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ABSTRACT

Learned image compression (LIC) has gained traction as an effective solution for
image storage and transmission in recent years. However, existing LIC methods
are redundant in latent representation due to limitations in capturing anisotropic
frequency components and preserving directional details. To overcome these chal-
lenges, we propose a novel frequency-aware transformer (FAT) block that for the
first time achieves multiscale directional ananlysis for LIC. The FAT block com-
prises frequency-decomposition window attention (FDWA) modules to capture
multiscale and directional frequency components of natural images. Addition-
ally, we introduce frequency-modulation feed-forward network (FMFFN) to adap-
tively modulate different frequency components, improving rate-distortion perfor-
mance. Furthermore, we present a transformer-based channel-wise autoregressive
(T-CA) model that effectively exploits channel dependencies. Experiments show
that our method achieves state-of-the-art rate-distortion performance compared
to existing LIC methods, and evidently outperforms latest standardized codec
VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC
datasets. Code will be releaset at https://github.com/qingshi9974/
ICLR2024-FTIC

1 INTRODUCTION

Learned image compression (LIC) models have emerged as a promising solution to image storage
and transmission and outperform traditional codecs in rate-distortion (R-D) metrics. Theoretically,
LIC leverages the nonlinear transforms to alternatively enable a multi-dimensional quantizer with
adaptive quantization cells, and consequently, exceeds the traditional transform coding schemes with
restricted constructions. Early LIC models usually adopt convolutional neural networks (CNNs) to
achieve nonlinear analysis and synthesis transforms (Ballé et al., 2018; Minnen et al., 2018). How-
ever, the local receptive fields of CNNs limit the representative ability and render redundant latent
representations. Recent works (Zou et al., 2022; Zhu et al., 2022; Liu et al., 2023) employ attention
modules or transformers to capture the non-local spatial relationship for better R-D performance.

Despite the success of transformers, there lacks an interpretation on the frequency characteristics of
natural images in LIC models, which plays a crucial role in conventional image representation. For
example, wavelet analysis allows the decomposition of an image into multiscale subbands, revealing
details and structural information within different frequency ranges (Mallat, 1989). Consequential
multiscale geometric analysis (MGA) tools further extend wavelet transforms with improved di-
rectional analysis realized by frequency partitioning (Candès & Donoho, 2000), space-frequency
tiling (Donoho & Huo, 2002), and multi-directional filters (Do & Vetterli, 2005). The elegant math-
ematical foundations and wide applications of MGA also inspire us in exploring deep learning-based
image representation with directional analysis.

In this paper, we propose a frequency-aware transformer for constructing the nonlinear trans-
forms in LIC, which captures multiscale and directional frequency components of natural im-
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ages with isotropic and anisotropic window attention. Specifically, we first introduce frequency-
decomposition window attention (FDWA), which comprises four types of attention modules that
capture the low-frequency, high-frequency, vertical, and horizontal components. Subsequently, we
develop a frequency-modulation feed-forward Network (FMFFN) to modulate the frequency compo-
nents adaptively. Furthermore, we propose a transformer-based channel-wise autoregressive (T-CA)
entropy model that exploits correlations across the directional components with causal masks.

To our best knowledge, this paper is the first to achieve transformer-based directional analysis in LIC.
Different from handcrafted directional analysis tools in MGA, we achieve end-to-end optimization
to realize novel anisotropic window attention. Distinguished from existing transformer-based image
compression methods (Lu et al., 2022; Zhu et al., 2022; Liu et al., 2023; Zafari et al., 2023), we
exploit the crucial directional information in nonlinear transforms to break the limitation of existing
CNN-based and transformer-based LIC models. In summary, our contributions include:

• We propose a frequency-decomposition window attention (FDWA), which leverages di-
verse window shapes to capture frequency components of natural images to achieve more
efficient latent representation in an end-to-end learned manner.

• We develop a frequency-modulation feed-forward network (FMFFN) that adaptively en-
semble frequency components for improved R-D performance.

• We present a transformer-based channel-wise autoregressive model (T-CA) for effectively
modeling dependencies across frequency components.

• Experiments show that our method achieves state-of-the-art R-D performance, and outper-
forms VTM-12.1 by 14.5%, and 15.1%, 13.0% in BD-rate on Kodak, Tecnick, and CLIC
Professional Validation datasets respectively.

2 RELATED WORK

2.1 TRANSFORMER-BASED IMAGE COMPRESSION
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Figure 1: Illustration of the proposed
frequency-decomposition widow atten-
tion (FDWA) that realizes multiscale
and directional decomposition. The first
column shows diverse window shapes
for capturing different frequency com-
ponents, the second column visualizes
the extracted features, and the third col-
umn presents the Fourier spectrum of
the features.

