A More experiments

A.1 More on setup

Settings and hyperparameters We train MultiMix and Dense MultiMix with mixed examples
only. We use a mini-batch of size b = 128 examples in all experiments. Following Manifold
Mixup [51], for every mini-batch, we apply MultiMix with probability 0.5 or input mixup otherwise.
For input mixup, we interpolate the standard m = b pairs (5). For MultiMix, we use the entire
network as the encoder fy by default, except for the last fully-connected layer, which we use as
classifier gyr. We use n = 1000 tuples and draw a different o ~ U[0.5,2.0] for each example
from the Dirichlet distribution by default. For multi-GPU experiments, all training hyperparameters
including m and n are per GPU.

For Dense MultiMix, the spatial resolution is » = 4 x 4 = 16 on CIFAR-10/100 and » = 7 X

= 49 on Imagenet by default. We obtain the attention map by (9) using GAP for vector v and
ReLU followed by ¢; normalization as non-linearity h by default. To predict class probabilities and
compute the loss densely, we use the classifier gy as 1 x 1 convolution by default; when interpolating
at earlier layers, we follow the process described in subsection 3.3.

CIFAR-10/100 training Following the experimental settings of AlignMixup [48], we train Mul-
tiMix and its variants using SGD for 2000 epochs using the same random seed as AlignMixup. We
set the initial learning rate to 0.1 and decay it by a factor of 0.1 every 500 epochs. The momentum
is set to 0.9 and the weight decay to 0.0001. We use a batch size b = 128 and train on a single
NVIDIA RTX 2080 TI GPU for 10 hours.

TinyImageNet training Following the experimental settings of PuzzleMix [26], we train Multi-
Mix and its variants using SGD for 1200 epochs, using the same random seed as AlignMixup. We
set the initial learning rate to 0.1 and decay it by a factor of 0.1 after 600 and 900 epochs. The
momentum is set to 0.9 and the weight decay to 0.0001. We train on two NVIDIA RTX 2080 TI
GPUs for 18 hours.

ImageNet training Following the experimental settings of PuzzleMix [26], we train MultiMix and
its variants using the same random seed as AlignMixup. We train R-50 using SGD with momentum
0.9 and weight decay 0.0001 and ViT-S/16 using AdamW with default parameters. The initial
learning rate is set to 0.1 and 0.01, respectively. We decay the learning rate by 0.1 at 100 and 200
epochs. We train on 32 NVIDIA V100 GPUs for 20 hours.

Tasks and metrics We use top-1 accuracy (%, higher is better) and top-1 error (%, lower is better)
as evaluation metrics on image classification and robustness to adversarial attacks (subsection 4.2
and subsection A.2). Additional datasets and metrics are reported separately for transfer learning to
object detection (subsection 4.3) and out-of-distribution detection (subsection A.3).

A.2 More results: Classification and robustness

Using the experimental settings of subsection A.1, we extend Table 2, Table 3 and Table 4 of sub-
section 4.2 in Table 6, Table 7 and Table 8 respectively by comparing MultiMix and its variants
with additional mixup methods. The additional methods are Input mixup [65], Cutmix [62], Salien-
cyMix [46], StyleMix [23], StyleCutMix [23], SuperMix [11] and {-Mixup [1]. We reproduce
¢-Mixup and SuperMix using the same settings. For SuperMix, we use the official code', which
first trains the teacher network using clean examples and then the student using mixed. For fair
comparison, we use the same network as the teacher and student models.

We observe that MultiMix and its variants outperform all the additional mixup methods on image
classification. Furthermore, they are more robust to FGSM and PGD attacks as compared to these
additional methods. The remaining observations in subsection 4.2 are still valid.

A.3 More results: Reducing overconfidence

Model calibration A standard way to evaluate over-confident predictions is to measure model
calibration. We assess model calibration using MultiMix and Dense MultiMix on CIFAR-100. We

Thttps://github.com/alldbi/SuperMix
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DATASET CIFAR-10 CIFAR-100 TI

