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ABSTRACT

Neural architecture search (NAS) has achieved breakthrough success in a great
number of applications in the past few years. It could be time to take a step back
and analyze the good and bad aspects in the field of NAS. A variety of algorithms
search architectures under different search space. These searched architectures
are trained using different setups, e.g., hyper-parameters, data augmentation, reg-
ularization. This raises a fairness problem when comparing the performance of
various NAS algorithms. In this work, we propose an Algorithm-Agnostic NAS
Benchmark (AA-NAS-Bench) with a fixed search space, which provides a uni-
fied benchmark for almost any up-to-date NAS algorithms. The design of our
search space is inspired from that used in the most popular cell-based searching
algorithms, where a cell is represented as a directed acyclic graph. Each edge
here is associated with an operation selected from a predefined operation set.
For it to be applicable for all NAS algorithms, the search space defined in AA-
NAS-Bench includes 4 nodes and 5 associated operation options, which generates
15,625 neural cell candidates in total. The training log using the same setup and
performance for each architecture candidate are provided for three datasets. This
allows researchers to avoid unnecessary repetitive training for selected architec-
ture and focus solely on the search algorithm itself. The training time saved for
every architecture also largely improves the efficiency of most NAS algorithms
and presents a more computational cost friendly NAS community for a broader
range of researchers. Side information such as fine-grained loss and accuracy is
also provided, which can give inspirations to new designs of NAS algorithms. We
demonstrate the applicability of the proposed AA-NAS-Bench via benchmarking
many recent NAS algorithms.

1 INTRODUCTION

The deep learning community is undergoing a transition from hand-designed neural architecture (He
et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2015) to automatically designed neural archi-
tecture (Zoph & Le, 2017; Pham et al., 2018; Real et al., 2019; Dong & Yang, 2019b; Liu et al.,
2019). In its early era, the great success of deep learning was promoted by novel neural architec-
tures, such as ResNet (He et al., 2016), Inception (Szegedy et al., 2015), VGGNet (Simonyan &
Zisserman, 2015), and Transformer (Vaswani et al., 2017). However, manually designing one archi-
tecture requires human experts to try numerous different operation and connection choices (Zoph
& Le, 2017). In contrast to architectures that are manually designed, those automatically found by
neural architecture search (NAS) algorithms require much less human interaction and expert effort.
These NAS-generated architectures have shown promising results in many domains, such as image
recognition (Zoph & Le, 2017; Pham et al., 2018; Real et al., 2019), sequence modeling (Pham et al.,
2018; Dong & Yang, 2019b; Liu et al., 2019), etc.

Recently, a variety of NAS algorithms have been increasingly proposed. While these NAS methods
are methodically designed and show promising improvements, many setups in their algorithms are
different. (1) Different search space is utilized, e.g., different macro skeletons of the whole archi-
tecture (Zoph et al., 2018; Cai et al., 2019) and a different operation set for the micro cell within
the skeleton (Pham et al., 2018), etc. (2) After a good architecture is selected, various strategies
can be employed to train this architecture and report the performance, e.g., different data augmen-
tation (Ghiasi et al., 2018; Zhang et al., 2018), different regularization (Zoph et al., 2018), different
scheduler (Loshchilov & Hutter, 2017), and different selections of hyper-parameters (Liu et al.,
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Figure 1: Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural
cell with 4 nodes. Each cell is a directed acyclic graph, where each edge is associated with an
operation selected from a predefined operation set as shown in the Bottom-right.

2018; Dong & Yang, 2019a). (3) The validation set for testing the performance of the selected archi-
tecture is not split in the same way (Liu et al., 2019; Pham et al., 2018). These discrepancies raise
a fairness problem when comparing the performance of various NAS algorithms, making it difficult
to conclude their contributions.

In response to this problem, we propose the AA-NAS-Bench with a fixed cell search space. We are
inspired by the search space used in the most popular neural cell-based searching algorithms (Zoph
et al., 2018; Liu et al., 2019). As shown in Figure 1, each architecture consists of a predefined
skeleton with a stack of the searched cell. In this way, architecture search is transformed into the
problem of searching a good cell. Each cell is represented as a densely-connected directed acyclic
graph (DAG) as shown in the bottom section of Figure 1. Here the node represents the sum of
the feature maps and each edge is associated with an operation transforming the feature maps from
the source node to the target node. The size of the search space is related to the number of nodes
defined for the DAG and the size of the operation set. In AA-NAS-Bench, we choose 4 nodes and
5 representative operation candidates for the operation set, which generates a total search space of
15,625 cells/architectures. Each architecture is trained multiple times on three different datasets.
The training log and performance of each architecture are provided for each run. The training
accuracy/test accuracy/training loss/test loss after every training epoch for each architecture plus the
number of parameters and floating point operations (FLOPs) are accessible. All code, data, and
architecture information are publicly available.