Transformers (Vaswani et al., 2017) have achieved re-
markable success in various computer vision tasks (Doso-
vitskiy et al., 2020; Carion et al., 2020; Li et al., 2023) due
to its powerful non-local modeling ability. Recently, re-
searchers have also incorporated transformer into learned
image compression. Zhu et al. (2022) first demonstrate
that nonlinear transforms built on Swin-Transformer (Liu
et al., 2021) can achieve superior compression efficiency
compared to those built on CNNs. Liu et al. (2023) com-
bine transformers and CNNs to aggregate non-local and
local information for more expressive nonlinear trans-
forms. However, the standard window self-attention used
in these works ignores the underlying different frequency
components of natural image, which hinders the extrac-
tion of compact latent representations. To address this
issue, our paper proposes a novel frequency-aware trans-
former (FAT) block.

2.2 AUTOREGRESSIVE ENTROPY MODELING

Entropy modeling is crucial for learned image compres-
sion models. A precise entropy model can eliminate the
coding redundancy and minimize the size of compressed
images. Most existing works are developed based on
joint autoregression and hyperprior model (Minnen et al.,
2018), in which the autoregression module captures the
dependencies within the latent representations and re-
duces coding redundancy. The autoregression modules
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Figure 2: Overview of the proposed Frequency-aware Transformer-based learned Image Compres-
sion (FTIC) model. Multiple residual blocks with stride (RBS), residual block Upsampling (RBU),
and frequency-aware transformer (FAT) blocks are employed in building the nonlinear transforms
(i.e., analysis transform ga(·) and synthesis transform gs(·)). For each two concatenated FAT blocks,
the first one employs the regular frequency-decomposed window attention (FDWA) and the second
one performs shift-window operations.

could be classified as spatial autoregression (Minnen et al., 2018) (SA), channel-wise autoregres-
sion (Minnen & Singh, 2020) (CA), and their combination (He et al., 2022). Recent works employ
transformers to capture long-range dependency and improve the preciseness of entropy modeling.
Qian et al. (2022) utilize global self-attention to capture long-range spatial dependency in distribu-
tion estimation. Koyuncu et al. (2022) propose a spatial-channel attention to fully exploit latent de-
pendency and improve R-D performance. However, the heavy memory usage and dramatic compu-
tational complexity render these methods impractical for real-world image compression, especially
for high-resolution images. Liu et al. (2023) incorporate Swin-Transformer into channel-wise au-
toregressive entropy model to capture additional spatial dependency. However, the swin-transformer
increases the model size while the R-D improvement over the anchor model seems insignificant.
Different from these works, the proposed T-CA concentrates on improving channel-wise attention
without obviously increasing additional parameters.

2.3 FREQUENCY DECOMPOSITION IN LEARNED IMAGE COMPRESSION

Traditional image codecs employ subband decomposition to decorrelate frequency components of
images to achieve compact representations. Recent learned image compression models also benefit
from the explicit frequency decomposition. Ma et al. (2019; 2020) introduce wavelet-like transform
in LIC, but it is restricted by the lifting scheme, limiting the representation ability of network and
constraining the latent space. Gao et al. (2021) propose a frequency decomposition model that
manipulates the low- and high-frequency components in the input image separately. Zafari et al.
(2023) utilize HiLo attention (Pan et al., 2022) to disentangle low- and high-frequency components.
However, the global self-attention in their approach poses computational challenges when dealing
with large input images and directional decomposition can not be achieved. In this work, we propose
FDWA with diverse window size to capture the multiscale and directional frequency components by
transformer simultaneously.

3 METHODS

3.1 OVERVIEW

Figure 2 illustrates the architecture of the proposed Frequency-aware Transformer-based learned
Image Compression (FTIC) model. Given a raw image x, the analysis transform ga(·) maps it to
a latent representation y. Then, quantization operator Q(·) discretizes y to ŷ. ŷ is subsequently
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losslessly encoded by a range coder. Here, we assume that y follows a Guassian distribution of
which the parameters (i.e., mean µ and scale σ) are predicted by the proposed transformer-based
channel-wise autoregressive (T-CA) entropy model, as presented in Figure 3. Following the settings
in the original channel-wise autoregressive entropy model (Minnen & Singh, 2020), we divide y
into ns even slices {y1,y2, ...,yns

} and feed these slices to T-CA model. Therefore, the encoded
slices can provide powerful contextual information when encoding subsequent slices. Formally, the
forward process of T-CA model holds as below. The hyperprior ϕ is obtained via a pair of hyper-
encoder ha(·) and hyper-decoder hs(·):

z = ha (y) , ẑ = Q(z), ϕ = hs(ẑ). (1)

