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ABSTRACT

Probability density estimation is a classical and well studied problem, but standard
density estimation methods have historically lacked the power to model complex
and high-dimensional image distributions. More recent generative models lever-
age the power of neural networks to implicitly learn and represent probability
models over complex images. We describe methods to extract explicit probability
density estimates from GANS, and explore the properties of these image density
functions. We perform sanity check experiments to provide evidence that these
probabilities are reasonable. However, we also show that density functions of nat-
ural images are difficult to interpret and thus limited in use. We study reasons for
this lack of interpretability, and suggest that we can get better interpretability by
doing density estimation on latent representations of images.

1 INTRODUCTION

Researchers have long sought to estimate the probability density functions (PDFs) of images. The
resulting generative models can be used in image synthesis, outlier detection, image restoration,
and in classification. There have been some impressive successes, including building generative
models of textures for texture synthesis, and using low-level statistical models for image denoising.
However, building accurate densities for full, complex images remains challenging.

Recently there has been a flurry of activity in building deep generative models of complex images,
including the use of generative adversarial networks (GANS) ( , ) to gener-
ate stunningly realistic complex images. While some deep models, like VAEs, focus explicitly on
building probability densities of images, we focus on GANs, leveraging their rapid improvements.
Implicitly, these GANs also encode probability densities. In this paper we explore whether these
implicit densities capture the intuition of a probable image. We show that in some sense the answer
is “no”. But, we suggest that by computing PDFs over latent representations of images, we can do
better.

We first propose some methods for extracting probability densities from GANSs. It is well known that
when a bijective function maps one density to another, the relationship between the two densities
can be understood using the determinant of the Jacobian of the function. GANs are not bijective,
and map a low-dimensional latent space to a high-dimensional image space. In this case, we modify
the standard formula so that we can extract the probability density value of an image given its latent
representation. This allows us to compute densities of images generated by the GAN, which we then
use to train a regressor that computes densities of arbitrary images.

We perform sanity checks to ensure that GANs do indeed produce reasonable densities on images.
We show that GANs produce similar densities for training images and for held out test images from
the same distribution. We also show that when we compute the density of either real or generated
images, the most likely (highest density value) images are of low complexity, and the least likely
images are of high complexity. An example of this last result is shown in Figure 1, which displays
the images with highest and lowest densities among samples generated by a StackGAN (

s ) and a StyleGAN ( , ). The StackGAN images are conditioned on two
different captions, and the StyleGAN images are from models trained on two different datasets.
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Unfortunately, we also show that probability densities learned on images are difficult to interpret and
have unintuitive behaviors. The strong influence of visual complexity on the learned PDF causes
irrelevant background details to dominate the shape of the distribution; we see that the most likely
images tend to contain small objects with large, simple backgrounds, while images with complex
backgrounds are deemed unlikely despite being otherwise sensible. For example, for a GAN trained
on MNIST, all of the most likely digits are 1, despite each type of digit occurring in equal proportion
in the training set. If we exclude 1s from the training data and then compute the densities of all
MNIST digits under this altered distribution, the most likely digits are still 1s, even though the GAN
never saw them during training. In fact, even if we train a GAN on CIFAR images of real objects,
the GAN will produce higher densities for MNIST images of 1s than for most of the CIFAR images.
Theoretically, this is not surprising: high-dimensional density functions tend to have peaks of very
large probability density away from “typical” points. Consider the example of a high-dimensional
Gaussian with an identity covariance matrix, which has large density values at its center, though
most sampled points lie near the unit sphere. In practice, this becomes a problem when real images
inhabit these high-density peaks, because . We investigate these unintuitive properties of density
functions in detail, and explore reasons for this lack of interpretability.

We propose to mitigate this problem by doing probability density estimation on the latent representa-
tions of the images, rather than their pixel representations. With this approach we obtain probability
distributions with inliers and outliers that seem to coincide more closely with our intuition. In the
Gaussian latent space, the problem of natural images lying near high-density peaks is mitigated:
natural images correspond to latent codes near the unit sphere, putting them on more equal footing
with one another. Outliers can then be detected by finding images with density values that are lower
or higher than expected.

