
Automated Super-Network Generation for Scalable Neural
Architecture Search

J. Pablo Muñoz1,2 Nikolay Lyalyushkin2 Chaunte Lacewell1,2 Anastasia Senina2

Daniel Cummings1, 2 Anthony Sarah1, 2 Alexander Kozlov2 Nilesh Jain1, 2

1
Intel Labs

2
Intel Corporation

Abstract Weight-sharing Neural Architecture Search (NAS) solutions often discover neural network

architectures that outperform their human-crafted counterparts. Weight-sharing allows

the creation and training of super-networks that contain many smaller and more efficient

child models, a.k.a., sub-networks. For an average deep learning practitioner, generating and

training one of these super-networks for an arbitrary neural network architecture design

space can be a daunting experience. In this paper, we present BootstrapNAS, a software

framework that addresses this challenge by automating the generation and training of

super-networks. Developers can use this solution to convert a pre-trained model into a

super-network. BootstrapNAS then trains the super-network using a weight-sharing NAS

technique available in the framework or provided by the user. Finally, a search component

discovers high-performing sub-networks that are returned to the end-user. We demon-

strate BootstrapNAS by automatically generating super-networks from popular pre-trained

models (MobileNetV2, MobileNetV3, EfficientNet, ResNet50 and HyperSeg), available from

Torchvision and other repositories. BootstrapNAS can achieve up to 9.87× improvement in

throughput in comparison to the pre-trained Torchvision ResNet-50 (FP32) on Intel Xeon

platform. Our code is available at https://github.com/jpablomch/bootstrapnas

1 Introduction

Neural Architecture Search (NAS) solutions attempt to identify the architectures with the best

performance from a search space of possible neural network configurations. In the past few

years, weight-sharing NAS approaches have produced outstanding results (Cai, Gan, et al., 2020;

Yu and Huang, 2019b). These approaches build a super-network from which smaller and, in

some cases, more efficient child models, a.k.a., sub-networks, can be extracted. Unfortunately,

generating a super-network, either from scratch or from an existing pre-trained model, can be

a challenging experience. One has to create the main data structure for the super-network, and

include mechanisms for activating, extracting, forward and backward passing on selected sub-

networks. This process is repeated when a new super-network needs to be generated for a different

search space.

In this paper, we present BootstrapNAS, a software framework for scalable super-network

generation and training. The BootstrapNAS approach focuses on automatically deriving a super-

network from an existing network architecture. This paper extends our short workshop paper

(Muñoz et al., 2021). This work provides the following contributions to the AutoML community:

I. A software framework that automates the generation and training of super-networks from

pre-trained models, and the subsequent search for high-performing sub-networks.

II. Highly extensible APIs that allow developers and researchers to incorporate their ownmethods

for training super-networks and discovering high-performing models.

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:pablo.munoz@intel.com
mailto:pablo.munoz@intel.com
mailto:chaunte.w.lacewell@intel.com
mailto:pablo.munoz@intel.com
mailto:daniel.j.cummings@intel.com
mailto:pablo.munoz@intel.com
mailto:pablo.munoz@intel.com
mailto:nilesh.jain@intel.com
https://github.com/jpablomch/bootstrapnas
https://creativecommons.org/licenses/by/4.0/

III. A hardware-aware solution that incorporates measurements collected at a target hardware

during the sub-network search stage, or by using trained predictors for these measurements.

Users can create their own performance estimators and provide them to the BootstrapNAS’

API.

2 Related Work

There has been significant progress in Neural Architecture Search (NAS) in the past few years. At

the core of all NAS solutions is the exploration of a search space, guided by a search strategy and a

performance estimation strategy (Elsken et al., 2019). In this paper, the focus is on NAS approaches

that avoid training several individual models in separate training events since this is impractical for

large neural architecture design spaces. The emphasis is on weight-sharing NAS approaches, e.g.,

(Bender et al., 2018; Cai, Gan, et al., 2020; Guo et al., 2020; G. Li et al., 2019; Liu et al., 2018; Pham

et al., 2018; Yu, Jin, et al., 2020), and in particular on those that are or can be made hardware-aware

during the sub-network search stage, e.g., (Cai, Gan, et al., 2020; Yu and Huang, 2019a).

Several frameworks have been proposed to automate the generation of the NAS search space

and identify high-performing models. ModularNAS (Lin et al., 2021) provides a unified interface

that allows the user to implement several state-of-the-art NAS methods, including super-network

training and super-network-based search. The Retiarii framework (Zhang et al., 2020), a component

of Microsoft’s Neural Network Intelligence (NNI) (Microsoft, 2021) allows the user to design the

model space, and then apply a search strategy. NASLib is a library that requires minimal coding

efforts to define or reuse an existing search space (Ruchte et al., 2020), enabling researchers to quickly

test their NASmethods onwell-known search spaces. Another relevant work is Fast Neural Network

Adaptation (FNA) (Fang et al., 2020), in which the architecture and parameters of a high-performing

pre-trained backbone are used to produce alternative architectures, i.e., sub-networks, for different

tasks, e.g., detection and segmentation. Other frameworks have been proposed in the past to define

a NAS search space. For instance, DeepArchitect (Negrinho and Gordon, 2017; Negrinho, Patil,

et al., 2019) provides a custom language for representing the search space, and separately trains a

set of models from scratch. In contrast to these frameworks, BootstrapNAS automatically generates

the search space from a given pre-trained model, automating the construction of a super-network

and minimizing the required coding from the user.

Limitations. Generalizing the automated generation of NAS super-networks from arbitrary pre-

trained models is a great challenge that we confront as an iterative process. Future versions of

BootstrapNAS will improve its capabilities allowing for more users to benefit from this software

framework. Currently, there might be models that are not suitable for this approach, either because

they have been efficiently optimized and it is difficult to discover high-performing sub-networks,

or because they contain custom operators that are still not supported in BootstrapNAS, hence

preventing the generation of their super-networks. Another limitation might be the complex

configurations and setting of hyperparameters that might be required for some models. In some

cases, BootstrapNAS’ automatic detection of potential elastic layers might result in a vast search

space affecting training and searching times. To address this concern, BootstrapNAS allows for a

manual setting of the super-network’s elasticity hyper-parameters. (Elasticity is defined in section

3.1).