Moreover, the T-CA entropy model outputs the estimated parameters of the Gaussian distributions:

ri,µi,σi = T-CA(ϕ, ŷ<i), 1 ≤ i < ns, (2)

where µi and σi are mean and scale values of Gaussian distributions, and ri is the predicted latent
residual that reduces quantization errors of yi. A refined latent ȳ could be obtained by summing up
the latent ŷ and latent residual r, i.e., ȳ = ŷ + r with r = Concat(r1, r2, ..., rns). Consequently,
the final x̂ is reconstructed by feeding refined latent ȳ to the synthesis transform gs(·), i.e., x̂ =
gs(ȳ).

To train our FTIC model, we formulate the problem as a Lagrangian multiplier-based R-D optimiza-
tion, in which the loss function is defined as:

L =R(ŷ) +R(ẑ) + λ · D(x, x̂) (3)

where a Lagrangian multiplier λ controls the trade-off between rate and distortion. Different λ
values are corresponding to different bitrates. D(x, x̂) denotes the distortion term between the raw
image x and reconstructed image x̂. R(ŷ),R(ẑ) denote the bitrates of latents ŷ and ẑ. Please refer
to Appendix A for the detailed model architecture.

3.2 FREQUENCY-AWARE TRANSFORMER BLOCK

We aim at building efficient frequency decomposition within the end-to-end optimized image com-
pression framework. To this end, we propose a novel frequency-aware transformer (FAT) block,
which achieves naı̈ve multiscale and directional decomposition. Specifically, the FAT block exploits
frequency-decomposed window attention (FDWA) mechanism, which decomposes the input image
into four components (i.e., low-frequency, high-frequency, vertical, and horizontal components pre-
sented in Figure 1). Then a frequency-modulation feed-forward network (FMFFN) modulates the
decomposed components and eliminate the potential redundancy across frequency components. The
following subsections elaborates the implementations of FDWA and FMFFN.

3.2.1 FREQUENCY-DECOMPOSED WINDOW ATTENTION

Recent studies (Park & Kim, 2022; Pan et al., 2022) have demonstrated that a typical self-attention
is in fact a low-pass filter, and local window attention with a smaller window size captures fine-
grained high-frequency information. Therefore, leveraging windows of varying sizes enables the
extraction of multiscale frequency components. However, the square windows employed in existing
self-attention are inefficient for capturing directional frequency information due to their isotropic
characteristic.

To eliminate the limitation on directional frequency decomposition, we propose a frequency-
decomposed window attention (FDWA) module, which performs self-attention with four diversely
shaped windows in parallel. In our experiments, the sizes (height × width) of these four windows
are 4s×4s, s×s, s×4s, and 4s×s, with s being the basic window size. These windows correspond
to the low-frequency, high-frequency, vertical, and horizontal components. From the perspective of
separable two-dimensional frequency decomposition, such implementation equals to a permutation
and combination of low(L)- and high(H)-frequency decomposition on each dimensions. Therefore,
we also term the window attention (WA) achieved by these windows as LL-WA, HH-WA, HL-WA,
and LH-WA.

Given the input hidden representation X ∈ RC×H×W , where H ×W is the spatial resolution and
C denotes the number of channels, we first linearly project it into K heads. Then we split the K
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heads evenly into four parallel groups with K/4 heads in each group (assuming K is a multiple of
4), and each group performs a specific type of self-attention. Without loss of generality, we use the
case of LH-WA as an example.

Example: LH-WA. X is evenly partitioned into non-overlapping windows [X1, · · · ,XM ], where
each window contains 4s × s tokens. Assuming the projected queries, keys, and values of the kth
( 34K < k ≤ K) head are dk-dimensional tensors, then output of the LH-WA for the kth head can
be obtained as follows.

X = [X1, · · · ,XM ],

Y i
k = Attention(XiWQ

k ,XiWK
k ,XiW V

k ),

LH-WAk(X) = [Y 1
k ,Y

2
k , · · · ,Y M

k ],

(4)

where Xi ∈ RC×4s×s, and M = H×W
4s×s , i = 1, · · · ,M . WQ

k ,WK
k ,W V

k ∈ RC×dk are the
projection matrices of queries, keys and values for the kth head, respectively, with dk = C/K.

The process for other three types of window attention can be derived easily, and their output for
the kth head are denoted as LL-WAk(X),HH-WAk(X),HL-WAk(X), respectively. Finally the
output of these four parallel groups will be concatenated to form the overall output:

FDWA(X) = Concat[head1, · · · ,headK ]WO,

with headk =


LL-WAk(X) k = 1, · · · ,K/4
HH-WAk(X) k = K/4 + 1, · · · ,K/2
HL-WAk(X) k = K/2 + 1, · · · , 3K/4
LH-WAk(X) k = 3K/4 + 1, · · · ,K

(5)

where WO ∈ RC×C is the projection matrix that implements interaction between different fre-
quency components.

