentation with random rotations can
affect adversarial robustness of models.

2.3 EFFECT OF `∞ ADVERSARIAL TRAINING ON ROTATION INVARIANCE

Figure 3: (left) Rotation invariance profiles of PGD adversarially trained LeNet based models from
Madry et al. (2018) on MNIST,(right) Rotation invariance profile of PGD adversarially trained
ResNet based models from Madry et al. (2018) on CIFAR-10. Different colored lines represent
models adversarially trained with different `∞ budgets ε ∈ [0, 1].

The most common approach to improve adversarial robustness is adversarial training, i.e., training
the model on adversarially perturbed training data. Adversarial training with PGD attack is one of
the strongest known defenses on MNIST and CIFAR-10 datasets, see Athalye et al. (2018).

For any fixed ε ∈ [0, 1] and any fixed θ ∈ [0, 180], we adversarially train our models (LeNet and
ResNet) with PGD adversarial perturbations with `∞ budget ε, and then plot their rotation invariance
profiles. Each colored line in Figure 3 corresponds to a model adversarially trained with a different
value of ε. Tsipras et al. (2019) point out that the test accuracy on the original data drops after
adversarial training, and our plots confirm this - the y co-ordinate of the points where the curves
begin decreases with increasing ε.

In Figure 3, we observe that the entire invariance profile essentially make a parallel shift downward
for LeNet and ResNet based models on MNIST and CIFAR-10 datasets, respectively. In other
words, adversarial training does not affect the relative drop in accuracy when test data is augmented
with progressively larger rotations.
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3 DECISION BOUNDARY DISTANCE AND ORTHOGONALITY

In order to understand what could be the possible reasons behind our empirical observations in
Section 2.2 and Section 2.3 we perform more experiments.

3.1 AVERAGE PERTURBATION DISTANCE TO THE BOUNDARY.

For each test image, adversarial attacks find perturbations of the test point with small `∞ norm
that would change the prediction of the given model. Most adversarial attacks do so by finding
the directions in which the loss function of the model changes the most. In order to explain why
these networks become vulnerable to pixel-wise attacks as they learn more rotations, we see how the
distance of the test points to the decision boundary changes as the networks learn larger rotations.
This is abstractly depicted in Figure 4 where we show the distance of a test point x0 to the boundary
D0 (resp. D180) when the model is trained with zero (resp. 180◦) rotations.

We use the L2 attack vectors obtained by DeepFool (Moosavi-Dezfooli et al., 2016) for the dat-
apoints under attack. We take the norm of this attack vector as an approximation to the shortest
distance of the test point to the decision boundary. For each of the test points we collect the pertur-
bation vectors given by DeepFool attack and report the average perturbation distance. We plot this
average distance as the datasets are augmented with larger rotations.

Our experiments show that as the networks learn larger rotations with augmentation, the average
perturbation distance falls. So as (symmetric) networks become invariant to rotations, they are more
vulnerable to pixel-wise attacks.

The plots in Figures 5, 6, 7, 8 show this for StdCNNs and GCNNs on MNIST and CIFAR-10.
Figures 17 and 18 in Appendix C show the plots for Fashion-MNIST. To make our point we plot the
accuracy of these networks and also the average perturbation distance of the test points alongside in
one figure. The blue line in Figure 5(left) shows the accuracy of a StdCNN on MNIST when both
the training data and test data are augmented with θ, as θ ranges from 0 to 180. The green line in
Figure 5(left) shows the accuracy of the StdCNN model when the train is augmented with random
rotations upto θ, and the test is augmented with rotations upto θ and is also perturbed with PGD of
`∞ norm 0.3. The red line shows the accuracy when the test is not augmented with rotations but is
PGD perturbed with `∞ norm 0.3.

The red line Figure 5(right) shows the average perturbation distance of the unrotated test points
when the network is trained with rotations upto θ. The green line shows the average perturbation
distance of test points which are augmented with rotations upto θ - this is about 5 when θ is 0◦

(the point on the y-axis where the curves begin). As the network is trained with random rotations
up to 180◦ the average perturbation distance of the augmented test drops below 3.5. Figure 5(left)
shows that that the PGD accuracy has dropped from around 85% for the network at 0◦ to 30% at
180◦ (the corresponding green line on the left). The fact that the red line is above the green line is
also reflected in Figure 11 in Appendix C. When the test is perturbed by PGD, the accuracy of the
StdCNN with training data augmented with rotations is better when the test is not augmented with
rotations than if the test were also augmented with rotations.