Societal Impact. Applications that use deep learning models are ubiquitous. Unfortunately, they

come with a significant environmental cost. For instance, the training and deployment of these

models are associated with a significant increase in CO2 emissions. We believe that research

in efficient solutions for model compression, e.g., BootstrapNAS, will result in energy savings

by producing smaller models with a reduced carbon footprint compared to their less efficient

hand-crafted counterparts.

2

3 Framework Overview

Figure 1: BootstrapNAS architecture within the NNCF framework. (1) BootstrapNAS takes as input a

pre-trained model and a dataset. (2) It transforms the model into a super-network. (3) It then

trains the super-network by activating sub-networks, either randomly or based on a particular

training strategy. (4) Once the super-network has been trained, BootstrapNAS searches for

efficient sub-networks, and (5) returns to the user a set of sub-networks that satisfy the

specified objectives. BootstrapNAS is highly extensible allowing for the incorporation of

alternative approaches for training super-networks and for searching for high-performing

sub-networks.

Table 1: Notation

Ω Super-network 𝐿Ω Set of layers of Ω
𝑎𝑖 Sub-network 𝑖 𝑙Ω𝑖 Layer 𝑖 of Ω
𝑎𝑚𝑖𝑛 Minimal sub-network 𝐿𝑖 Set of layers of 𝑎𝑖
𝑎𝑚𝑎𝑥 Maximal sub-network 𝑙𝑖𝑗 Layer 𝑗 of 𝑎𝑖

𝑚 Pre-trained model 𝐿𝑖𝑠 Set of static layers
𝐴 Set of all sub-networks of 𝑎𝑖
𝐴𝑜 Set of Pareto-optimal 𝐿𝑖𝑒 Set of elastic layers

sub-networks of 𝑎𝑖

BootstrapNAS is a software frame-

work for the automated generation

of weight-sharing super-networks for

Neural Architecture Search (NAS). It

is being developed within the Neu-

ral Network Compression Framework

(NNCF) (Kozlov et al., 2020). As illus-

trated in Figure 1, 1 BootstrapNAS

takes as input a pre-trained model,𝑚,

and a dataset, 𝐷 , from the user. 2

It then, transforms 𝑚 into a super-

network, Ω. 3 The super-network is trained using one of the available training strategies.

4 Once the super-network has been trained, BootstrapNAS searches for high-performing sub-

networks which are returned to the user at 5 . In the following sections, we describe each stage in

more detail.

3.1 Automated Super-Network Generation

BootstrapNAS automatically generates a super-network, Ω, from a pre-trained model,𝑚. A weight-

sharing super-network is similar in its structure to other neural networks. The difference is that in

a super-network, it is possible to activate different configurations for some of its layers, allowing

for the extraction of child models, a.k.a. sub-networks. The literature in this topic often uses the

term elasticity to refer to the capability of certain operations in a neural network to be configured

with different values (Cai, Gan, et al., 2020). The objective at this stage in BootstrapNAS is to

make a few selected layers elastic in Ω, hence allowing the possibility of manipulating smaller

3

weight-sharing sub-networks. Currently, BootstrapNAS automatically generates super-networks

applying elasticity to three dimensions of the network: depth, width and kernel size.

Converting𝑚 into a super-network Ω is accomplished by using the capabilities of the Neural

Network Compression Framework (NNCF). NNCF traces the pre-trained model’s graph and wraps

each candidate operator with pre- and post-operations effectively making an operator 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 . This

step is illustrated in Figure 2. During this stage, the super-network, Ω, starts as a copy of𝑚 and

then selected layers are transformed into elastic layers. The set of layers in Ω, 𝐿Ω , is composed of

two subsets of layers. One subset of elastic layers, 𝐿Ω𝑒 , and another subset of static layers, 𝐿Ω𝑠 . Static
layers are shared by all the sub-networks, while elastic layers, 𝐿Ω𝑒 , might not always be shared by

all sub-networks.

Figure 2: BootstrapNAS uses NNCF capabilities to make an operator elastic by wrapping it with pre-

and post-operations. As illustrated in this figure, a Conv2d operator is wrapped with pre-ops

that affect its input and output, effectively making it elastic.

Once an operator has been wrapped, BootstrapNAS can automatically activate different config-

urations for each layer. Each elastic layer has various possible values for its properties. For instance,

the layer could allow several values for its number of channels. e.g., {512, 256, 128}, or kernel sizes

in the case of convolutional layers. Since the super-network, Ω, is created from the pre-trained

model,𝑚, the maximum value for a property in a layer 𝑙Ω𝑖 of Ω will be equal to the original value

for the same property in the same layer, 𝑙𝑚𝑖 of𝑚.

Among the many sub-networks, 𝑎𝑖 , contained in the super-network Ω, there are two sub-

networks that are of particular importance: the maximal sub-network 𝑎𝑚𝑎𝑥 , which has a configura-

tion of layers, and the values for its properties equal to those in the given pre-trained model𝑚, and

hence the transformation from𝑚 to Ω must guarantee that the maximal sub-network 𝑎𝑚𝑎𝑥 results

in the same accuracy (within a small margin of error) as the original model𝑚 on a dataset 𝐷𝑣𝑎𝑙 .

That is, 𝐶𝑜𝑠𝑡 (𝑎𝑚𝑎𝑥 , 𝐷𝑣𝑎𝑙) � 𝐶𝑜𝑠𝑡 (𝑚,𝐷𝑣𝑎𝑙). Otherwise, this is an indication that an error occurred

during the super-network generation step. The other sub-network that is of particular importance

is theminimal sub-network, 𝑎𝑚𝑖𝑛 . The configuration of this sub-network has the minimum possible

value for each property in every elastic layer. More details on how BootstrapNAS enables layer

elasticity can be found in Appendix A.