3.2.2 FREQUENCY-MODULATION FEED-FORWARD NETWORK

The feed-forward network (FFN) in transformer is employed to refine the features produced by self-
attention. As described above, FDWA produces features with diverse frequency components. How-
ever, the contributions of these frequency components in compression are not equal. For instance,
high-bitrate models may require more high-frequency components to recover edges and fine-grained
details, while low-bitrate models mainly rely on low-frequency components to reconstruct the over-
all structure.

To alternatively decide the frequency components and further eliminate the redundancy across dif-
ferent components, we develop a Frequency-Modulation FFN (FMFFN) that can adaptively mod-
ulate frequency components. Specifically, we apply a block-based fast Fourier transform (FFT) to
transform the feature Xffn obtained by a standard FFN into frequency domain. Next, we intro-
duce a learnable filter matrix W to alternatively suppress or amplify all frequency components by
element-wise multiplication in the frequency domain, obtaining the frequency-modulated feature
Xfm. Subsequently, Xfm is inversely transformed using the inverse FFT (IFFT) and reshaped to
obtain the refined feature Xout. The overall process of FMFFN can be formulated as follows:

Xffn = Conv1×1(GELU(Conv1×1(X)))

Xfm = F [(B(Xffn)]⊙W

Xout = B−1
[
(F−1(Xfm)

] (6)

where X is the input hidden representation of the FMFFN, ⊙ denotes the element-wise multipli-
cation. F(·) and F−1(·) denote the FFT and in IFFT, respectively. B(·) and B−1(·) denote block
partitioning and block merging operation, respectively. The block size is set to 4s× 4s, which cor-
responds to the maximum window size in our FDWA. By performing block partitioning, the size of
the weight matrix W becomes independent of the input image size. This characteristic allows our
FMFFN to generalize to input images of arbitrary sizes.
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Figure 3: Proposed Transformer-based Channel-wise Autoregressive (T-CA) entropy model, the
hyperprior path is also included. For briefness, we suppose each slice has 3 channels in (a). GConv
n× n denotes the group convolutions with kernel size of n× n.

3.3 TRANSFORMER-BASED CHANNEL-WISE AUTOREGRESSIVE (T-CA) ENTROPY MODEL

Previous channel-wise autoregressive models (Minnen & Singh, 2020; He et al., 2022) divide latent
y to several slices along the channel dimension, and then utilize separate CNNs to establish the
dependencies of each slice on previously decoded slices. However, the coefficient distribution in
each channels vary dramatically across different input images, so that the fixed weights in CNNs
can not fully exploit the channel-wise correlations. In this paper, we propose a novel transformer-
based channel-wise autoregressive (T-CA) entropy model as illustrated in Figure 3. By introducing
channel-attention in channel-wise autoregression, our T-CA can effectively capture the inter- and
intra-slices channel dependencies, leading to more precise distribution estimation.

Our T-CA has L transformer layers with a similar architecture of vision transformer (ViT) (Doso-
vitskiy et al., 2020), while we utilize channel attention instead of spatial attention. For the input
quantized latent representation ŷ ∈ RM×H×W where M,H,W denote the number of channels,
height and the width, we first evenly divide it into ns slices {ŷ1, ŷ2, · · · , ŷns}, so that each slice has
Ms channels (i.e., ŷi = {ŷ1i , ŷ2i , · · · , ŷ

Ms
i }, where i is the index of slice and Ms = M/ns ). Before

feeding the slices to the transformer, we project each slice to (r ·Ms) channels independently, where
r is a projection ratio larger than 1. This process can be simply implemented by inputting ŷ to a
group convolution, of which the input and output channels are M and (r ·M), kernel size is 1× 1
and the number of group ng is equal to ns.