The AA-NAS-Bench has shown its value in the field of NAS research. (1) It provides a unified
benchmark for most up-to-date NAS algorithms including all cell-based NAS methods. With AA-
NAS-Bench, researchers can focus on designing robust searching algorithm while avoiding tedious
hyper-parameter tuning of the searched architecture. Thus, AA-NAS-Bench provides a relatively fair
benchmark for the comparison of different NAS algorithms. (2) We provide the full training log
of each architecture. Unnecessary repetitive training procedure of each selected architecture can be
avoided (Liu et al., 2018; Zoph & Le, 2017) so that researchers can target on the essence of NAS,
i.e., search algorithm. Another benefit is that the validation time for NAS largely decreases when
testing in AA-NAS-Bench, which provides a computational power friendly environment for more
participations in NAS. (3) It is the first NAS benchmark that provides results of each architecture
on multiple datasets. The model transferability can be thoroughly evaluated for most NAS algo-
rithms. (4) In AA-NAS-Bench, we provide systematic analysis of the proposed search space. We
also evaluate many recent advanced NAS algorithms including reinforcement learning (RL)-based
methods, evolutionary strategy (ES)-based methods, differentiable-based methods, etc. We hope our
empirical analysis can bring some insights to the future designs of NAS algorithms.

2 ALGORITHM-AGNOSTIC NAS BENCHMARK

Our AA-NAS-Bench is algorithm-agnostic. Put simply, it is applicable to almost any up-to-date NAS
algorithms. In this section, we will briefly introduce our AA-NAS-Bench. The search space of AA-
NAS-Bench is inspired by cell-based NAS algorithms (Section 2.1). AA-NAS-Bench evaluates each
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architecture on three different datasets (Section 2.2). All implementation details of AA-NAS-Bench
are introduced in Section 2.3. AA-NAS-Bench also provides some side information which can be
used for potentially better designs of future NAS algorithms (discussed in Section 2.4).

2.1 ARCHITECTURES IN THE SEARCH SPACE

Macro Skeleton. Our search space follows the design of its counterpart as used in the recent neural
cell-based NAS algorithms (Liu et al., 2019; Zoph et al., 2018; Pham et al., 2018). As shown in the
top of Figure 1, the skeleton is initiated with one 3-by-3 convolution with 16 output channels and
a batch normalization layer (Ioffe & Szegedy, 2015). The main body of the skeleton includes three
stacks of cells, connected by a residual block. Each cell is stacked N = 5 times, with the number of
output channels as 16, 32 and 64 for the first, second and third stages, respectively. The intermediate
residual block is the basic residual block with a stride of 2 (He et al., 2016), which serves to down-
sample the spatial size and double the channels of an input feature map. The shortcut path in this
residual block consists of a 2-by-2 average pooling layer with stride of 2 and a 1-by-1 convolution.
The skeleton ends up with a global average pooling layer to flatten the feature map into a feature
vector. Classification uses a fully connected layer with a softmax layer to transform the feature
vector into the final prediction.

Searched Cell. Each cell in the search space is represented as a densely connected DAG. The
densely connected DAG is obtained by assigning a direction from the i-th node to the j-th node
(i < j) for each edge in an undirected complete graph. Each edge in this DAG is associated with
an operation transforming the feature map from the source node to the target node. All possible
operations are selected from a predefined operation set, as shown in Figure 1(bottom-right). In our
AA-NAS-Bench, the predefined operation set O has L = 5 representative operations: (1) zeroize,
(2) skip connection, (3) 1-by-1 convolution, (4) 3-by-3 convolution, and (5) 3-by-3 average pooling
layer. The convolution in this operation set is an abbreviation of an operation sequence of ReLU,
convolution, and batch normalization. The DAG has V = 4 nodes, where each node represents the
sum of all feature maps transformed through the associated operations of the edges pointing to this
node. We choose V = 4 to allow the search space to contain basic residual block-like cells, which
requires 4 nodes. Densely connected DAG does not restrict the searched topology of the cell to be
densely connected, since we include zeroize in the operation set, which is an operation of dropping
the associated edge. Besides, since we do not impose the constraint on the maximum number of
edges (Ying et al., 2019), our search space is applicable to most NAS algorithms, including all
cell-based NAS algorithms.