3.2 Super-Network Training

Once the super-network has been automatically generated, BootstrapNAS trains it using one of the

available training strategies. The literature on super-network training contains several training

strategies, e.g., progressive shrinking (Cai, Gan, et al., 2020) or single stage training (Yu, Jin, et al.,
2020). BootstrapNAS uses progressive shrinking by default. Using this strategy, the training of the

4

super-network occurs in multiple stages, and in decreasing order for each of the properties of elastic

layers. For instance, it first activates different elastic depth configurations in decreasing order, then

it activates elastic depth and elastic width in decreasing order, and so on. The training schedule is

derived from the training schedule of the source model, which simplifies the requirements for the

user. Knowledge distillation can be applied during training (Hinton et al., 2015). The soft labels

from𝑚 or from the maximal subnetwork, 𝑎𝑚𝑎𝑥 , can be used to compute the loss of the sampled

sub-networks. Using the soft labels of 𝑎𝑚𝑎𝑥 is termed inplace distillation (Yu and Huang, 2019b)

A simple single stage training can be obtained from within the progressive shrinking strategy

by activating all the elastic dimensions at once and allowing for the activation of all their possible

values at the layers’ properties. Then, a subset of sub-networks are sampled at random, and their

gradients are aggregated and used to update the weights of the super-network. A more complex

single stage training, e.g., the sandwich rule (Yu and Huang, 2019b) requires, at each training

step, the sampling of the maximal, 𝑎𝑚𝑎𝑥 and minimal 𝑎𝑚𝑖𝑛 sub-networks, together with other 𝑛

sub-networks sampled at random. As with other training strategies, the weights are aggregated

and used to update the super-network. BootstrapNAS’ API is highly extensible allowing advanced

users to implement their own training strategies.

3.3 Sub-Network Search

Once the super-network optimization training stage has finished, the next step is to search and

return 𝑘 sub-networks from the set of Pareto-optimal sub-networks, 𝐴𝑜 , (𝐴𝑜 ⊆ 𝐴), to the user. We

explain below how 𝐴𝑜 is obtained. As default, 𝑘 = 1, that is, a single sub-network from the Pareto

set that outperforms the original model,𝑚, is returned to the user. To select 𝑘 networks from 𝐴𝑜 ,

BootstrapNAS favors sub-networks that have an accuracy similar to𝑚 (with some tolerance) but

improve efficiency, e.g., minor drop in accuracy but significant improvement in latency.

The search of Pareto-optimal sub-networks, 𝐴𝑜 can be approached as a multi-objective opti-

mization. The multi-objective goal is to,

minimize𝑓1(x), . . . , minimize 𝑓𝑛 (x), x ∈ X , (1)

for a given set of 𝑛 objective functions 𝑓1 : X → R, . . . , 𝑓𝑛 : X → R, where x is a member of an

objective decision space X (Emmerich and Deutz, 2018). Multi-objective evolutionary algorithms

(MOEAs), specifically Pareto-based MOEAs, are well suited for sub-network search problems since

they can operate easily on the discrete variable types given by the super-network elastic parameter

space. Many are designed to evolve towards sets of Pareto optimal solutions that have a diverse

spread across the Pareto front (objective trade-off solution region). As a default search algorithm,

BootstrapNAS uses NSGA-II (Deb, Pratap, et al., 2002). NSGA-II uses a generational loop process that

evolves a population of individuals (e.g., sub-networks) using crossover and mutation operations

and then ranks the different individuals in the population using a non-dominated sorting with

crowding distance criterion to produce a diverse set of Pareto-optimal solutions. With NSGA-II, a

user is provided with a wide and diverse spread of sub-network options across the objective space.

BootstrapNAS uses by default the multi-objective optimization capabilities of 𝑃𝑦𝑚𝑜𝑜 (Blank

and Deb, 2020), which enables the smooth application of NSGA-II and other search algorithms. For

instance, a user can randomly sample sub-networks and then use the performance measurements of

a particular sub-network as a reference point to other algorithms. In the case where only a specific

region of the objective space is desirable, RNSGA-II (Deb and Sundar, 2006) offers a solution to

direct the search. As illustrated in Figure 3, BootstrapNAS can use the output of the user’s random

search and a particular accuracy target to explore a region of the model space. Reference point based

multi-objective optimization approaches allow one or more reference points to be defined in the

objective space and where the ranking of solutions are calculated by the euclidean distance to each

reference point. In our example, RNSGA-II requires fewer evaluations than NSGA-II. While NSGA-II

5

1000 1500 2000 2500 3000 3500 4000
MACs [M]

73.5

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

To
p1

 A
cc

ur
ac

y
[%

]

RNSGA-II
Reference
Point

NSGA-II Pareto Front
(20 generations)
RNSGA-II Search
(5 generations)
Heuristic search subnetwork
Input Pre-Trained Model 0

50

100

150

200

250
 Evaluations

Figure 3: Reference point genetic algorithm search progression. The performance measurements of a

sub-network, e.g., from the application of random search or hand-picked by the user, can

be used as a starting point for a more advanced directed search using RNSGA-II (Deb and

Sundar, 2006)

.

0.0 0.2 0.4 0.6 0.8 1.0
Actual Latency (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 L
at

en
cy

 (N
or

m
al

ize
d)

100 200 300 400 500
Training Samples

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sp
ea

rm
an

 R
an

k
Co

rre
la

tio
n

(
)

0.0 0.2 0.4 0.6 0.8 1.0
Latency (Normalized)

74.0

74.5

75.0

75.5

76.0

76.5

77.0

To
p1

 A
cc

ur
ac

y
[%

]

Actual Latency
Predicted Latency
Random search
subnetwork

Figure 4: Latency predictor training examples. The left plot shows the predicted versus actual latency

after a ridge regression model is trained (test=500 samples, train=500 samples). The center

plot shows how the Spearman’s rank correlation coefficient improves with training samples.

The right plot presents a comparison of predicted versus measured latency from optimal

sub-networks identified during a NSGA-II search using the simple example latency predictor.

Although error is introduced when using predictors, the discovered sub-networks tend to

outperform the ones found with random search.

can take a significant number of evaluations to produce good results, it is easily applied to any

super-network, does not require reference points, and shows consistent evolutionary progressions

towards finding better sub-network solutions.

Performance Estimation The search stage in super-network-based NAS solutions often requires

a significant amount of time depending on the size of the search space and the selected search

strategy, mostly because of the cost of measuring the performance metrics of the sub-networks.