We modify the standard transformer layer to guarantee the causality of the entropy coding. First,
we introduce the masked-slice channel attention by incorporating a causal slice-wise mask, which
ensures that the slices not yet encoded do not affect other slices. Besides, we also employ a pseudo
start slice ys similar to Mentzer et al. (2022). Second, we replace LayerNorm with GroupNorm
and substitute all linear layers with 1 × 1 group convolution layers, where the number of groups
ng = ns. These group-wise operations not only facilitate improved modeling of intra-slice channel
dependencies, but also reduce the model complexity, leading to improved computational efficiency.
Moreover, we utilize group convolutions to predict the Guassian parameters µ, σ and the latent
residual r from the contextual information and hyperprior. Please refer to Appendix-A.3 for details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train the proposed FTIC models on the Flickr2W (Liu et al., 2020) and ImageNet-1k (Deng et al.,
2009) dataset for 3.2M steps with a batch size of 8. The model is optimized using Adam optimizer
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Figure 4: R-D performance evaluated on the Kodak dataset. The compared methods include state-
of-the-art LIC models and handcrafted image codecs. Left: PSNR; right: MS-SSIM.

with the learning rate initialized as 1e-4. Specifically, we follow Zhu et al. (2022) to adopt the
multi-stage training strategy. The details can be found in Appendix-B. We ues R-D loss in Equation
3 to optimize the model. Two kinds of quality metrics, i.e., mean square error (MSE) and multiscale
structural similarity (MS-SSIM), are used to measure the distortion D. The Lagrangian multiplier
used for training MSE-optimized models are {0.0025, 0.0035, 0.0067, 0.0130, 0.0250, 0.0483}, and
those for MS-SSIM-optimized models are {2.40, 4.58, 8.73, 16.64, 31.73, 60.50}.

For FAT blocks, the base window size s is set as 4 in the nonlinear transforms (i.e., ga(·) and gs(·)),
and set as 1 in the hyperprior transforms ( i.e., ha(·) and hs(·)). The channel number M of the latent
y is set as 320, while the channel number N of hyper latent z is set as 192. For T-CA entropy model,
the number of slices ns is set as 5, the number of transformer layers L is set as 12, and projection
ratio r is set as 4. More hyper parameters of architecture can be found in Appendix-A.1. We use
NVIDIA GeForce RTX 4090 and Intel Xeon Platinum 8260 to conduct the following experiments.

We evaluate our the proposed model on three benchmark datasets, i.e., Kodak image set (Kodak,
1993) with 24 images of 768 × 512 pixels, Tecnick testset (Asuni & Giachetti, 2014) with 100
images of 1200 × 1200 pixels, CLIC Professional Validation dataset (CLIC, 2021) with 41 images
of at most 2K resolution. We use both PSNR and MS-SSIM to measure the distortion, while bits per
pixel (BPP) is used to evaluate bitrates.

4.2 RATE-DISTORTION PERFORMANCE

We compare our method with the state-of-the-art (SOTA) methods including the traditional image
codecs BPG and VTM-12.1, and recent LIC models (Ballé et al., 2018; Cheng et al., 2020; Xie
et al., 2021; He et al., 2022; Zou et al., 2022; Liu et al., 2023; Fu et al., 2023). The R-D performance
on Kodak dataset is shown in Figure 4. We use both PSNR and MS-SSIM as quality metric to
evaluate the performance of our method. The results of Tecnick and CLIC datasets are shown
in Figure 10 in the Appendix, respectively. These additional results demonstrate that our method
consistently achieves excellent performance across all three datasets. Furthermore, we report the
BD-rate (Bjontegaard, 2001) results to quantify the average bitrate savings with equal reconstruction
quality, with VTM-12.1 as the anchor. Our method achives the state-of-the-art performance and
outperforms VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC
dataset, respectively.

4.3 ABLATION STUDIES AND ANALYSIS

Effect of the architecture of FAT block. We conduct ablation studies to investigate the effec-
tiveness of the FAT block. For the baseline model, we substitute our proposed FDWA with the
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Table 1: Comparison on architectures of FAT Block, evaluated on the Kodak dataset. The GFLOPs
of running analysis transform (i.e., ga(·)) and the overall model parameters are listed for complexity
comparison. The BD-rate is presented for performance comparison with VTM-12.1 as the anchor.

Methods
Larger

FDWA FMFFN GFLOPs #Params BD-rate
Window

Baseline 77.3 70.29M -9.3%
Variant 1 ✓ 91.3 70.50M -11.2%
Variant 2 ✓ 82.2 70.36M -13.3%
Variant 3 (FAT Block) ✓ ✓ 83.1 70.97M -14.5%
VTM-12.1 - - - - - 0%

standard window-based self-attention using a window size of 4×4, and replaced our FMFFN with a
conventional FFN. As shown Table 1, adopting a larger window size of 16× 16 can improve perfor-
mance. However, this also introduces higher computational complexity. Furthermore, the adoption
of FDWA results in significant improvement while maintaining comparable complexity. This indi-
cates that the performance gains of introducing FDWA are derived from the ability to extract diverse
frequency components rather than solely relying on a large receptive field. Finally, by further intro-
ducing FMFFN, we achieve the state-of-the-art BD-rate with only slightly increased computational
complexity and model parameters.

Table 2: Comparison of the proposed T-CA
with CHARM.