Figure 4: Distance of point x0 to decision boundary D180 obtained by augmenting training set with
random rotations in range [−180◦, 180◦] is different compared to the decision boundaryD0 obtained
with no training augmentation.
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Figure 5: Accuracy of StdCNN on MNIST with/without PGD (ε = 0.3), on rotated and unrotated
test. Train/test if augmented are with random rotations in [−θ◦, θ◦]. (left) Accuracy, (right) Avg.
Perturbation Distance.

Figure 6: Accuracy of GCNNs on MNIST with/without PGD (ε = 0.3) on rotated and unrotated
test. Train/test if augmented are with random rotations in [−θ◦, θ◦]. (left) Accuracy, (right) Avg.
Perturbation Distance.

Figure 7: Accuracy of StdCNNs/VGG16 on CIFAR-10, with/without FGSM (ε = 0.01) on rotated
and unrotated test with ε = 0.01. Train/test if augmented are with random rotations in [−θ◦, θ◦].
(left) Accuracy, (right) Avg. Perturbation Distance.

3.2 ORTHOGONALITY OF ADVERSARIAL PERTURBATIONS & INVARIANT ROTATIONAL
PERTURBATIONS

In general we expect neural networks to classify x and a small rotation x′ of x, identically. This
would be particularly so if the dataset has some inherent rotations and the labels remain the same
under such rotations. Writing x′ = x + ∆(x), we say ∆(x) is an invariant rotational perturbation
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Figure 8: Accuracy of GCNNs/VGG16 on CIFAR-10, with/without FGSM (ε = 0.01) on rotated
and unrotated test. Train/test if augmented are with random rotations in [−θ◦, θ◦]. (left) Accuracy,
(right) Avg. Perturbation Distance.

Table 1: MNIST: Principal angles between Top-5 SVD-subspace of PGD attack directions of test
points with `∞ norm ε and Top-5 SVD-subspace of the difference directions between a test point
and its 4◦ rotation.

ε 1 2 3 4 5
0.0 89.48 89.03 86.91 84.79 80.97
0.1 89.93 87.97 86.15 81.62 76.99
0.2 89.56 88.00 85.83 82.29 80.73
0.3 89.75 88.49 87.75 84.96 80.45
0.4 89.33 88.55 86.86 85.80 82.13

Table 2: CIFAR-10: Principal angles between Top-5 SVD-subspace of PGD attack directions of test
points with `∞ norm ε and Top-5 SVD-subspace of the difference directions between a test point
and its 2◦ rotation.

ε 1 2 3 4 5
0/255 89.99 89.40 88.27 86.98 85.99
2/255 89.76 88.76 88.31 87.15 86.33
4/255 89.78 89.02 88.30 86.78 86.41
8/255 89.69 89.13 88.11 87.25 86.42

for x. For a network trained to be equivariant to rotations, this rotational perturbation of x could
well be orthogonal to an adversarial perturbation of x, since an adversarial perturbation changes the
label whereas an invariant rotational perturbation does not change the label. We empirically show
that this is the case for MNIST and CIFAR-10. For each test input find we find its PGD perturbation
and stack these adversarial perturbations as rows of an adversarial matrix. We find the top 5 right
singular vectors of this adversarial matrix. We rotate each input by 4◦/2◦ for MNIST/CIFAR-10 and
subtract the original image from it. We stack such invariant rotational perturbations as rows of an
invariance matrix. We find the top 5 right singular vectors of this invariance matrix. We empirically
observe that the principal angles between these two 5-dimensional subspaces are close to 90◦. This
may explain why in Section 2.3 the rotation invariance profile just shifts down. For completeness
we recall the definition of principal angles in Appendix D.

Table 1 gives the principal angles of MNIST trained on LeNet and Table 2 gives the principal angles
for CIFAR-10 trained on ResNet as given by Madry et al. (2018).
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4 CONCLUSION

We observe that as equivariant models (StdCNNs and GCNNs) are trained with progressively larger
rotations their rotation invariance improves but at the cost of their adversarial robustness. On the
other hand, adversarial training with perturbations of progressively increasing norms improves the
robustness of LeNet and ResNet and also keeps the invariance unchanged. A plausible explanation
of the first observation is that the average perturbation distance of the test points to the boundary
decreases as StdCNNs and GCNNs learn larger rotations. A plausible explanation for the second
observation is that the singular vectors of adversarial perturbations are orthogonal to the singular
vectors of invariant rotational perturbations.
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APPENDIX A DETAILS OF EXPERIMENTS

All experiments performed on neural network-based models were done using MNIST, Fashion
MNIST and CIFAR-10 datasets with appropriate augmentations applied to the train/validation/test
set.