One common approach is to sample and evaluate a subset of sub-networks on metrics, such as

accuracy and latency, and use these measurements to train predictors since search spaces can often

reach a very large number of possible sub-networks configurations, e.g., 10
19
for MobileNetV3 (Cai,

Gan, et al., 2020). Lookup tables are another common form of predicting latency which aggregates

delay by layer operation to approximate the full delay of the sub-network of interest (Cai, Zhu,

et al., 2019). Once these predictors have been created, the search stage can take a relatively short

amount of time. Other metrics that are commonly used to approximate model size and complexity

are model parameter counts and multiply-accumulates (MACs). The evaluation of these metrics

tends to take less time. The best practice when using predictor approaches is to perform a final

validation measurement on the best candidate sub-networks since predictors introduce some level

of inaccuracy depending on how they were trained. The rationale is that to search across tens of

6

thousands of sub-network options quickly, you can just use a well-behaved predictor, which can be

trained in less than a thousand samples. BootstrapNAS allows any predictor modeling approach to

be used jointly with the sub-network search component. While we use ridge regression for our

example, another comprehensive work (Lu et al., 2021) covers the use of different predictor models

(e.g., MLP, RBF, decision trees).

To illustrate the use of predictors, we randomly sample subnetworks from the BootstrapNAS

Resnet-50 model and measure their latency. In Figure 4, we illustrate that the latency predictor

can achieve a Spearman’s rank correlation coefficient 𝜌 > 0.95 in as few as 200 training samples in

this example. Next, we perform 20 generation (population=50) NSGA-II search using the latency

predictor and measure the actual latency on the best Pareto-optimal sub-networks at the end of

the search. When viewed in the latency and accuracy objective space as in Figure 4, the resulting

Pareto front sub-network solutions behave as expected. In the BootstrapNAS framework, predictors

can be utilized on one or both objectives during multi-objective search, and the end-user has the

flexibility to implement their own estimators and pass them as arguments during the search stage.

4 Experiments

The main goal of these experiments is to demonstrate the generalization capabilities of Boot-

strapNAS for automated super-network generation, training and search for high-performing sub-

networks. We generated several super-networks from popular models using BootstrapNAS. Some of

these super-networks might be suitable for the application of other model compression techniques,

e.g., quantization, or longer super-network training to further improve their performance.

In the process of implementing the BootstrapNAS approach, we started by extending the

code from (Cai, Gan, et al., 2020) to generate super-networks from Torchvision’s
1
ResNet-50 (He

et al., 2016) model trained with Imagenet (Deng et al., 2009) and HyperSeg Lite trained with the

VFX dataset (Rhodes and Goel, 2020). In our second development iteration, we implemented

BootstrapNAS’ current scalable open-source API and generated super-networks for ResNet-50

trained with CIFAR-10 (Krizhevsky et al., 2009), MobilenetV2 (Sandler et al., 2018) (CIFAR-10 and

Imagenet), MobilenetV3 (Howard et al., 2019) trained with Imagenet, and EfficientNet (Tan and Le,

2019) trained with CIFAR-100. Sub-network search uses NSGA-II as default with crossover rate of

0.9, mutation rate of 0.02, a population of size 50, 3000 evaluations for CIFAR-trained models, and

1000 evaluations for Imagenet-trained models. These values were chosen based on our optimization

ablation studies.

Super-Networks from Models Trained with CIFAR-10. To demonstrate BootstrapNAS’ automated

generalizable super-network generation capabilities, we selected two models: ResNet-50 and

MobileNet-V2, both trained with CIFAR-10 from (Phan, 2021). As illustrated in Figure 5 (two plots

on the right), several sub-networks discovered by BootstrapNAS outperform the given pre-trained

models. We highlight two sub-networks for each super-network (BootstrapNAS A-RC, B-RC, A-MC,

and B-MC). Table 2 describes the reduction in required MACs by these sub-networks while either

maintaining the accuracy of the baseline model, or with a minor drop in accuracy.

Super-Networks from Models Trained with CIFAR-100. We also used BootstrapNAS to generate

a super-network from EfficientNet-B0 (CIFAR-100). This model has a top 1 accuracy of 87.02%

after transfering from Imagenet weights (EfficientNet-PyTorch 2021). As described in Table 3,

BootstrapNAS discovered a sub-network that reduces the number of MACs by 12% with a minimum

drop of accuracy from 87.02% to 86.89%. This improvement is achieved with only 20 epochs of

super-network training on the elastic depth dimension.

Super-Networks from Models Trained with Imagenet. Three super-networks were generated
from Resnet-50, MobilenetV2, MobileNetV3, all pre-trained models available at Torchvision and

trained with Imagenet. In all three cases, BootstrapNAS discovered sub-networks that are more

1
https://pytorch.org/vision/stable/index.html

7

1500 2000 2500 3000 3500 4000
MACs [M]

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

To
p1

 A
cc

ur
ac

y
[%

]

Input
Pre-Trained

Model

ResNet-50 | Imagenet

BootstrapNAS A
BootstrapNAS B
BootstrapNAS C
Torchvision ResNet-50

100 150 200 250 300
MACs [M]

91.5

92.0

92.5

93.0

93.5

94.0

To
p1

 A
cc

ur
ac

y
[%

]

Input
Pre-Trained

Model

ResNet-50 | CIFAR-10

BootstrapNAS A-RC
BootstrapNAS B-RC
Phan ResNet-50

20 30 40 50 60 70 80 90
MACs [M]

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

To
p1

 A
cc

ur
ac

y
[%

]

Input
Pre-Trained

Model

MobileNetV2 | CIFAR-10

BootstrapNAS A-MC
BootstrapNAS B-MC
Phan MobileNetV2

Image Classification Super-Networks Generated From Pre-trained Models

Figure 5: Sub-network search progression for three examples of super-networks generated by Boot-

strapNAS from pre-trained models: ResNet-50 trained with Imagenet (left) and CIFAR10

(center), and MobileNetV2 trained with CIFAR10 (right). Section 4 includes results for

MobileneNetV2 and MobileNetV3 trained with ImageNet, and EfficientNet trained with

CIFAR-100. NSGA-II was used to discover a Pareto front. Each rhombus represents a sub-

network with a particular top 1 accuracy and MACs. All sub-networks above the dashed

lines outperform the pre-trained models given as input in both objectives, top1 accuracy and

MACs. NSGA-II was configured to 1,000 evaluations (20 generations) for Imagenet-trained

models and 3,000 (60 generations) for CIFAR10-trained models.

Input Models

Trained with CIFAR-10

from (Phan, 2021)

Pre-Trained

Top 1 Acc.

[%]

Pre-trained

MACs

[Millions]

ISO-Top 1 Acc.

BootstrapNAS

(Fewer MACs)

Drop ∼ 1% Top 1 Acc.