Model #Params BD-rate
CHARM (ns=5) 18.3M -14.2%
CHARM (ns=10) 34.8M -15.9%
T-CA (ns=5) 30.4M -19.2%
BPG - 0%

Table 3: Ablations on different parameters
of T-CA. L is the number of transformer
layers of T-CA. ns is the number of slices.

L ns #Params BD-rate
4 5 14.5M -17.6%
8 5 22.4M -18.3%
12 5 30.4M -19.2%
16 5 38.4M -19.0%
12 4 37.8M -19.0%
12 5 30.4M -19.2%
12 8 19.3M -18.0%
12 10 15.6M -18.4%
BPG - 0%

Ablation study on T-CA. We then evaluate the ef-
fect of our proposed T-CA entropy model. Here,
we adopt the CNN-based nonlinear transforms of
Minnen et al. (2018) as ga(·) and gs(·) for con-
venient comparison. Specifically, we train all
the models by loading the pretrained transforms
weights of mbt2018-mean model from CompressAI
library (Bégaint et al., 2020) and fine-tune them for
1M batches. The BD-rate is evaluated on the Kodak
dataset with BPG as the anchor. In addition, we pro-
vide the number of parameters of the entropy models
to show their complexity.

We first compare our T-CA entropy model with
CHARM (Minnen & Singh, 2020) to show the
powerful ability of modeling channel dependency
through channel attention. As shown in Table 2, our
T-CA can outperform CHARM significantly with
the same number of slices (i.e., 5). Furthermore, it
achieves superior R-D performance over CHARM
with half the number of slices (5 vs 10) and reduced
model complexity.

Table 3 reports how different parameters impact the
R-D performance and the complexity of our T-CA
entropy model. The results show that, enlarging the
number of transformer layers from 4 to 12 can boost
the performance, but using transformer layers more
than 12 cannot bring additional benefits. In addition, we observe that increasing the number of slices
ns does not lead to consistent performance improvement as demonstrated in Minnen & Singh (2020).
This is due to that our T-CA model utilizes a shared transformer to establish channel dependency
among different slices, and the number of parameters does not increase linearly with ns as CHARM
(Minnen & Singh, 2020). Conversely, increasing ns in T-CA results in a reduction in number of
parameters of the group convolution as well as the whole entropy model. Therefore, we select ns as
5 and L as 12 to balance the model size and performance.

Spectrum analysis of FDWA. In Figure 5, we visualize the intensity of frequency component by
applying Fast Fourier Transform (FFT) to the output feature maps from different attention modules
in our FDWA. The visualisation clearly demonstrates that HH-WA captures more high frequencies,
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(a) analysis transform 𝑔! (b) synthesis transform 𝑔" 

Figure 5: Frequency intensity (16 × 16) from the output of FDWA at the last FAT block for both
(a) analysis transform ga(·) and (b) synthesis transform gs(·). The model is trained with λ set as
0.0483 and MSE as metric. We show 6 output channels for each of LL-WA, HH-WA, HH-WA,
and LH-WA. The magnitude values are averaged over 100 samples. Lighter colors indicate larger
magnitudes, while pixels closer to the center represent lower frequencies.

(a) analysis transform 𝑔! (b) synthesis transform 𝑔" 

Figure 6: Visualization of the frequency-domain learned filters of FMFFN at the deepest FAT block
for both (a) analysis transform ga(·) and (b) synthesis transform gs(·). The four rows represent
learned filters corresponding to four different channels, and the six columns from left to right repre-
sent the models with increasing bitrates.

while LL-WA mainly focuses on low frequencies. Additionally, HL-WA and LH-WA exhibit the
ability to capture directional frequency. This observation strongly supports our primary goal of
decomposing different frequency components within feature maps at a single attention layer.

Visualization analysis of FMFFN. In Figure 6, we follow Rao et al. (2021) to visualize the fre-
quency domain learned filters W in our FMFFN. For each row, from left to right, the six columns
represent one specific filter of models with increasing bitrates. We can see that higher bitrates model
contains more high frequency component, this findings also supports our motivation of introducing
FMFFN. In this way, model can adaptively modulate different frequency components to achieve
better R-D performance.