In parallel to our work, Nalisnick et al. (2018) also addresses the interpretability of density func-
tions over images, claiming that seemingly uninterpretable density estimates result from inaccurate
estimation on out-of-sample images (Nalisnick et al., 2018). Our thesis is different, as we argue
that density estimation is often accurate even for unusual images, but the true underlying density
function (even if known exactly) is fundamentally difficult to interpret.

Figure 1: The images with the highest and lowest densities among 100 samples from a StackGAN (top two
rows) and a StyleGAN (bottom two rows). Left: Images with highest density. Right: Images with lowest
density. Top row: Samples from StackGAN trained on the CUB-200 dataset (Welinder et al., 2010), condi-
tioned on the caption “A bird with a very long wing span and a long pointed beak.” Second row: Samples from
StackGAN conditioned on the caption “This bird has a white eye with a red round shaped beak.” Third row:
Samples from a StyleGAN model pretrained on the LSUN Bedroom dataset (Yu et al., 2015). Bottom row:
Samples from a StyleGAN model pretrained on the Flickr-Faces-HQ dataset (Karras et al., 2018).
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2 BACKGROUND

There are many classical models for density estimation in low-dimensional spaces Non-parametric
methods such as Kernel density estimation (i.e., Parzan windows ( s R
)) can model simple distributions with light tails, and nearest-neighbor cla551ﬁers (eg.,
( ) ) implicitly use this representation. Directed graphical models (eg., Chow-Liu trees
and related models ( R )) have also been used for classification (
). However, these models do not scale up to the complexity or dimensionality of image distri-
butions.

There is a long history of approximating the PDFs of images using simple statistical models. These
approaches succeed at estimating some low-dimensional marginal distribution of the true image
density. Modeling the complete, high-dimensional distribution of complex images is a substantially
more difficult problem. For example, ( ) models the low-level statistics of
natural images. ( ) uses conditional models on the wavelet coefficients of images
and shows that these models can improve image denoising. ( ) learns and applies
image priors based on Fields of Experts. Markov models have also been used to synthesize textures
with impressive realism ( s ; s ).

Neural networks have been used to build generative models of images. ( ) and
( ) do so assuming independence of pixels or patches. Restricted Boltzmann Machines
( ) and Deep Boltzmann machines ( , ) also model
image densities. However these methods suffer from complex training and sampling procedures
due to mean field inference and expensive Markov Chain Monte Carlo methods ( )
). In another approach, Variational Autoencoders ( , ) simultaneously
learn a generative model and an approximate inference, and offer a powerful approach to modeling
image densities. However, they tend to produce blurry samples and are limited in application to
low-dimensional deep representations.

Recently, GANSs ( , ) have presented a powerful new way of building generative
models of images with remarkably realistic results ( , ). Generative adversarial
networks are neural network models trained adversarially to learn a data distribution. They consist
of a generator Gy : R" — R™ and a discriminator Dy : R™ — R, where n is the dimension
of a latent space with probability distribution P, and m is the dimension of the data distribution
Py, which is equal to width x height x #colors in the case of images. In the original GAN, the
discriminator produces a probability estimate as output, and the GAN is trained to reach a saddle
point via the learning objective

rnein mngmdi log Dg(x)] + E.~p. log(1 — Dy(Go(2))], (1)

which incentivizes the generator to produce samples that the discriminator classifies as likely to
be real, and the discriminator to assign high probability values to real points and low values to
fake points. Unfortunately, GANs don’t produce explicit density models — the GAN is capable of
sampling the density, but not evaluating the density function directly.

A major limitation of GANS is that they are not invertible. So, given an image, one does not have ac-
cess to its latent representation, which could be used to calculate the image’s density value. To over-
come this problem, Real Non-Volume-Preserving transformations (Real NVP) ( , )
learn an invertible transformation from the latent space to images. This yields an explicit probability
distribution in which exact density values can be computed. Real NVP can be trained using either
maximum likelihood methods or adversarial methods, or a combination of both, as in FlowGAN
( , ). Both of these models have proven effective at generating high-quality images.
(See also: ( ), ( ).