BootstrapNAS

(Fewer MACs)

ResNet-50 93.65 325.80 2.81× 3.65×
MobileNetV2 93.91 87.98 2.39× 3.56×

Table 2: Improvements obtained by selected sub-networks discovered by BootstrapNAS. We compare

two sub-networks for each base model: One sub-network that maintains the accuracy (ISO-

Top 1) while reducing the number of MACs, and another one that allows for a drop of ∼ 1% in

accuracy but with a greater reduction in MACs.

efficient than the given pre-trained model. Figure 5 on the left illustrates the search progression

of NSGA-II on ResNet-50. This figure highlights three sub-networks: BootstrapNAS 𝐴 provides a

reduction in model size in terms of MACs by 66.1%, with an accuracy drop of less than 1%, while

BootstrapNAS 𝐵 reduces MACs by 40.8% with an improvement in accuracy. The third sub-network

obtained from the pre-trained ResNet-50, BootstrapNAS 𝐶 , maintains the top 1 accuracy of the

input model while reducing the number of operations in MACs by 53.1%.

Improvements are observed for the MobileNetV2 and MobileNetV3 models from Torchvision,

as well. As described in Table 3, in the case of MobilenetNetV2, BootstrapNAS discovered a sub-

network that reduced the number of required MACs by 12.5% with a minimal drop in accuracy

from 71.88% to 71.42%. In the case of MobilenetV3, BootstrapNAS discovered a sub-network that

requires 21% fewer MACs than the given model with a minimal drop in accuracy from 74.04% to

73.52%. This improvement is achieved with 25 epochs of super-network training and only enabling

the elastic dimension.

We used the selected sub-networks from the ResNet-50 super-network to analyze their per-

formance using a dual-socket Intel
®
Gold 6252 CPU @ 2.10GHz (Cascade Lake), each CPU with

24 physical cores. To evaluate the latency of the models, we processed a single sample (of size 1),

measured the completion time, and calculated the 90th-percentile latency in milliseconds. Bootstrap-

NAS 𝐴 provides the largest improvement in latency over the input model with 2.16× improvement

8

Input

Pre-trained Models

Pre-

Trained

Top 1 Acc.

[%]

Pre-trained

MACs

[Millions]

Sub-network

BootstrapNAS

Top 1 Acc. [%]

Sub-network

BootstrapNAS

MACs [Millions]

EfficientNet-B0 (CIFAR-100) 87.02 385 86.89 338

MobileNet-V2 (ImageNet) 71.88 301 71.42 263

MobileNet-V3 (ImageNet) 74.04 216 73.52 169

Table 3: Comparison between the pre-trained models (EfficientNet-B0, MobileNetV2 and MobileNetV3)

given as input to BootstrapNAS and a discovered sub-network that outperforms the given

model after a few epochs of super-network training on the elastic depth dimension.

Latency (FP32) Model Size (reduction) Latency (INT8)
0

1

2

3

4

5

Im
pr

ov
em

en
t (

Hi
gh

er
 is

 b
et

te
r)

Intel® Xeon® Gold 6252 CPU @ 2.1GHz (Cascade Lake)

1.00 1.00 1.00

2.16

3.00 3.08

1.47
1.70

1.87

BootstrapNAS | ResNet-50 | Imagenet
ResNet50 Torchvision
BootstrapNAS A
BootstrapNAS B

Latency (FP32)
0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

La
te

nc
y

Im
pr

ov
em

en
t (

Hi
gh

er
 is

 b
et

te
r)

Intel® Xeon® Gold 6252 CPU @ 2.1GHz (Cascade Lake)

1.00

1.38

1.19

1.00

BootstrapNAS | Hyperseg
Hyperseg Lite
BootstrapNAS Seg A
BootstrapNAS Seg B
BootstrapNAS Seg C

66

68

70

72

74

76

78

80

Ac
cu

ra
cy

 To
p

1

76.13
75.6075.46

75.00

76.58
75.80

FP32 Top 1
INT8 Top 1

0.70

0.72

0.74

0.76

0.78

0.80

0.82

m
Io

U

0.765

0.781

0.794

0.810

Figure 6: Left: Performance of two examples of sub-networks extracted from the super-network

generated from the pre-trained ResNet-50 model from Torchvision. These sub-networks

outperform the baseline pre-trained model on latency (both for FP32 and INT8) and model

size. Right: Performance of three examples of sub-networks extracted from the super-network

generated from the pre-trained HyperSeg Lite model. These sub-networks improve on mIoU,

and two of them on latency, over the baseline model.

in FP32 and 3.08× in INT8 as shown in Figure 6 on the left. BootstrapNAS 𝐵 provides the minimal

improvement of 1.47× and 1.87× for FP32 and INT8, respectively. To evaluate throughput in samples

per second, we used batch processing where the latency is unconstrained and all data is available

and processed in any order. BootstrapNAS 𝐴 improves the throughput from the original model by

2.66× in FP32 and 2.57× in INT8. BootstrapNAS 𝐵 and 𝐶 provide comparable performance with

improvements in throughput of 1.55-1.98× for both FP32 and INT8. Overall, BootstrapNAS 𝐴-𝐶 in

INT8 can achieve a 6.02-9.87× improvement in throughput in comparison to the pre-trained FP32

Torchvision ResNet-50 model.

Super-Networks from Models trained with the VFX Segmentation Dataset. We also generated a

super-network from a pre-trained HyperSeg Lite model (Rhodes and Goel, 2020). HyperSeg is a

model for end-to-end interactive video segmentation tasks for high-resolution (2K) data. HyperSeg

outperforms state-of-the-art models for interactive segmentation (Z. Li et al., 2018), DOS (Xu

et al., 2016), Graph Cut (Boykov and Jolly, 2001), and Random Walk (Grady, 2006) with a mIoU

of 0.840. We used HyperSeg Lite which uses lower resolution data (224x224) and obtains a mIoU

of 0.765. Figure 6 on the right shows the improvements obtained by three sub-networks from the

BootstrapNAS’ super-network: BootstrapNAS Seg A, with 1.38× less latency than the baseline, and

BootstrapNAS Seg B, with 1.19× less latency. Both sub-networks improve on accuracy, 2% and

3.8% respectively in comparison to the baseline model’s accuracy. BootstrapNAS also discovered a

9

sub-network, BootstrapNAS Seg C, with similar latency as the baseline but with a 5.9% improvement

in accuracy.