Data sets MNIST dataset consists of 70, 000 images of 28×28 size, divided into 10 classes. 55, 000
used for training, 5, 000 for validation and 10, 000 for testing. Fashion MNIST dataset consists of
70, 000 images of 28×28 size, divided into 10 classes. 55, 000 used for training, 5, 000 for validation
and 10, 000 for testing. CIFAR-10 dataset consists of 60, 000 images of 32 × 32 size, divided into
10 classes. 40, 000 used for training, 10, 000 for validation and 10, 000 for testing.

Model Architectures For the MNIST and Fashion MNIST based experiments we use the network
architecture of GCNN as given in Cohen & Welling (2016). The StdCNN architecture is similar
to the GCNN except that the operations are as per CNNs. Refer to Table 3 for details. H-Nets
architecture is as given in Worrall et al. (2016). RotEqNet architecture is as given in Marcos et al.
(2017). PTN architecture is as given in Esteves et al. (2018).

For the CIFAR-10 based experiments we use the VGG16 architecture as given in Simonyan & Zis-
serman (2014) and its GCNN equivalent is obtained replacing the various layer operations with
equivalent GCNN operations as given in Cohen & Welling (2016). This is similar to how we ob-
tained a GCNN architecture from StdCNN for the MNIST based experiments. Input training data
was augmented with random cropping and random horizontal flips.

For the adversarial training experiments we used the LeNet based architecture for MNIST and the
ResNet architecture for CIFAR-10. Both these models are exactly as given in Madry et al. (2018).
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Table 3: Architectures used for the MNIST and Fashion MNIST experiments

Standard CNN GCNN

Conv(10,3,3) + Relu P4ConvZ2(10,3,3) + Relu
Conv(10,3,3) + Relu P4ConvP4(10,3,3) + Relu
Max Pooling(2,2) Group Spatial Max Pooling(2,2)
Conv(20,3,3) + Relu P4ConvP4(20,3,3) + Relu
Conv(20,3,3) + Relu P4ConvP4(20,3,3) + Relu
Max Pooling(2,2) Group Spatial Max Pooling(2,2)
FC(50) + Relu FC(50) + Relu
Dropout(0.5) Dropout(0.5)
FC(10) + Softmax FC(10) + Softmax

APPENDIX B EFFECT OF INVARIANCE ON ADVERSARIAL ROBUSTNESS
AFTER TEST AUGMENTATION

Figure 9: Robustness profile of StdCNN models. (top left) PGD attack on MNIST, (top right) PGD
attack on Fashion MNIST, (bottom left) FGSM attack on CIFAR-10, (bottom right) PGD attack on
CIFAR-10.
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Figure 10: Robustness profile of GCNN models. (top left) PGD attack on MNIST, (top right) PGD
attack on Fashion MNIST, (bottom left) FGSM attack on CIFAR-10, (bottom right) FGSM attack
on CIFAR-10.

Figure 11: Robustness profile of StdCNN models on MNIST attacked with FGSM. (left) train and
test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range and no test
augmentation.

APPENDIX C DECISION BOUNDARY DISTANCE, ORTHOGONALITY
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Figure 12: Robustness profile of StdCNN models on Fashion-MNIST attacked with FGSM. (left)
train and test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range
and no test augmentation.

Figure 13: Robustness profile of StdCNN/VGG16 models on CIFAR-10 attacked with PGD. (left)
train and test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range
and no test augmentation.

Figure 14: Robustness profile of GCNN models on MNIST attacked with FGSM. (left) train and
test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range and no test
augmentation.

APPENDIX D PRINCIPAL ANGLES

Recall that for two subspaces V ,W , the first principal angle is defined as the minimum angle between
two unit vectors v1 ∈ V , w1 ∈ W . The second principal angle is the minimum angle between unit
vectors v2 ∈ V,w2 ∈ W , with v2 ⊥ v1 and w2 ⊥ w1. The other principal angles are defined
similarly.
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Figure 15: Robustness profile of GCNN models on Fashion-MNIST attacked with FGSM. (left)
train and test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range
and no test augmentation.

Figure 16: Robustness profile of GCNN/VGG16 models on CIFAR-10 attacked with PGD. (left)
train and test augmented with [−x◦, x◦] range (right) Only train augmented with [−x◦, x◦] range
and no test augmentation.

Figure 17: On Fashion MNIST, StdCNNs, Comparison of network with/without PGD on rotated
and unrotated test with ε = 0.1. Train/test if augmented are with random rotations in [−x◦, x◦].
(left) Accuracy, (right) Avg. Perturbation Distance.