In this paper, we choose to focus on the use of non-invertible GANSs to estimate image density. An
alternative approach would be to use VAEs, but we feel that the widespread use of GANs makes them
an interesting target for study. One issue with invertible GANS is that the latent space must be of the
same dimension as the image space, which becomes problematic for large, high-dimensional im-
ages. Also, non-invertible GANs currently produce higher quality images than invertible GANs like
FlowGAN, suggesting that they might implicitly represent the most accurate probability distribu-
tions. Furthermore, non-invertible GANs use simpler network architectures and training procedures
than invertible GANs. The standard DCGAN ( , ), for example, consists of basic
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convolutional layers with batch norm and ReLU transformations. By contrast, Real NVP requires a
scheme of coupling, masking, reshaping, and factoring over variables. Our proposed methods can be
applied to any GAN, so that they can leverage any improvements made in new GAN architectures.

Extracting density estimates from GANs presents several challenges. A (non-invertible) GAN learns
an embedding of a lower-dimensional latent space (the random codes) into a much higher dimen-
sional space (the space of all possible images of a certain size). Thus, the probability distribution
that it learns is restricted to a low-dimensional manifold within the higher-dimensional space. Exact
densities for images can be computed via the Jacobian if the latent code is known, as we will show
in the next section, but densities are technically zero for images that are not exactly generated by any
latent code. Extending densities meaningfully beyond the data manifold requires either incorporat-
ing an explicit noise model, such as in the recent Entropic GAN ( R ), or learning a
projection from images to latent codes, such as in BIGAN ( , ).

In this paper, we avoid these complexities by creating a simple regressor network that accepts an
image and returns its estimated probability density. Training such a regressor network is easy if one
has a large dataset of images labeled with their probability densities. In section 3 we describe a
simple method for obtaining such a dataset.

3 EXTRACTING PROBABILITY DENSITIES

A GAN generator G takes a random variable Z with a known latent distribution P, and produces
an image G(Z) from an implicit learned distribution P;. But what is P;? If G is differentiable
and bijective, then for = G(z) the change of variables formula ( , ) yields Py(z) =
P,(G7Y(x))| det 0G~(x)|, where G~ (x) is the Jacobian of the inverse function at x.

But most GAN generators are not bijective; they map a low-dimensional latent space to a high-
dimensional pixel space, so the Jacobian is not square and we cannot compute a determinant. The
solution is to perform calculations not on the codomain, but on the low-dimensional manifold con-
sisting of the image of the latent space under G. If G is differentiable and injective, then this manifold
has the same intrinsic dimensionality as the latent space, and we can consider how a unit cube in the
n-dimensional latent space distorts as it maps onto the (also n-dimensional) image manifold. The
resulting modified formula is

Py(z) = P.(2)|det 0GT (2)0G (z)| " =. )

This formula uses the fact that det(M ~1) = (det M)~! for any square matrix M. It also uses
the fact that the squared volume of a parallelpiped in a linear subspace is computed by projecting
to subspace coordinates via the transpose of the coordinate matrix, resulting in the square matrix
OGTOG (an expression which is known as a metric tensor), and then taking the determinant.

The Jacobian OG can be computed analytically from the network computation graph, or numerically
via a finite difference approximation (we found that the latter approach was much faster and did
not change the qualitative results). Once computed, we can find the above determinant via a QR
decomposition. If 0G = @ - R, where @ is an m x n matrix with orthonormal columns and R is
an n x n upper-triangular matrix, then det 0GTOG = det RTQTQR = det(R)? = (], m)Q.
Substituting back into equation (2), we obtain the probability formula Py(z) = P,(z) [[i—, |rui| '
In practice, we use the log-densities to avoid numerical over/underflow.

To generalize probability predictions to novel images, we train a separate regressor network on
samples from G, which are labeled with their log-probability densities. This regressor predicts
densities directly from images. We will refer to this as the pixel regressor. This regressor does not
truly learn a probability distribution, but is a reasonably accurate proxy.