5 Conclusion
We have presented BootstrapNAS, a framework for neural architecture search based on the au-

tomated generation of weight-sharing super-networks from existing pre-trained models. Boot-

strapNAS supports super-network training applied to various elastic dimensions and the search

for high-performing sub-networks. BootstrapNAS has a simple and extensible API to enable cus-

tom implementations of super-network training and search algorithms. We demonstrated the

feasibility of BootstrapNAS by applying it to public pre-trained models, showing that it can pro-

duce sub-networks with substantial improvements in the performance-accuracy trade-off even for

lightweight models such as MobileNet and EfficientNet.

Acknowledgements. Thank you to Ravi Iyer, Yuri Gorbachev, and Soren Knudsen for their contin-

uous support to this research. Thank you to the NNCF/OpenVINO team for their help integrating

this research into NNCF. In particular, thank you to Wonju Lee, Daniil Lyakhov, and Minje Park.

We would also like to thank Vui Seng Chua and Yash Akhauri for their invaluable feedback.

References
Bender, G. et al. (2018). “Understanding and Simplifying One-Shot Architecture Search”. In: ICML.
Blank, J. and K. Deb (2020). “pymoo: Multi-Objective Optimization in Python”. In: IEEE Access 8,

pp. 89497–89509.

Boykov, Y. and M.-P. Jolly (2001). “Interactive graph cuts for optimal boundary amp; region seg-

mentation of objects in N-D images”. In: Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001. Vol. 1, 105–112 vol.1.

Cai, H., C. Gan, et al. (2020). “Once for All: Train One Network and Specialize it for Efficient

Deployment”. In: International Conference on Learning Representations. url: https://arxiv.or
g/pdf/1908.09791.pdf.

Cai, H., L. Zhu, and S. Han (2019). “ProxylessNAS: Direct Neural Architecture Search on Target

Task and Hardware”. In: International Conference on Learning Representations.
Deb, K., A. Pratap, et al. (2002). “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:

IEEE Transactions on Evolutionary Computation 6.2, pp. 182–197.

Deb, K. and J. Sundar (2006). “Reference Point Based Multi-Objective Optimization Using Evolu-

tionary Algorithms”. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’06. Seattle, Washington, USA: Association for Computing Machinery,

pp. 635–642.

Deng, J. et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee, pp. 248–255.

EfficientNet-PyTorch (2021). Pytorch implementation of EfficientNet with training code and weights.

url: https://github.com/lukemelas/EfficientNet-PyTorch.
Elsken, T., J. H. Metzen, and F. Hutter (2019). “Neural Architecture Search: A Survey”. In: Journal of

Machine Learning Research 20.55, pp. 1–21.

Emmerich, M. and A. H. Deutz (2018). “A tutorial on multiobjective optimization: fundamentals

and evolutionary methods”. In: Natural Computing 17, pp. 585–609.

Fang, J. et al. (2020). “Fast Neural Network Adaptation via Parameter Remapping and Architecture

Search”. In: International Conference on Learning Representations.
Grady, L. (2006). “RandomWalks for Image Segmentation”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 28.11, pp. 1768–1783.
Guo, Z. et al. (2020). “Single path one-shot neural architecture search with uniform sampling”. In:

European Conference on Computer Vision. Springer, pp. 544–560.

10

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://github.com/lukemelas/EfficientNet-PyTorch

He, K. et al. (2016). “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Hinton, G., O. Vinyals, and J. Dean (2015). Distilling the Knowledge in a Neural Network. arXiv:
1503.02531 [stat.ML].

Howard, A. et al. (Oct. 2019). “Searching for MobileNetV3”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).

Kozlov, A. et al. (2020). “Neural network compression framework for fast model inference”. In:

arXiv preprint arXiv:2002.08679.
Krizhevsky, A., V. Nair, and G. Hinton (2009). “CIFAR-10 (Canadian Institute for Advanced Re-

search)”. In: url: http://www.cs.toronto.edu/~kriz/cifar.html.
Li, G. et al. (2019). “StacNAS: Towards stable and consistent optimization for differentiable Neural

Architecture Search”. In: ArXiv abs/1909.11926.

Li, Z., Q. Chen, and V. Koltun (2018). “Interactive Image Segmentation with Latent Diversity”. In:

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 577–585.
Lin, Y. et al. (2021). “ModularNAS: Towards Modularized and Reusable Neural Architecture Search”.

In: Proceedings of Machine Learning and Systems. Ed. by A. Smola, A. Dimakis, and I. Stoica.

Vol. 3, pp. 413–433.

Liu, H., K. Simonyan, and Y. Yang (2018). DARTS: Differentiable Architecture Search. arXiv: 1806.09
055 [cs.LG].

Lu, Z. et al. (Sept. 2021). “Neural Architecture Transfer”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 43.9, pp. 2971–2989. url: http://dx.doi.org/10.1109/TPAMI.2021
.3052758.

Microsoft (2021). Microsoft/NNI: An open source automl toolkit for Automate Machine Learning
Lifecycle, including feature engineering, Neural Architecture Search, model compression and hyper-
parameter tuning. url: https://github.com/microsoft/nni.

Muñoz, J. P. et al. (2021). “Enabling NAS with Automated Super-Network Generation”. In: CoRR
abs/2112.10878. arXiv: 2112.10878. url: https://arxiv.org/abs/2112.10878.

Negrinho, R. and G. Gordon (2017). “Deeparchitect: Automatically designing and training deep

architectures”. In: arXiv preprint arXiv:1704.08792.
Negrinho, R., D. Patil, et al. (2019). “Towards modular and programmable architecture search”. In:

Neural Information Processing Systems.
Pham, H. et al. (2018). Efficient Neural Architecture Search via Parameter Sharing. arXiv: 1802.03268

[cs.LG].
Phan, H. (Jan. 2021). “GIT repository of models trained with CIFAR-10”. In:

github.com/huyvnphan/PyTorch_CIFAR10.
Rhodes, A. D. and M. Goel (2020). High Fidelity Interactive Video Segmentation Using Tensor Decom-

position Boundary Loss Convolutional Tessellations and Context Aware Skip Connections. arXiv:
2011.11602 [cs.CV].

Ruchte, M. et al. (2020). NASLib: A Modular and Flexible Neural Architecture Search Library. https:
//github.com/automl/NASLib.

Sandler, M. et al. (2018). “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4510–4520.