NETWORK R-18 W16-8 R-18 W16-8 R-18
Baseline 95.41+0.02  94.93+0.06 76.69+0.26 78.80+055 56.49+0.21
Input mixup [65] 95.98+0.10  96.18+0.06  79.39+0.40  80.16+0.1  56.60+0.16
CutMix [62]F 96.79-£0.04  96.4840.04  80.56+0.09 80.25+041 56.87+0.39
Manifold mixup [51]F  97.00+005  96.44+002  80.00+034 80.77+026  59.31+049
PuzzleMix [26]" 97.04+0.04  97.00+0.03  79.98+0.05 80.7840.23  63.5240.42
AugMix* [22] 96.67-+0.05 - 80.10-£0.03 - -
Co-Mixup [25] 97.10+-0.03  96.4440.08 80.28+0.13 80.39+034 64.12+0.43
SaliencyMix [46] " 96.94-£0.05  96.274+0.05 80.36+0.56 80.29-+0.05 66.14+0.51
StyleMix [23]" 96.25+0.04  96.27+0.04 80.01+0.79 79.77+0.17  63.8840.27
StyleCutMix [23]" 96.94-+0.05  96.954+0.04 80.67+0.07 80.79-+0.04 66.5540.13
SuperMix [11]* 96.03+£0.05  96.134+0.05  79.07+0.26 79.42+0.05 64.4340.39
AlignMixup [48]" 97.06£0.04  96.914+0.01  81.71+0.07 81.24+0.02  66.85+0.07
¢-Mixup [1]* 96.26+0.04  96.35+0.04 80.46--0.26 79.73+0.15 63.18+0.14
MultiMix (ours) 97.07+0.03 97.06+0.02 81.82+0.04 81.44+0.03 67.1140.04

Dense MultiMix (ours)  97.09+0.02  97.09-+0.02 81.93+0.04 81.77+0.03 68.44+0.05

Gain -0.01 +0.09 +0.22 +0.53 +1.59

Table 6: Image classification on CIFAR-10/100 and TI (TinyImagenet). Top-1 accuracy (%): higher
is better. R: PreActResnet, W: WRN. *: reproduced, ': reported by AlignMixup, *: reproduced with
same teacher and student model. Bold black: best; Blue: second best; underline: best baseline.
Gain: improvement over best baseline.

NETWORK RESNET-50  VIT-S/16

METHOD SPEED ACC SPEED ACC
Baseline 117 7632 1.01 73.9
Input mixup 651 1.14 7742 099 74.1
CutMix [62]* 1.16 78.60 099 742
Manifold mixup st 115 7750 097 742
PuzzleMix [26]T 0.84 7876 0.73 74.7
AugMix [22]* 1.12 77.70 - -

Co-Mixup [25]Jr 0.62 - 0.57 749
SaliencyMix [46]T 1.14 7874 096 74.8
StyleMix [23]T 0.99 7594 085 748
StyleCutMix [23]T 0.76 7729 0.71 749
SuperMix [11]* 092 77.60 - -

TransMix [7]* - - 1.01  75.1
TokenMix [35]* - - 0.87 753
AlignMixup [48]" 103 7932 - -

MultiMix (ours) 1.16 7881 098 752
Dense MultiMix (ours) 0.95 79.42 0.88 76.1
Gain +0.1 +1.2

Table 7: Image classification and training speed on ImageNet. Top-1 accuracy (%): higher is
better. Speed: images/sec (x10%): higher is better. : reported by AlignMixup; *: reproduced; *:
reproduced with same teacher and student model. Bold black: best; Blue: second best; underline:
best baseline. Gain: improvement over best baseline.
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ATTACK FGSM PGD

DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8
Baseline 88.8£0.11 8834033 87.240.10 72.6-0.22 91.94+0.06 | 99.94+-0.0 99.940.01 99.940.01 99.940.01
Input mixup [65]1L 79.14+0.07 79.1+£0.12 81.4+0.23 67.3-£0.06 88.74+0.08 |99.74+0.02 99.4-0.01 99.94+0.01 99.3-0.02
CutMix [62]1\ 77.3+0.06 78340.05 86.9+0.06 60.2-0.04 88.64+0.0399.84-0.03 98.1+0.02 98.6+0.01 97.9-0.01
Manifold mixup [5]]T 76.9+0.14 76.0+0.04 80.240.06 56.3+0.10 89.3+0.06 | 97.2£0.01 98.4+0.03 99.6+0.01 98.4+0.03
PuzzleMix [26]T 5744022 60.7-£0.02 78.8-+0.09 57.8-£0.03 83.840.05|97.74+0.01 97.0-£0.01 96.440.02 95.2-+0.03
AugMix [22]* 58.24+0.02 - 79.1+0.04 - - 98.24+0.01 - 96.3-£0.02 -
Co-Mixup [25]1L 60.1+0.05 58.8-40.10 77.540.02 56.5-+0.04 - 97.540.02 96.14+0.03 95340.03 94.240.01
SaliencyMix [46]T 57.440.08 68.0-£0.05 77.840.10 58.1-£0.06 81.140.06 | 97.440.03 97.0-£0.04 95.64+0.03 93.7-£0.05
StyleMix [23]1L 80.0+0.23 71.24+0.21 80.6+0.15 68.2+0.17 85.140.16 | 98.1-£0.09 97.5+0.07 98.340.09 98.340.09
StyleCutMix [23J\L 57.74+0.04 56.04+0.07 77.440.05 56.8+0.03 80.5+0.04 | 97.80.04 96.740.02 91.840.01 93.740.01
SuperMix [Il]i 60.0+0.11 582+40.12 78.8+40.13 583+0.19 81.140.12 ] 97.60.02 97.24+0.09 91.440.03 92.740.01
AlignMixup [48]T 54.84+0.03 56.0+0.05 74.14+0.04 55.0+0.03 78.8-+0.03]95.3+0.04 96.7+0.03 90.4+0.01 92.14+0.03
¢-Mixup [1]* 72.8+0.23 6734024 7534021 68.0+0.21 84.7+0.18 | 98.0-£0.06 98.64+0.03 97.4+0.10 96.1+0.10
MultiMix (ours) 54.11+0.09 55.340.04 73.840.04 54.5+0.01 77.540.01 ‘ 94.240.04 94.840.01 90.040.01 91.640.01
Dense MultiMix (ours) 54.1+0.01 53.3+0.03 73.5+0.03 52.9-+0.04 75.5-£0.04 | 92.9+0.04 92.6+0.01 88.6-0.03 90.8--0.01
Gain +0.7 +2.7 +0.6 +2.1 +3.3 \ +2.4 +3.5 +1.4 +1.3

Table 8: Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. *: reproduced,
reported by AlignMixup. ¥: reproduced, same teacher and student model. Bold black: best; Blue:

second best; underline: best baseline. Gain: reduction of error over best baseline. TI: TinyIlmagenet.
R: PreActResnet, W: WRN.

METRIC ECE OE
Baseline 1025 1.11
Input Mixup [65] 18.50 1.42
Manifold Mixup [51] 1841 0.79
CutMix [62] 7.60 1.05
PuzzleMix [26] 8.22 0.61
Co-Mixup [25] 583 0.55
AlignMixup [48] 5.78 041
MultiMix (ours) 5.63 0.39
Dense MultiMix (ours)  5.28  0.27

Table 9: Model calibration using R-18 on CIFAR-100. ECE: expected calibration error; OE: over-
confidence error. Lower is better.

report mean calibration error (mCE) and overconfidence error (OE) in Table 9. MultiMix has lower
error than all SOTA methods and Dense MultiMix even lower.

Out-of-distribution detection This is another standard way to evaluate over-confidence. Here,
in-distribution (ID) are examples on which the network has been trained, and out-of-distribution
(OOD) are examples drawn from any other distribution. Given a mixture of ID and OOD examples,
the network should predict an ID example with high confidence and an OOD example with low
confidence, i.e., the confidence of the predicted class should be below a certain threshold.

Following AlignMixup [48], we compare MultiMix and its variants with SoTA methods trained
using R-18 on CIFAR-100 as ID examples, while using LSUN [61], iSUN [56] and TI to draw
OOD examples. We use detection accuracy, Area under ROC curve (AuROC) and Area under
precision-recall curve (AuPR) as evaluation metrics. In Table 10, we observe that MultiMix and
Dense MultiMix outperform SoTA on all datasets and metrics by a large margin. Although the
gain of MultiMix and Dense MultiMix over SoTA mixup methods is small on image classification,
they significantly reduce over-confident incorrect predictions and achieve superior performance on
out-of-distribution detection.

A.4 More results: Generalizing to unseen domains

We evaluate the ability of MultiMix and Dense MultiMix to generalize to unseen domains on the
Office-Home dataset [50] under the open-domain setting, using the official settings of DAML [45].
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TASK OUT-OF-DISTRIBUTION DETECTION