5 CONCLUSION

This paper proposes a novel approach for learned image compression (LIC) from the perspective of
frequency decomposition. We address the challenge of modeling diverse frequency information in
LIC by the proposed frequency-decomposition window attention (FDWA), which captures different
orientation and spatial frequency components using various window sizes. We also introduce a
frequency-modulation feed-forward network (FMFFN) module to adaptively amplify or suppress
different frequency components for improved rate-distortion tradeoff. Furthermore, a transformer-
based channel-wise autoregressive (T-CA) entropy model is developed to effectively learn channel
dependencies. Experimental results demonstrate that the proposed method achieves state-of-the-art
rate-distortion performance on commonly used datasets.
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A MODEL ARCHITECTURE

A.1 DETAILS OF OVERALL FRAMEWORK

Figure 7 shows the overall framework of our FTIC and detailed architecture of the used RBS and
RBU. The number of channels (C1, C2, C3,M) = (96, 144, 256, 320). In both ga(·) and gs(·), the
numbers of attention heads are configured as (8, 8, 16, 16, 32, 32) from shallow to deep, whereas in
the ga(·) and gs(·) all FAT blocks have 32 attention heads. The number of hyper latent channels is
192 for all layers, except for the output of hs, which has 640 channels. For the T-CA entropy model,
the number of slices ns is set to 5, the projection ratio r is 4, and the number of attention heads in
the masked-slice channel attention is 16.

Conv3x3 ↓2

Leak ReLU

Conv3x3

GDN

subpel
Conv3x3	↑2

Leak ReLU

Conv3x3

IGDN

(a) architecture of our learned image compression model

(b) Residual Block Upsampling (RBU)

(c) Residual Block with Stride (RBS)

Figure 7: Left :The overall framework of our FTIC. Right: The architectures of RBS and RBU,
which are firstly adopted in Cheng et al. (2020)

A.2 DETAILS OF SHIFT-WINDOW OPERATION

Table 4: Detailed architectures of en-
tropy parameters network.

Entropy Parameters Network
out: (3× 320, 16, 16)

GConv (3× 320, 3× 320, 3, 1, 1, 5)

GELU()
GConv (3 ∗ 320, 3× 320, 3, 1, 1, 5)

GELU()
GConv (6× 320, 3× 320, 3, 1, 1, 5)

input: (6× 320, 16, 16)

In our FTIC, for each two concatenated FAT blocks, the
first one employs the regular frequency-decomposed win-
dow attention (FDWA) and the second one performs shift-
window operations. In the shift-window operation, the
window size are shifted with a bias of the half height and
width size. The exact operations for each type of window
attention in our FDWA are illustrated in Figure 9.

A.3 DETAILS OF ENTROPY PARAMETERS NETWORK

As shown in Figure 2, we utilize entropy parameters net-
work to predict the mean, scale, and latent residual for
each slice. To obtain the input of entropy parameters
network, we first reshape the decoded hyperprior ϕ from
R2M×H×W to RM×2×H×W and reshape the output of fi-
nal transformer layer yout from R4M×H×W to RM×4×H×C . Subsequently, we concatenate these
reshaped results, resulting in yconcat reshaped from RM×6×H×W to R6M×H×W , which serves as
the input for the entropy parameters network. This procedure ensures the causality by avoiding in-
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Figure 9: The shift-window operations for each type of attention in our FDWA.

formation interactions between different slices. The detailed architectures is presented in Table 4,
where GConv denotes group convolution and the six parameters are input channels, output channels,
kernel size, stride, padding, and the number of group.
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Figure 8: The framework of
our FTIC with only hyper-
prior model as entropy model

Our learned image compression models are trained on Flickr2W
and ImageNet-1k dataset. Previous works (He et al., 2022; Liu
et al., 2023) encode each ⌈y − µ⌋ to the bitstream instead of ⌈y⌋
and restore the coding-symbol as ⌈y − µ⌋ + µ, which can signifi-
cantly benefit the single Gaussian entropy model. However, in our
autoregression model, this poses a train-test mismatch problem be-
cause we do not know the value of µ before passing through the
model. To avoid this problem, in our methods, we adopt a mixed
training strategy as follows:

In the first stage, we train our models with only a hyperpiror model
as the entropy model to obtain a strong nonlinear transforms. The
network architecture used in the first stage is presented in Figure 8.
During this stage, we encode each ⌈y − µ⌋ to the bitstream and
restore the coding symbols as ⌈y − µ⌋+ µ.

In the second stage, we load the transform weights (i.e., ga and gs)
from the checkpoint of pretrained first stage model and fine-tune the
transforms together with the random initialized T-CA. In this stage,
due to the causality limitation, we directly encode each ⌈y⌋ to the
bitstream and restore the coding-symbol as ⌈y⌋.

The first stage is trained for 2M steps with a learning rate of 1e-4.
Each batch contains 8 patches with the size of 256× 256 randomly
cropped from the training images. The second stage is trained for
1M steps with the same learning rate. Finally, we train the model
with learning rate of 1e-5 for 200K steps using a larger crop size
of 384 × 384. For all training, Adam optimizer is used without
weighted decay.
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Figure 10: R-D performance evaluated on (a) the Tecnick dataset and (b) the CLIC Professional
Validation dataset.