APPENDIX E ROTATION INVARIANCE OF EQUIVARIANT NETWORKS

We observe that (a) Rotation equivariant networks are robust to only small degrees of rotations away
from the ones present in the training data - this was studied only for CNNs in Weiler et al. (2018),
(b) applying data augmentation increases their invariance to rotations. (c) Rotation equivariant net-
works achieve state of the art results with smaller sample size for training.
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Figure 18: On Fashion MNIST, GCNNs, Comparison of network with/without PGD on rotated and
unrotated test with ε = 0.1. Train/test if augmented are with random rotations in [−x◦, x◦]. (left)
Accuracy, (right) Avg. Perturbation Distance.

E.1 ROBUSTNESS TO ROTATIONS WITHOUT TRAINING AUGMENTATION

We first train all the networks on MNIST and Fashion MNIST with no rotation augmentation and
test against inputs augmented with varying range of random rotations from ±0◦ to ±180◦. Figure
19(top left) for MNIST and Figure 19(top right) for Fashion MNIST shows the performance of
these networks to the entire range of rotations. We observe that even though these datasets are
small and these networks are designed to be invariant to rotations, their performance drops as the
range of random rotations in test data increases. For small range of rotations up to about ±20◦, the
performance of these networks on MNIST remains above 95% indicating that MNIST dataset has
some natural rotation augmentation. On Fashion MNIST, the performance being above 85% when
the test is augmented with small rotations up to ±20◦. When the test is augmented with rotations
beyond 25◦, the accuracy of these networks drops. We observe that PTN and RotEqNet are more
robust than the other networks for MNIST and Fashion MNIST.

On the dataset CIFAR-10 we compare the performance of rotation-equivariant GCNNs with
translation-equivariant StdCNNs. This is shown in Figure 19(bottom). GCNNs perform better,
as expected, but the performance of both GCNNs and StdCNNs degrades to less than 70% accuracy
when the test data is augmented with random rotations larger than ±30◦.

E.2 ROBUSTNESS WITH TRAINING AUGMENTATION

We train equivariant networks with input augmented with varying range of random rotations from
±0◦ to ±180◦. In Figure 20 we plot our results for MNIST (top left), Fashion MNIST (top right)
and CIFAR-10 (bottom), for both StdCNN’s and GCNN’s. The red(GCNN) and blue(StdCNN) lines
indicate networks for which no train augmentation is done. The y coordinate of a point on the black
(resp. brown) line corresponding to θ◦ on the X-axis (for θ in the range of [0, 180]) indicates the
accuracy of a GCNN (resp. StdCNN) with training data augmented with random rotations in the
range ±θ◦ and with test data also augmented with random rotations in the range ±θ◦. For GCNN’s
we see a gap of about 4-5% on Fashion MNIST and also CIFAR-10, between the accuracies when
trained and tested with no rotation augmentations (θ = 0) and when trained and tested with ±180◦

rotations (θ = 180). It is only on MNIST that rotation-equivariant networks achieve almost the
same performance (≈ 1% difference). For StdCNN’s the gap is more pronounced, almost 10-15%
on Fashion MNIST and CIFAR-10.

E.3 SAMPLE COMPLEXITY OF NETWORKS

To understand the sample complexity of the networks, we perform two experiments. In the first we
train the networks with varying sample sizes of training set and test them on the entire test set. And
in the second experiment we do the same as the first with the inputs in train and test augmented with
random rotations in the range [−180◦, 180◦]. From Figure 21 for MNIST, Figure 22 for Fashion
MNIST and 23 for CIFAR-10, we can see that rotation equivariant networks achieve their best per-
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Figure 19: Rotation invariance profile of models with no training augmentation. (top left) MNIST,
(top right) Fashion MNIST, (bottom) CIFAR-10 .

Figure 20: Networks trained with and without augmentation to dataset, random rotation augmenta-
tions in [−x◦, x◦] range. (top left) MNIST (top right) Fashion MNIST (bottom) CIFAR-10.

formance safely using 10k - 30k training samples. This confirms that rotation equivariant networks
can do well with smaller training sample size.
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Figure 21: Networks trained with varying training sample size on X-axis. (left) Only MNIST, (right)
MNIST train and test augmented with random rotations in [−180◦, 180◦] range.

Figure 22: Networks trained with varying training sample size on X-axis. (left) Only Fashion
MNIST, (right) Fashion MNIST train and test augmented with random rotations in [−180◦, 180◦]
range.

Figure 23: Networks trained with varying training sample size on X-axis. (left) Only CIFAR-10,
(right) CIFAR-10 train and test augmented with random rotations in [−180◦, 180◦] range.
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