Tan, M. and Q. V. Le (2019). “EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks”. In: CoRR abs/1905.11946. arXiv: 1905.11946. url: http://arxiv.org/abs/1905.1
1946.

Xu, N. et al. (2016). “Deep Interactive Object Selection”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 373–381.

Yu, J. and T. S. Huang (2019a). “Network Slimming by Slimmable Networks: Towards One-Shot

Architecture Search for Channel Numbers”. In: CoRR abs/1903.11728. arXiv: 1903.11728. url:
http://arxiv.org/abs/1903.11728.

11

https://arxiv.org/abs/1503.02531
http://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
http://dx.doi.org/10.1109/TPAMI.2021.3052758
http://dx.doi.org/10.1109/TPAMI.2021.3052758
https://github.com/microsoft/nni
https://arxiv.org/abs/2112.10878
https://arxiv.org/abs/2112.10878
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/2011.11602
https://github.com/automl/NASLib
https://github.com/automl/NASLib
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1903.11728
http://arxiv.org/abs/1903.11728

Yu, J. and T. S. Huang (2019b). “Universally Slimmable Networks and Improved Training Techniques”.

In: CoRR abs/1903.05134. arXiv: 1903.05134. url: http://arxiv.org/abs/1903.05134.
Yu, J., P. Jin, et al. (2020). “BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage

Models”. In: CoRR abs/2003.11142. arXiv: 2003.11142. url: https://arxiv.org/abs/2003.11
142.

Zhang, Q. et al. (2020). “Retiarii: A Deep Learning Exploratory-Training Framework”. In: 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20), pp. 919–
936.

A Additional Details on Enabling Elastic Dimensions
Elastic kernels are implemented by intercepting the weight tensors of the selected modules and

applying element-wise calculations to these weight tensors. BootstrapNAS performs sub-tensor

selection and multiplication with an additional tensor of trainable parameters, as proposed by (Cai,

Gan, et al., 2020) to remove the spatial dependency of kernel variants on each other inside a given

layer. The resulting tensor of an operation with elastic kernels must have a fixed resolution. This

is accomplished by applying, when necessary, a different padding for each kernel size, effectively

preserving the output spatial resolution with respect to the input; otherwise, the kernel selection

process is not well-defined in terms of the output tensor shape.

Elastic width. By analogy, elastic width can be enabled by reusing the aforementioned mechanism

from NNCF (Figure 2). This wrapping mechanism overrides the layer’s implementation in such

a way that its parameters used in calculations can be intercepted and updated by an arbitrary

operation. In order to reduce the width of the layer, the least important output channels of weights

can be cut off. The input channels of the next layers are trimmed accordingly for consistency. This

operation can be effectively implemented by conventional tensor slicing, provided that the filters

are reorganized in descending order of their importance. BootstrapNAS automatically reorganizes

the outputs channels of arbitrary models before starting the super-network optimization stage.

BootstrapNAS assigns elastic width values to elastic layers by taking into account the depen-

dencies between them. For instance, two convolutions are dependent if their outputs are the input

of an element-wise operation (e.g., addition, multiplication, or concatenation), so they cannot

have a different number of filters at the same time. Otherwise, the element-wise operation cannot

be performed on tensors of different dimensions. Therefore, all such layers are combined into

independent groups by traversing the execution graph. BootstrapNAS uses these groups/clusters

to assign the same width values to all layers in the group.

Elastic depth. Figure 2 illustrates the procedure for implementing elastic kernels and elastic width
in the super-network. Elastic depth requires a different kind of analysis. The implementation of

elastic depth implies two actions: (i) detecting the blocks of layers that might be removed from

the super-network to generate shallower sub-networks, i.e., elastic blocks (before optimizing the

super-network). and (ii) skipping a subset of these detected blocks when sampling sub-networks

(in the super-network optimization stage).

The algorithm for detecting blocks that can be skipped relies on the shapes of inputs and outputs

for a candidate block. Such blocks must satisfy two conditions: (i) if removed, they should not

change the shape of feature maps and (ii) they should have a single input and a single output. If a

block has several branches at the input, but identical tensors run along them, then we suppose that

the block still has a single input; similarly with the outputs. The block detection algorithm is able to

find the building blocks of popular networks, e.g., Bottlenecks for Resnet-50 and Inverted Residual

Blocks for MobileNet-v2. However, the list of potential blocks that can be removed might be too

large. For example, even consecutive Convolution, BatchNorm and ReLU may produce six blocks:

[Conv], [ReLU], [BN], [Conv + BN], [BN + ReLU], [Conv + BN + ReLU]. To avoid this excessive

generation of candidate blocks, we combine convolution, batch normalization, and activation layers

in the graph into a single node and perform the search for elastic blocks on such a modified graph.

12

https://arxiv.org/abs/1903.05134
http://arxiv.org/abs/1903.05134
https://arxiv.org/abs/2003.11142
https://arxiv.org/abs/2003.11142
https://arxiv.org/abs/2003.11142

A large number of nested blocks are eliminated by discarding the ones that are a superposition of

other blocks.

NNCF is capable of bypassing the elastic blocks that have been selected to skip, effectively

allowing for the generation of sub-networks of different depths. A group identifier, 𝑔𝑖 , is assigned

for the sequence of blocks. This identifier is used during the super-network optimization stage to

filter blocks that should not be skipped or that result in invalid sub-network configurations.

B User Interaction

When developing BootstrapNAS, we have paid special attention to the usability of the framework.

Non-experts should be able to effortlessly convert their pre-trained models into super-networks

that can be optimized using state-of-the-art Neural Architecture Search. As illustrated in the code

sample below (Listing 1), BootstrapNAS abstracts away all the complexities of transforming the

pre-trained model into a super-network, allowing the user to generate a super-network with a

few lines of code. Once the super-network has been generated, a selected search algorithm finds

high-performing sub-networks.

1 # Produces a model suitable for elasticity.

2 nncf_network = create_nncf_network(model, config)

3 # Creates an algorithm for super-network training and adds elasticity.

4 training_algorithm = EpochBasedTrainingAlgorithm.from_config(nncf_network, config)

5 # Trains the super-network.

6 super_network, elasticity_ctrl = training_algorithm.run(

7 train_epoch_fn, train_loader,

8 validate_model_fn, val_loader,

9 optimizer, checkpoint_save_dir)

10 # Creates an algorithm for sub-network search.