Our basic generative model was a DCGAN ( , ), and the structure of our pixel
regressor was modified from the discriminator. We describe the models and experimental methods
in detail in the supplementary material, which will be included in the (currently non-anonymous)
Github repository for this project.
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Figure 2: From left to right: random samples from a GAN trained on MNIST, samples of lowest probability
density according to the pixel regressor, random samples from a GAN trained on CIFAR, samples of lowest
density according to the pixel regressor.
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Figure 3: Left: histogram of log probability densities of MNIST train and test data as predicted by a pixel
regressor for an MNIST GAN. Right: histogram of log densities of CIFAR train and test data as predicted by
a pixel regressor for a CIFAR GAN.

4 SANITY CHECK: DO GANS YIELD REASONABLE PROBABILITY
ESTIMATES?

The accuracy of GAN-based density estimation depends on the accuracy of the generated density
labels, and the ability of the regression network to generalize to unseen data. In this section, we
investigate whether the obtained probability densities are meaningful. We do this quantitatively by
comparing histograms of predicted densities in the train and test datasets, and also qualitatively by
examining how probability density correlates with image quality.

4.1 COMPARING HISTOGRAMS

The GAN and regressor model can be inaccurate because of under-fitting (e.g., missing modes), or
overfitting (assigning excessively high density to individual images). We test for these problems by
plotting histograms for the probability densities on both the train and test data to validate that these
distributions have high levels of similarity.

Results are shown in Figure 3. The test histograms appear as a scaled-down version of the train
histograms because the test sets contain fewer samples (we did not normalize the histograms by
number of samples because this difference in scale helps in seeing both distributions on the same
figure). For both MNIST and CIFAR, we see a very high degree of similarity between test and train
distributions, indicating a good model fit (without over-fitting).

4.2 VISUALIZING TYPICAL AND LOW DENSITY IMAGES

We get a stronger sense for what the density estimator is doing by visualizing “outliers” that have
low probability density. Figure 2 shows typical samples produced by the GAN models for MNIST
and CIFAR. We see that the GANSs fit the distributions nicely, as typical samples reflect what we
want these images to look like. However, the lowest density outliers (selected from 50,000 GAN
random samples) are extremely irregular and clearly lie away from the modes of the distribution.
When we use more sophisticated GANSs, such as StackGAN or the recent StyleGAN (Figure 1),
the low density images always contain more complex textures and varied features, while the high
density images are very uniform (as we will discuss further in the next section).
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These visualizations suggest that GAN-based density estimators make reasonable density predic-
tions. However, we will see in the next section that even highly accurate density estimation can have
unreasonable consequences for some tasks.

5 BE CAREFUL WHAT YOU WISH FOR: THE DIFFICULTIES OF INTERPRETING
IMAGE DENSITIES

Most likely with 1s Least likely with 1s ~ Most likely without 1s Least likely without 1s

Figure 4: Highest and lowest density real MNIST digits as predicted by a pixel regressor for a GAN trained
on MNIST with and without 1s, and tested on MNIST with 1s.

Although in some respects the learned probability densities correlate sensibly with image complexity
and quality, we now show that these distributions are also highly irregular and non-uniform — a
characteristic that makes them difficult to interpret. In particular, the densities do not correlate well
with human intuitions about semantic categories, such as object class or digit type.

5.1 EVERYBODY LOVES 18

We saw in Section 4.1 that image densities could be used to discern certain kinds of visual outliers
from an image distribution. But what about the inliers? In this section we dive further into what
image characteristics most strongly determine image density.

The left two images of Figure 4 show the most likely and least likely real images from the MNIST
dataset. We see that all of the most likely images are 1s, while all of the least likely images are more
“loopy” digits. This may seem unintuitive at first: 1’s are just as likely to occur as any other digits,
so why should they have higher probability density? However, this preference for 1s is in fact the
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Figure 5: Left: Highest density 512 images from CIFAR and MNIST combined, as predicted by a pixel
regressor trained on CIFAR. Right: Highest density 512 images for the combined data as predicted by a code
regressor for a GAN trained on CIFAR.