2.2 DATASETS

We train and evaluate each architecture on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet-16-120 (Chrabaszcz et al., 2017). We choose these three datasets because CIFAR and
ImageNet (Deng et al., 2009) are the most popular image classification datasets.

We split each dataset into training, validation and test sets to provide a consistent training and evalu-
ation settings for previous NAS algorithms (Liu et al., 2019). Most NAS methods use the validation
set to evaluate architectures after the architecture is optimized on the training set. The validation
performance of the architectures serves as supervision signals to update the searching algorithm.
The test set is to evaluate the performance of each searching algorithm by comparing the accuracy,
model size, speed and etc of their selected architectures. Previous methods use different splitting
strategies, which may result in various searching costs and unfair comparisons. We hope to use the
proposed splits to unify the training, validation and test sets for a fairer comparison.

CIFAR-10: This is the standard image classification dataset. It consists of 60,000 32×32 colour
images in 10 classes. The original training set contains 50,000 images, with 5,000 images per
class. The original test set contains 10,000 images, with 1000 images per class. Due to the need
of validation set, we split all 50,000 training images in CIFAR-10 into two groups. Each group
contains 25,000 images with 10 classes. We regard the first group as the new training set and the
second group as the validation set.

CIFAR-100: This dataset is just like the CIFAR-10. It has the same images as CIFAR-10 but
categorizes each image into 100 fine-grained classes. The original training set on CIFAR-100 has
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50,000 images, and the original test set has 10,000 images. We randomly split the original test set
into two group of equal size — 5,000 images per group. One group is regarded as the validation set,
and another one is regarded as the new test set.

ImageNet-16-120: We build ImageNet-16-120 from the down-sampled variant of ImageNet
(ImageNet16×16). As indicated in Chrabaszcz et al. (2017), down-sampling images in ImageNet
can largely reduce the computation costs for optimal hyper-parameters of some classical models
while maintaining similar searching results. Chrabaszcz et al. (2017) down-sampled the original
ImageNet to 16×16 pixels to form ImageNet16×16, from which we select all images with label
∈ [1, 120] to construct ImageNet-16-120. In sum, ImageNet-16-120 contains 151,700 training im-
ages, 3,000 validation images, and 3,000 test images with 120 classes.

2.3 ARCHITECTURE PERFORMANCE

Training Architectures. In order to unify the performance of every architecture, we give the per-
formance of every architecture in our search space. In our AA-NAS-Bench, we follow previous

Table 1: The training hyper-parameter setH†.
optimizer SGD initial LR 0.1
Nesterov X ending LR 0
momentum 0.9 LR schedule cosine
weight decay 0.0005 epoch 200
batch size 256 initial channel 16
V 4 N 5
random flip p=0.5 random crop X
normalization X

literature to set up the hyper-parameters and train-
ing strategies (Zoph et al., 2018; Loshchilov &
Hutter, 2017; He et al., 2016). We train each ar-
chitecture with the same strategy, which is shown
in Table 1. For simplification, we denote all hyper-
parameters for training a model as a set H, and we
useH† to denote the values of hyper-parameter that
we use. Specifically, we train each architecture via
Nesterov momentum SGD, using the cross-entropy
loss for 200 epochs in total. We set the weight de-
cay as 0.0005 and decay the learning rate from 0.1 to 0 with a cosine annealing (Loshchilov &
Hutter, 2017). We use the same H† on different datasets, except for the data augmentation which is
slightly different due to the image resolution. On CIFAR, we use the random flip with probability
of 0.5, the random crop 32×32 patch with 4 pixels padding on each border, and the normalization
over RGB channels. On ImageNet-16-120, we use a similar strategy but random crop 16×16 patch
with 2 pixels padding on each border. All codes are implemented with with PyTorch (Paszke et al.,
2017).