11 search_algo = SearchAlgorithm(super_network, elasticity_ctrl, config)

12 # Runs the search.

13 elasticity_ctrl, best_subnet_config, performance_metrics = search_algo.run(

14 validate_model_fn, val_loader,

15 checkpoint_save_dir)

Listing 1: Super-network generation and search for Pareto optimal sub-networks.

Users can incorporate BootstrapNAS’ functionality into their custom training pipeline. As the

pseudocode above exemplifies, the user’s training and validation functions are passed as arguments

to BootstrapNAS, which manages the optimization of the super-network using this information.

C ResNet-50 and BootstrapNAS A Sub-Network Comparison

To understand the differences between the baseline Resnet-50 fromTorchvision trained on ImageNet,

and the discovered sub-network BootstrapNAS A (Section 4, Figures 5 and 6), we can look at

the characteristics of each model. We first analyzed the number of layers per operation. The

baseline ResNet50 model contains 344 layers, while BootstrapNAS only contains 224. This is a

∼35% reduction in the total number of layers. Specifically, ResNet50 has ∼1.3x more Scale, Bias,

Convert, Subtract, and Convolution operations than BootstrapNAS A. Convolutions require the

most compute from these operations and this difference directly contributes to the 2.95x difference

in multiply-accumulate (MAC) operations, which impacts the latency. The kernel size used for each

13

convolution also contributes to the amount of compute. Both models use a 7x7 convolution on

the input image, but the differences are in the number of 1x1 and 3x3 kernels. BootstrapNAS can

obtain comparable accuracy with 22.2% reduction in 1x1 kernels and 25% reduction in 3x3 kernels.

C.1 Configuration Files

Listing 2 is an example of a configuration file that can be used with BootstrapNAS. Next, we discuss

a few important fields that can be used to tune the behavior of BootstrapNAS. An exhaustive list of

all the available properties is in a schema file for BootstrapNAS that is used to validate configuration

files.

model. Specifies the name of the model. This is used to load one of the models known to NNCF.

The user can specify their own models, as well.

progressivity_of_elasticity. Specifies the order in which elastic dimensions must be applied when

using the progressive shrinking training strategy.

batchnorm_adaptation. Specifies the parameters used for batch normalization adaptation, e.g., the

number of samples used to reset the batch normalization statistics.

schedule. This field specifies how the training strategy must be applied. As exemplified in Listing

2, it contains a list of stage descriptors. For instance, in the first stage, BootstrapNAS focuses only

on elastic depth. There are several properties that can be specified for each stage. For instance,

the user can indicate the level of elasticity in the depth dimension (depth indicator), i.e., the

maximum number of layers/blocks that could be removed from each group of layers. BootstrapNAS

uses this information to validate elastic depth configurations requested by the training algorithm.

The user can also specify how many epochs must be used for each stage, whether to reorganize

weights in order of importance, the maximum number of possible values allowed for elastic width

configurations (per layer) in a particular stage (width indicator), whether we should apply batch

normalization adaptation, and the learning rate for the stage. BootstrapNAS uses cosine learning

rate decay by default. In addition to specifying the initial learning rate for a stage, the user can

specify the number of epochs that should be considered in the learning rate decay calculation.

elasticity. This field specifies how the selected dimensions should be made elastic. In the example

on Listing 2, we have selected width and depth. For each dimension, there are a few properties

that can be specified. For instance, the user can specify how to construct the possible width

configurations (maximum number of possible values to generate sub-network configurations, the

minimum possible width, either to use a step for determining the possible values, or a width

multiplier). In the case of elastic depth, the example sets its mode to auto, which means that

BootstrapNAS will automatically detect all the blocks that could be skipped to generate alternative

sub-network configurations. If the user sets this value to manual, the user can limit which blocks

must be made elastic.

search. In the example on Listing 2, NSGA2 has been selected as search algorithm. Additional

parameters for the search algorithm can be specified, e.g., number of evaluations, population size,

and reference accuracy (other search parameters are listed in BootstrapNAS’ schema). As with

other fields, if the user does not specify their value, BootstrapNAS will use default values.

14

1 {

2 "model": "resnet50_cifar10",

3 "batch_size": 64,

4 // ... Additional fields, e.g., number of classes, dataset, etc.

5 "optimizer": { // ... Optimizer-related configuration

6 },

7 "bootstrapNAS": {

8 "training": {

9 "algorithm": "progressive_shrinking",

10 "progressivity_of_elasticity": ["depth", "width"],

11 "batchnorm_adaptation": {

12 "num_bn_adaptation_samples": 1500

13 },

14 "schedule": {

15 "list_stage_descriptions": [

16 {"train_dims": ["depth"], "epochs": 25, "depth_indicator": 1, "init_lr": 2.5e-6,

"epochs_lr": 25},↩→

17 {"train_dims": ["depth"], "epochs": 40, "depth_indicator": 2, "init_lr": 2.5e-6,

"epochs_lr": 40},↩→

18 {"train_dims": ["depth", "width"], "epochs": 50, "depth_indicator": 2,

"reorg_weights": true, "width_indicator": 2, "bn_adapt": true, "init_lr":

2.5e-6, "epochs_lr": 50},

↩→

↩→

19 {"train_dims": ["depth", "width"], "epochs": 50, "depth_indicator": 2,

"reorg_weights": true, "width_indicator": 3, "bn_adapt": true, "init_lr":

2.5e-6, "epochs_lr": 50}

↩→

↩→

20]

21 },

22 "elasticity": {

23 "available_elasticity_dims": ["width", "depth"],

24 "width": {

25 "max_num_widths": 3,

26 "min_width": 32,

27 "width_step": 32,

28 "width_multipliers": [1, 0.80, 0.60]

29 },

30 "depth": {"mode": "auto"}

31 },

32 },

33 "search": {

34 "algorithm": "NSGA2",

35 "num_evals": 3000,

36 "population": 50,

37 "ref_acc": 93.65

38 }

39 }

40 }

Listing 2: Example of a configuration file to generate super-networks and search for high-performing

sub-networks.

15

	Introduction
	Related Work
	Framework Overview
	Automated Super-Network Generation
	Super-Network Training
	Sub-Network Search

	Experiments
	Conclusion
	Additional Details on Enabling Elastic Dimensions
	User Interaction
	ResNet-50 and BootstrapNAS A Sub-Network Comparison
	Configuration Files