DATASET LSUN (cropr) ISUN TI (CrROP)
METRIC DET AUROC AUPR AUPR [DET AUROC AUPR AUPR |DET AUROC AUPR AUPR
Acc (ID) (OOD)|Acc (ID) (OOD)|Acc (ID) (OOD)
Baseline 540 471 545 456 |66.5 723 745 692 |61.2 64.8 67.8  60.6
Input mixup [65] " 575 593 614 552 |59.6 63.0 602 634 |587 628 63.0 62.1
Cutmix [62]" 63.8 63.1 619 634 |67.0 763 81.0 777 |704 843 87.1 80.6
Manifold mixup [51]7 589  60.3 578 595 |64.7 73.1 80.7 76.0 [67.4 699 69.3 705
PuzzleMix [26] 643 69.1 80.6 73.7 |739 772 793  71.1 |71.8 762 782 819
AugMix [22]* 629 732 80.8 72.6 |682 787 81.1 74.1 |714 839 84.6 78.6
Co-Mixup [25]F 704 75.6 823 703 |68.6 80.1 825 754 |71.5 848 86.1 80.5
SaliencyMix [46] " 68.5 79.7 822 644 |656 769 783 79.8 |73.3 837 87.0 82.0
StyleMix [23]F 623 64.2 709 639 |61.6 68.4 67.6 60.3 |67.8 739 71.5 784
StyleCutMix [23] 708 78.6 83.7 749 |70.6 824 837 765 |753 826 829 784
SuperMix [11]¥ 709 774 80.1 723 |71.0 768 79.6 76.7 |75.1 82.8 825 78.6
AlignMixup [48]T 742 799 841 751 (728 832 841 803 772 850 878 850
¢-Mixup [1]* 68.1 732 80.8 73.1 |722 823 822 794 |744 843 822 772
MultiMix (ours) 792 826 852 77.6 |75.6 85.1 87.8 83.1 |783 86.6 89.0 88.2
Dense MultiMix (ours) 80.8 84.3 859 78.0 |76.8 854 88.0 84.6 |814 89.0 90.8 88.0
Gain +6.6  +4.4 418 429 429 422 439 443 [+42 +4.0 430 +32

Table 10: Out-of-distribution detection using R-18. Det Acc (detection accuracy), AuROC, AuPR
(ID) and AuPR (OOD): higher is better. *: reproduced, ': reported by AlignMixup. ¥: reproduced,
same teacher and student model. Bold black: best; Blue: second best; underline: best baseline.
Gain: increase in performance. TI: Tinylmagenet.

DOMAIN CLIPART REAL-WORLD PRODUCT  ART
DAML [45] 45.13 65.99 61.54 53.13
MultiMix (ours) 46.01 66.59 60.99 54.58
Dense MultiMix (ours) 46.32 66.87 62.28 56.01

Table 11: Generalizing to unseen domains. Image classification using R-18 on Office-Home
dataset [50] under the open-domain setting, using the official settings of DAML [45]. Accuracy
(%): higher is better.

Table 11 shows that, while both MultiMix and DAML use the Dirichlet distribution to sample inter-
polation weights, MultiMix and Dense MultiMix generalize to unseen domains better than DAML.
We hypothesize this is due to sampling an arbitrarily large number of samples. In addition, Dense
MultiMix brings significant gain, up to nearly 3%.

A.5 More ablations

As in subsection 4.6, all ablations here are performed using R-18 on CIFAR-100.

Mixup methods with dense loss In Table 6 we observe that dense interpolation and dense loss
improve MultiMix. Here, we study the effect of the dense loss only when applied to SoTA mixup
methods; dense interpolation is not straightforward or not applicable in general with other methods.

Given a mini-batch of b examples, we follow the mixup strategy of the SOTA mixup methods to
obtain the mixed embedding Z3 € R4 for each spatial position 5 = 1,...,r. Then, as discussed
in subsection 3.3, we obtain the predicted class probabilities Pi € Rexb againforeachj =1,...,r.
Finally, we compute the cross-entropy loss H ()7, pi ) (1) densely at each spatial position j, where
the interpolated target label Y € RO s given by (4).

In Table 12, we observe that using a dense loss improves the performance of all SOTA mixup meth-
ods. The baseline improves by 1.4% accuracy (76.76 — 78.16) and manifold mixup by 0.67%

(80.20 — 80.87). On average, we observe a gain of 0.7% brought by the dense loss. An exception
is AlignMixup [48], which drops by 0.35% (81.71 — 81.36). This may be due to the alignment
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METHOD VANILLA DENSE

Baseline 76.76 78.16
Input mixup [65] 79.79 80.21
CutMix [62] 80.63 81.40
Manifold mixup [51] 80.20 80.87
PuzzleMix [26] 79.99 80.62
Co-Mixup [25] 80.19 80.84
SaliencyMix [46] 80.31 81.21
StyleMix [23] 79.96 80.76
StyleCutMix [23] 80.66 81.41
SuperMix [11]# 79.01 80.12
AlignMixup [48] 81.71 81.36
MultiMix (ours)™ 81.81 81.84
MultiMix (ours) 81.81 81.88

Table 12: The effect of dense loss. Image classification on CIFAR-100 using R-18. Top-1 accuracy
(%): higher is better. ¥: reproduced with same teacher and student model. *: Instead of Dense
MultiMix, we only apply the loss densely.
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Figure 5: Training speed (images/sec) of MultiMix and its variants vs. number of tuples n on CIFAR-
100 using R-18. Measured on NVIDIA RTX 2080 TI GPU, including forward and backward pass.

process, whereby the interpolated dense embeddings are not very far from the original. MultiMix
and Dense MultiMix still improve the state of the art under this setting.