Top CIFAR Top Airplanes Bottom Airplanes
Figure 6: From left to right: Highest density real CIFAR images according to a pixel regressor trained on
CIFAR, lowest density CIFAR images for the same distribution, highest density real airplanes, lowest density

airplanes.
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result of correct density estimation; images of 1s in the MNIST dataset are all very well aligned and
similar, and when interpreted as vectors in a high-dimensional space they cluster closely together.
As aresult, the 1s define an extremely high-density mode in the image distribution. This can be seen
prominently in Figure 3, where we found that the bump on the right of the MNIST histogram was
almost exclusively comprised of 1s.

To better assess the severity of this problem, we train the density estimator on all images except 1s.
Intuitively, the 1s should now be outliers from the distribution. However, the density function still
thinks the opposite. When the density of this incomplete distribution is evaluated on all MNIST test
data (including the 1s), the most likely digits are still 1s (Figure 4, second image from the right).

This effect is likely because of the constant black background in images of 1s. Most pixels in these
images are black (the most common value), and so these images lie relatively close (in the Euclidean
sense) to many other MNIST images, making them inliers rather than outliers.

A similar problem manifests in the CIFAR dataset (Figure 6). In this case, the most likely images
contain a simple blue background. This is likely because the “airplane” class contains many images
with a smooth background of a similar blue color, and so these images lie close together in Euclidean
distance, defining a high-density mode. Furthermore, in images of high density, the actual object of
interest is extremely small and the background is dominant. Images with large foreground objects
or complex backgrounds contain high-frequency features that do not correlate as well, so they lie far
apart in Euclidean space and have relatively low densities as in Figure 6.

5.2 ARE CIFAR IMAGES OUTLIERS IN THEIR OWN DISTRIBUTION?

Intuitively, one might expect to use density estimates for outlier detection; outliers from other, highly
distinct distributions should have extremely low densities compared to inliers. We saw in Section
4.2 that densities were able to detect irregular/outlier images sampled from the learned distribution.

We study whether MNIST images are outliers from the CIFAR distribution. To this end, we train a
density model on only CIFAR, and evaluate the density function on both CIFAR and MNIST images.
The most likely images from the combined CIFAR/MNIST dataset are shown in the left image of
Figure 5. The set of most likely images is dominated by MNIST digits, with a small number of
extremely simple CIFAR images in the top as well. Histograms of these densities are depicted in the
leftmost image of Figure 8, and we see that MNIST is indeed far more likely than CIFAR.

This result is consistent with the experiments above — smooth, geometrically structured images lie
far to the right of the distribution. The MNIST images apparently lie in an extremely high density
mode. However, in the CIFAR distribution, highly structured images of this type seldom appear.
This indicates that the high density region occupies an extremely small volume and thus very small
probability mass. Meanwhile, the lower-density outlying region (which contains the vast majority
of the CIFAR images) comprises nearly all the probability mass.

Figure 7: Highest and lowest density real CIFAR images, as predicted by a latent code regressor trained on
CIFAR, and highest and lowest density CIFAR airplanes as predicted by a latent code regressor.

6 MAKING DENSITY FUNCTIONS INTERPRETABLE

The experiments in Section 5 indicate that probability densities on complex image datasets have a
structure that corresponds more to certain geometric properties of images than human-recognizable
categories. Fairly “typical” images often lie far from the modes of the distribution, their probability
mass spread thinly. This lack of interpretability is a consequence of a well known problem; the
Euclidean distance between images does not capture an intuitive or semantically meaningful concept
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of similarity. “Outliers” of a distribution are points that lie far from the modes in a Euclidean sense,
and so we should expect the relationship between density and semantic structure to be tenuous.

To make density estimates interpretable, we need to embed images into a space where Euclidean
distance has semantic meaning. We do this by embedding images into a deep feature space. In
deep feature space, nearby images have similar semantic structure, and well separated images are
semantically different. This enables distributions to have interpretable modes and outliers.