Metrics. We train each architecture with different random seeds on different datasets. We evaluate
each architecture A after every training epoch. AA-NAS-Bench provides the training, validation,

Table 2: AA-NAS-Bench provides the following
metrics. ‘Acc.’ means accuracy.

dataset Train Loss/Acc. Eval Loss/Acc.
CIFAR-10 train set valid set
CIFAR-10 train+valid set test set
CIFAR-100 train set valid set
CIFAR-100 train set test set

ImageNet-16-120 train set valid set
ImageNet-16-120 train set test set

and test loss as well as accuracy. We show the
supported metrics on different datasets in Ta-
ble 2. Users can easily use (A, i) to query
the results of the i-th run of A, which has
negligible computational costs. In this way,
researchers could significantly speed up their
searching algorithm on these datasets and fo-
cus solely on the essence of NAS.

We list the training/test loss/accuracies over
different split sets on four datasets in Table 2.
On CIFAR-10, we train the model on the training set and evaluate it on the validation set. We also
train the model on the training and validation set and evaluate it on the test set. These two paradigm
follow the typical experimental setup on CIFAR-10 in previous literature (Liu et al., 2018; Zoph
et al., 2018; Liu et al., 2018; Pham et al., 2018). On CIFAR-100 and ImageNet-16-120, we train the
model on the training set and evaluate it on both validation and test sets.

2.4 SIDE INFORMATION

Validation accuracy is a commonly used supervision signal for NAS. However, considering the
expensive computational costs for evaluating the architecture, the signal is too sparse. In our AA-
NAS-Bench, we also provide some side information which is some extra statistics obtained during
training each architecture. Collecting these statistics almost involves almost no extra computation
cost but may provide insights for better designs and training strategies of different NAS algorithms,
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#archit
-ectures

#data
-sets |O|

search space
constraint

Supported NAS algorithms Side informationRL ES Diff. HPO
NAS-Bench-101 423,624 1 3 constrain #edges partial partial none most −
AA-NAS-Bench 15,625 3 5 no constraint all all all most fine-grained

info., param., etc

Table 3: We summarize some characteristics of NAS-Bench-101 (Ying et al., 2019) and our AA-
NAS-Bench, where “#*” denotes the number of “*”. Our AA-NAS-Bench is algorithm-agnostic, and
almost any up-to-date NAS algorithms can be directly evaluated on our dataset. In contrast, as
pointed in Ying et al. (2019), NAS algorithms based on parameter sharing or network morphisms
cannot be directly evaluated on NAS-Bench-101. Thus, NAS-Bench-101 only supports parts of RL-
based methods, parts of ES-based methods, and no differentiable (Diff.)-based methods. Besides,
AA-NAS-Bench provides train/validation/test performance on three (one for NAS-Bench-101) dif-
ferent datasets so that the generality of NAS algorithms can be evaluated. It also provides some side
information that may provide insights to design better NAS algorithms.

such as platform-aware NAS (Tan et al., 2019; Cai et al., 2019), accuracy prediction (Baker et al.,
2018), mutation-based NAS (Cai et al., 2018; Chen et al., 2016), etc.

Architecture Computational Costs: AA-NAS-Bench provides three computation metrics for each
architecture — the number of parameters, FLOPs, and latency. Algorithms that target on computa-
tion cost constrained architectures, such as models on edge devices, can use these metrics directly
in their algorithm designs without extra calculations.

Fine-grained training and evaluation information. AA-NAS-Bench tracks the changes in loss and
accuracy of every architecture after every training epochs. These fine-grained training and evaluation
information shows the tendency of the architecture performance and could indicate some attributes
of the model, such as the speed of convergence, stabability, the over-fitting or under-fitting levels,
etc. These attributes may benefit the designs of NAS algorithms. Besides, some methods learn to
predict the final accuracy of an architecture based on the results of few early training epochs (Baker
et al., 2018). These algorithm can be trained faster and the performance of the accuracy prediction
can be evaluated using the fine-grained evaluation information.

Parameters of optimized architecture. Our AA-NAS-Bench releases the trained parameters for
each architecture. This can provide ground truth label for hypernetwork-based NAS methods (Zhang
et al., 2019; Brock et al., 2018), which learn to generate parameters of an architecture. Other meth-
ods mutate an architecture to become another one (Real et al., 2019; Cai et al., 2018). With AA-NAS-
Bench, researchers could directly use the off-the-shelf parameters instead of training from scratch
and analyze how to transfer parameters from one architecture to another.