Table 5: Comparison on coding complexity evaluated on the Kodak dataset. The BD-rate is pre-
sented for R-D performance comparison with VTM-12.1 as the anchor.

Model GFLOPs Inference Latentcy (ms) #Params BD-rate
Enc. Dec. Enc. Dec.

Cheng et al. (2020) 154 229 >1000 >1000 26.60M 3.6%
Minnen & Singh (2020) 101 100 56 43 55.13M 1.1%

Zhu et al. (2022) 116 116 110 99 32.71M -3.3%
Zou et al. (2022) 285 276 97 101 99.58M -4.3%
Liu et al. (2023) 317 453 255 322 76.57M -11.9%

Ours 141 349 125 242 70.97M -14.5%
VTM-12.1 - - - - - 0%

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 R-D PERFORMANCE ON TECNICK AND CLIC PROFESSIONAL VALIDATION DATESETS

We provide the additional rate-distortion results on Tecnick and CLIC Professional Validation date-
sets in Figure 10. The proposed model achieves state-of-the-art on both datasets.

C.2 COMPARISON ON CODING COMPLEXITY

We compare the coding complexity of the proposed FTIC with existing state-of-the-art LIC models
in Table 5. The coding complexity is measured by inference latency during encoding and decoding
process. The experiments are conducted on a single NVIDIA GeForce RTX 4090 with 24 GB mem-
ory. Cheng et al. (2020) exhibits a high inference time due to the spatial auto-regressive entropy
model. The experiments show that the proposed method could achieve the best BD-rate reduction
with a tolerable coding complexity.

C.3 COMPARISON ON TRAINING SPEED AND GPU MEMORY REQUIREMENT

We compare the training speed and GPU memory requirement of the proposed FTIC with existing
state-of-the-art LIC models in Table 6. Compared with existing transformer-based LIC methods, the
proposed method exhibits comparable training speed and GPU memory requirement.
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Table 6: Comparison on training speed and gpu memory requirement. For training, each batch con-
tains 8 images with resolution of 256×256. For test, each batch contains one images with resolution
of 512×768.

Model Peak GPU Memory (GB) Training Speed
Training Test (steps/s)

Cheng et al. (2020) 2.32 0.59 14.23
Minnen & Singh (2020) 3.48 0.50 8.26

Zhu et al. (2022) 16.84 2.10 2.66
Zou et al. (2022) 10.87 0.68 4.29
Liu et al. (2023) 14.14 1.71 2.13

Ours 12.68 1.09 3.17

C.4 VISUALIZATION OF CHANNEL ATTENTION WEIGHTS IN T-CA
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Figure 11: Visualization results of the masked channel attention weights in our T-CA entropy model
by inputting kodim01 in Kodak dataset. We display the average attention weights on all the heads
heads in the last transformer layers. Different slices are separated by red lines.

We present a visualization result of the channel attention weights in the last transformer layer of our
T-CA entropy model in Figure 11. Each channel attention layers of T-CA consists 16 heads, with
each head containing r ∗M/nd = 4 ∗ 320/16 = 80 channels, resulting in an attention map size of
80× 80. The visualization result explicitly presents the inter-slice and intra-slice dependencies.

C.4.1 VISUAL QUALITY RESULTS

Figure 12 and Figure 13 compares the visual quality of the proposed model optimized for MSE.
Benefits from the extraction of multi-scale and directional frequency features, our method exhibits
superior capability in reconstructing fine details and directional structures. In this way, our models
achieve higher compression ratio and better reconstruction quality compared with STF (Zou et al.,
2022) and VTM-12.1.

D LIMITATION AND FUTURE WORK

A potential limitation of our FTIC lies in the fact that our proposed Frequency-Decomposition Win-
dow Attention (FDWA) currently supports only two directions (horizontal and vertical). Expanding
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the range of supported directions, for example, by incorporating multi-scale and multi-directional
analysis like scattering transformation (Patro & Agneeswaran, 2024) could potentially enhance the
frequency decomposition of image representation. In addition, our current approach focuses only on
image compression, our future work will extend to video compression by exploring the frequency
decomposition of spatial-temporal representations (Ding et al., 2022a;b).
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Figure 12: The visualization of kodim08 in Kodak dataset by using our FTIC model, STF (Zou et al.,
2022) and VTM-12.1. PSNR|bitrate is listed below the subfigures.
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Ours
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Figure 13: The visualization of kodim15 in Kodak dataset by using our FTIC model, STF (Zou et al.,
2022) and VTM-12.1. PSNR|bitrate is listed below the subfigures.
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