There are many options to choose from when selecting a deep embedding. In the unsupervised
setting where we already have a GAN at our disposal, the simplest choice for a feature embedding is
to associate images with their latent representation z, the pre-image of the GAN. This embedding is
particularly simple because the density function in this space is simply the Gaussian density, which
can be evaluated in closed form. We learn this density mapping by associated each image with the
density of its pre-image z, without accounting for the Jacobian of the mapping (using a GAN trained
with a slightly modified, InfoGAN-based loss ( , ) as described in the supplementary
material, to impose more structure on the latent space). For this approach, we train a regressor to
predict the density of the z code that generated an image; we refer to this as the “code regressor.”

6.1 IMAGES ARE NOW INLIERS IN THEIR OWN DISTRIBUTION

We show the most and least likely CIFAR images under the deep feature model in Figure 7. Unlike
the pixel-space model, there is now diversity in the most likely images, and the distribution is not
dominated by blue sky. The deep model also produces much more uniform densities than the pixel
model, as shown in the rightmost plot of Figure 8, where 1s no longer completely dominate the far
right — this is expected since the MNIST dataset is itself fairly uniform with few semantic outliers.
We saw in Section 5.2 that MNIST digits were inliers with respect to the CIFAR distribution, and
many CIFAR images were outliers in their own distribution (when estimating densities in the pixel
space). Density in the deep feature space captures a more intuitive notion of outliers. To show this,
we train a deep feature density estimator on the CIFAR distribution only, and then infer densities
on the combined CIFAR and MNIST dataset. The middle plot of Figure 8 shows the histogram
of estimated densities. We see that CIFAR images now occupy high density regions close to the
distribution modes, and MNIST images occupy the low density “outlier” regions. This is visually
depicted in the right image of Figure 5, which shows the most probable CIFAR and MNIST images
with respect to the CIFAR distribution. Unlike the left image in the same figure, we now see that
all of the most likely images are from the CIFAR distribution. Recall our discussion from the
introduction about high-dimensional density functions. In the latent space, images from the learned
distribution are more clustered around the unit sphere; this explains why the rightmost histogram in
Figure 8 is more clustered than the pixel-space histogram on the left (although there is still a small
tendency for ones to have higher density value). It also explains why the images on the right of
Figure 5 are more typical CIFAR images, as opposed to images of uniform background.

6.2 DEEP DENSITIES DEPEND ON IMAGE CONTENT RATHER THAN SMOOTHNESS

Unlike the pixel-space density estimator depicted in Figure 6, the deep feature model (Figure 7)
favors images where the foreground object is well-defined and occupies a large fraction of the image.
The least likely images contain many objects in unusual configurations or strange backgrounds (e.g.,
airplanes with a green sky). For the category of airplanes shown in the two rightmost images of
Figure 7, the densities seem to no longer depend strongly on the image complexity, but rather on the
image content and color.

7 CONCLUSION

Using the power of GANs, we explored the density functions of complex image distributions. Un-
fortunately, inliers and outliers of these density functions cannot be readily interpreted as typical
and atypical images, at least according to human intuition. However, we suggest that this lack of
interpretability could be mitigated by considering the probability densities not of the images them-
selves, but of the latent codes that produced them. We postulate that such feature embeddings avoid
the problems of pixel-space densities (which are too dependent on pixel-level image properties such
as background uniformity), and instead allow for representations that are more semantically mean-
ingful. There are a host of potential applications for the resulting image PDFs, including detecting
outliers and domain shift that will be explored in future work.
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Figure 8: Left: histogram of log probability densities of MNIST and CIFAR, predicted using a pixel-space
density estimator for CIFAR. Middle: histogram of log densities of MNIST and CIFAR, predicted using the
latent code regressor for a GAN trained on CIFAR. Right: histogram of log densities of MNIST, as predicted by
a latent code regressor for a GAN trained on MNIST. Note that the log density values are much more clustered
than in pixel space, though they are still near the top of the distribution.
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