3 DIFFERENCE WITH NAS-BENCH-101

To the best of our knowledge, NAS-Bench-101 (Ying et al., 2019) is the only existing architecture
dataset. Similar to AA-NAS-Bench, NAS-Bench-101 also transforms the problem of architecture
search into the problem of searching neural cells, represented as a DAG. Differently, NAS-Bench-
101 defines operation candidates on the node, whereas we associate operations on the edge as in-
spired from (Liu et al., 2019; Dong & Yang, 2019b; Zoph et al., 2018). We summarize characteristics
of our AA-NAS-Bench and NAS-Bench-101 in Table 3. The main highlights of our AA-NAS-Bench
is (1) AA-NAS-Bench is algorithm-agnostic while NAS-Bench-101 is only applicable to selected al-
gorithms. The original complete search space, based on the nodes in NAS-Bench-101, is extremely
huge. So, it is exceedingly difficult to efficiently traverse the training of all architectures. To trade
off the computational cost and the size of the search space, they constrain the maximum number
of edges in the DAG. However, it is difficult to incorporate this constraint in all NAS algorithms,
such as NAS algorithms based on parameter-sharing (Liu et al., 2019; Pham et al., 2018). Therefore,
many NAS algorithms cannot be directly evaluated on NAS-Bench-101. Our AA-NAS-Bench solves
this problem by sacrificing the number of nodes and including all possible edges so that our search
space is algorithm-agnostic. (2) We provide extra side information, such as architecture compu-
tational cost, fine-grained training and evaluation time, etc., which give inspirations to better and
efficient designs of NAS algorithms utilizing these side information.
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Figure 2: Training, validation, test accuracy of each architecture on CIFAR-10, CIFAR-100, and
ImageNet-16-120. We also visualize the results of ResNet in the orange star marker.

4 ANALYSIS OF AA-NAS-BENCH

An overview of architecture performance. The performance of each architecture is shown in
Figure 2. We show the test accuracy of every architecture in our search space in the left column
of Figure 2. The training, validation and test accuracy with respect to the number of parameters
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Figure 3: The ranking of each ar-
chitecture on CIFAR-10, CIFAR-
100, and ImageNet-16-120, sorted
by the ranking in CIFAR-10.

are shown in the rest three columns, respectively. Results show
that a different number of parameters has impacts on the perfor-
mance of the architectures, which indicates that the choices of
operations are essential in NAS. We also observe that the per-
formance of the architecture can vary even when the number of
parameters keeps the same. This observation indicates the im-
portance of how the operations/cells are connected. We com-
pare the architectures with a classical human-designed archi-
tecture (ResNet) in all cases, which is indicated by an orange
star mark. ResNet shows competitive performance in three
datasets, however, it still has room to improve, i.e., about 2%
compared to the best architecture in CIFAR-100 and ImageNet-
16-120, about 1% compared to the best architecture with the
same amount of parameters in CIFAR-100 and ImageNet-16-
120.

Architecture ranking on three datasets. The ranking of every
architecture in our search space is shown in Figure 3, where the
architecture ranked in CIFAR-10 (x-axis) is ranked as in y-axis in CIFAR-100 and ImageNet-16-
120, indicated by green and red markers respectively. The performance of the architectures shows a
generally consistent ranking over the three datasets with slightly different variance, which serves as
testing the generality of the searching algorithm.

Correlations of validation and test accuracies. We visualize the correlation between the validation
and test accuracy within one dataset and across datasets in Figure 4. The correlation within one
dataset is high compared to cross-dataset correlation. The correlation dramatically decreases as we
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Figure 4: We report the correlation coefficient between
the accuracy on six sets, i.e., CIFAR-10validation set (C10-
V), CIFAR-10 test set (C10-T), CIFAR-100 validation set
(C100-V), CIFAR-100 test set (C100-T), ImageNet-16-120
validation set (I120-V), ImageNet-16-120 test set (I120-T).

only pick the top performing archi-
tectures. When we directly transfer
the best architecture in one dataset
to another (a vanilla strategy), it can
not 100% secure a good performance.
This phenomena is a call for better
transferable NAS algorithms instead
of vanilla strategy.

Dynamic ranking of architectures.
We show the ranking of the perfor-
mance of all architectures in different
time stamps in Figure 5. The ranking
based on the validation set (y axis)
gradually converges to the ranking based on the final test accuracy (x axis).

Figure 5: The ranking of all architectures based on the validation accuracy at different time stamps
(y axis) sorted by the final test accuracy (x axis).

5 BENCHMARK

In this section, we evaluate some recent searching methods on our AA-NAS-Bench, which can serve
as baselines for future NAS algorithms in our dataset. Specifically, we evaluate typical NAS algo-
rithms in Table 4: (I) Random Search algorithms, e.g., random search (RS) (Bergstra & Bengio,
2012), random search with parameter sharing (RSPS) (Li & Talwalkar, 2019). (II) ES methods, e.g.,
REA (Real et al., 2019). (III) RL algorithms, e.g., REINFORCE (Williams, 1992). (IV) Differen-
tiable algorithms. e.g., first order DARTS (DARTS-V1) (Liu et al., 2019), second order DARTS
(DARTS-V2), GDAS (Dong & Yang, 2019b), and SETN (Dong & Yang, 2019a).

All algorithms use the training and validation set of CIFAR-10 to search architectures. We report
the test accuracy of the searched architectures plus the optimal architecture on three datasets. We
make the following observations: (1) REA and REINFORCE perform best but costs much more
computational time to train and evaluate each architecture (about 10 hours vs 3 hours). In our setup,
they traverse 100

15625 = 0.0064 of our search space in total. (2) Methods with parameter sharing are
efficient. However, the validation performance obtained from the shared parameters cannot lead a

Method test accuracy (%) on CIFAR-10 CIFAR-100 ImageNet-16-120
trial1 trial2 trial3 average valid test valid test

RS 94.06 93.90 90.24 92.73 69.55 69.79 42.83 43.25
RSPS 90.77 91.91 93.11 91.93 67.45 67.63 39.58 39.80

DARTS-V1 39.13 39.13 39.13 39.13 15.62 15.62 15.87 15.87
DARTS-V2 39.13 39.13 39.13 39.13 15.62 15.62 15.87 15.87

GDAS 92.28 91.93 91.93 92.05 66.81 67.25 39.42 38.92
SETN 92.48 91.58 93.30 92.45 69.02 69.03 42.19 42.29
REA 93.47 93.82 92.70 93.33 69.91 70.04 43.96 45.13

REINFORCE 93.15 93.95 93.06 93.38 70.37 70.54 43.20 43.75
optimal N/A N/A N/A 94.37 73.49 73.51 46.77 47.31

Table 4: We evaluate eight different searching algorithms in our AA-NAS-Bench. We provide
test accuracy of each trial on CIFAR-10, average validation and test accuracy on CIFAR-100 and
ImageNet-16-120. “optimal” indicates the best architecture in our search space.
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good relative ranking of each architecture. (3) DARTS-V1 and DARTS-V2 quickly converge to find
the architecture whose edges are all skip connection. A possible reason is that the original hyper-
parameters of DARTS are chosen for their search space instead of ours. (4) Using our fine-grained
information, REA, REINFORCE and RS can be finished in seconds which could significantly reduce
the search costs and let researchers focus solely on the search algorithm itself.

Clarification. We have tried our best to implement each method. However, still, some algorithms
might obtain non-optimal results since their hyper-parameters might not fit our AA-NAS-Bench, If
researchers can provide better results with different hyper-parameters, we are happy to update results
according to the new experimental results. We also welcome more NAS algorithms to test on our
dataset and would include them accordingly.

6 DISCUSSION

How to avoid over-fitting on AA-NAS-Bench? Our AA-NAS-Bench provides a benchmark for
NAS algorithms, aiming to provide a fair and computational cost-friendly environment to the NAS
community. The trained architecture and the easy-to-access performance of each architecture might
provide some tricky ways for designing algorithms to over-fit the best architecture in our AA-NAS-
Bench. Thus, we propose some rules which we wish the users will follow to achieve the original
intention of AA-NAS-Bench, a fair and efficient benchmark.

1. No regularization for a specific operation. Since the best architecture is known in our benchmark,
specifical designs to fit the structural attributes of the best performed architecture are tricky ways to
fit our AA-NAS-Bench. For example, as mentioned in Section 5, we found that the best architecture
with the same amount of parameters for CIFAR10 on AA-NAS-Bench is ResNet. Restrictions on the
number of residual connections is a way to over-fit the CIFAR10 benchmark. While this can give a
good result on this benchmark, the searching algorithm might not generalize to other benchmarks.

2. Use the provided performance. The training strategy affects the performance of the architecture.
We suggest the users stick to the performance provided in our benchmark even if it is feasible to use
otherH to get a better performance. This provides a fair comparison with other algorithms.

3. Report results of multiple searching runs. Since our benchmark can help to largely decrease the
computational cost for a number of algorithms. Multiple searching runs give a stable results of the
searching algorithm with acceptable time cost.

Limitation regarding to hyper-parameter optimization (HPO). The performance of an architec-
ture depends on the hyper-parametersH for its training and the optimal configuration ofHmay vary
for different architectures. In AA-NAS-Bench, we use the same configuration for all architectures,
which may bring biases to the performance of some architectures. One related solution is HPO,
which aims to search the optimal hyper-parameter configuration. However, searching the optimal
hyper-parameter configurations and the architecture in one shot is too computationally expensive
and still is an open problem.

Potential designs using side information in AA-NAS-Bench. As pointed in Section 2.4, different
kinds of side information are provided. We hope that more insights about NAS could be found by
analyzing these side information and further motivate potential solutions for NAS. For example,
parameter sharing (Pham et al., 2018) is the crucial technique to improve the searching efficiency,
but the shared parameter would sacrifice the accuracy of each architecture. Could we find a better
way to share parameters of each architecture from the learned 15,625 models’ parameters?

7 CONCLUSION & FUTURE WORK

In this paper, we introduce the first algorithm-agnostic benchmark for neural architecture search
(AA-NAS-Bench), whereby almost any NAS algorithms can be directly evaluated. We train and
evaluate 15,625 architecture on three different datasets, and we provide results regarding different
metrics. We comprehensively analyze our dataset and test some recent NAS algorithms on AA-NAS-
Bench to serve as baselines for future works. In future, we will (1) consider HPO and NAS together
and (2) much larger search space. We welcome researchers to try their NAS algorithms on our
AA-NAS-Bench and would update the paper to include their results.
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A IMPLEMENTATION DETAILS

Based on the publicly available codes, we re-implement all algorithms by ourselves to search archi-
tectures on our AA-NAS-Bench. We provide the implementation details of each searching algorithm
below.

Random search (RS) (Bergstra & Bengio, 2012). We randomly select 100 architectures. We use
the validation accuracy after 25 training epochs, which can be used directly in our AA-NAS-Bench
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as discussed in Section 2.4. The architecture with the highest validation accuracy is selected as the
final searched architecture.

Random search with parameter sharing (RSPS) (Li & Talwalkar, 2019). We train the shared
parameters via Nesterov momentum SGD, using the cross-entropy loss for 150 epochs in total.
We set weight decay as 0.0005 and momentum of 0.9. We decay the learning rate from 0.025 to
0.001 via cosine learning rate scheduler and clip the gradient by 5. We use the batch size of 64
and randomly sample one architecture in each batch training. Each architecture uses the training
mode during training and evaluation mode during evaluation (Paszke et al., 2017). After training the
shared parameters, we evaluate 100 randomly selected architectures on the validation set and choose
the one with highest validation accuracy.

The first order and second order DARTS (DARTS-V1 and DARTS-V2) (Liu et al., 2019). We
use the hyper-parameters as that of RSPS. Differently, we train the algorithm in 50 epochs in total.
We train the architecture encoding via Adam with the learning rate of 0.0003 and the weight decay
of 0.001.

Gradient-based search using differentiable architecture sampler (GDAS) (Dong & Yang,
2019b). We use the most hyper-parameters as that of DARTS but train in 240 epochs in total.

Self-Evaluated Template Network (SETN) (Dong & Yang, 2019a). We use the most hyper-
parameters as that of DARTS but train in 400 epochs in total. After training the shared parameters,
we evaluate 100 randomly selected architectures on the validation set and select the one with highest
validation accuracy.

Regularized evolution for image classifier architecture search (REA) (Real et al., 2019). We
set the initial population size as 10, the number of cycles as 30, and the sample size of 3. When
using these hyper-parameters, there will be 100 architectures to be evaluated during the evolutionary
procedure. We use the validation accuracy after 25 training epochs as the fitness.

REINFORCE (Williams, 1992). We follow (Ying et al., 2019) to use the REINFORCE algorithm
as a baseline RL method. We use an architecture encoding to parameterize each candidate in our
search space as (Liu et al., 2019; Dong & Yang, 2019b). We use the validation accuracy after 25
training epochs as the reward in REINFORCE. The architecture encoding is optimized via Adam
with a learning rate of 0.001. We finish the training in 100 episodes.
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