Training speed In Figure 5, we analyze the training speed of MultiMix and Dense MultiMix as
a function of number 7 of interpolated examples. In terms of speed, MultiMix is on par with the
baseline up to n = 1000, while bringing an accuracy gain of 5%. The best performing method—
Dense MultiMix—is only slower by 10.6% at n = 1000 as compared to the baseline, which is
arguably worth given the impressive 5.12% accuracy gain. Further increasing beyond n > 1000
brings a drop in training speed, due to computing A and then using it to interpolate (6),(7). Because
n > 1000 also brings little performance benefit according to Figure 4(b), we set n = 1000 as default
for all MultiMix variants.

Using a smaller batch size 'We compare Input Mixup, Manifold Mixup and MultiMix for image
classification using R-18 on CIFAR-100, with a batch size b < 128. By default, we use n = 1000
generated examples and m = b examples being interpolated, following the same experimental set-
tings described in subsection 4.1. As shown in Table 13, the increase of MultiMix accuracy with

m 2 25 50 100

Input Mixup [65] 7744 7829 7898 79.52
Manifold Mixup [51] 78.63 7941 79.87 80.32
MultiMix (ours) 80.90 81.30 81.60 81.80

Table 13: Effect of batch size m < 128. Image classification using R-18 on CIFAR-100. Top-1
accuracy (%): higher is better.
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METHOD u h Acc

Uniform - - 81.33

CAM softmax 81.21
CAM /4y orelu  81.63

Attention (9)
GAP softmax 81.78
GAP ¢1 orelu 81.88

Table 14: Variants of spatial attention in Dense MultiMix. Image classification on CIFAR-100 using
R-18. Top-1 accuracy (%): higher is better. GAP: Global Average Pooling; CAM: Class Activation
Maps [68]; ¢1 o relu: ReLLU followed by ¢; normalization.

Figure 6: Attention visualization. Attention maps obtained by (9) with u as GAP and h as ¢; o relu
using Resnet-50 on the validation set of ImageNet. The attention localizes the complete or part of
the object with high confidence.

increasing batch size b is similar to the increase with the number m of examples being interpolated,
as observed in Figure 4(c). This is to be expected because, m and b are increasing together. An ex-
haustive hyper-parameter sweep could result in a different observation; currently, hyper-parameters
are adjusted to the default choice m = b = 128. We also observe that the performance improvement
of MultiMix over Input or Manifold Mixup is higher for smaller batch size. This may be due to the
ability of MultiMix to draw from a larger pool of interpolated examples.

Dense MultiMix: Spatial attention In subsection 3.3, we discuss different options for attention
in dense MultiMix. In particular, no attention amounts to defining a uniform a = 1,./r. Otherwise,
a is defined by (9). The vector u can be defined as u = z1,./r by global average pooling (GAP) of z,
which is the default, or u = Wy assuming a linear classifier with W € R?*¢, The latter is similar to
class activation mapping (CAM) [68], but here the current value of W is used online while training.
The non-linearity h can be softmax or ReLU followed by ¢; normalization (¢; o relu), which is the
default. Here, we study the affect of these options on the performance of dense Multimix.

In Table 14, we observe that using GAP for u and ¢; o relu as h yields the best performance overall.
Changing GAP to CAM or /; o relu to softmax is inferior. The combination of CAM with softmax
is the weakest, even weaker than uniform attention. CAM may fail because of using the non-optimal
value of W while training; softmax may fail because of being too selective. Compared to our best
setting, uniform attention is clearly inferior, by nearly 0.6%. This validates that the use of spatial
attention in dense MultiMix is clearly beneficial. Our intuition is that in the absence of dense targets,
assuming the same target of the entire example at every spatial position naively implies that the
object of interest is present everywhere, whereas spatial attention provides a better hint as to where
the object may really be.

We validate this hypothesis in Figure 6, where we visualize the attention maps obtained using our
best setting with u as GAP and h as ¢; o relu. This shows that the attention map enables dense
targets to focus on the object regions, which explains its superior performance.

Dense MultiMix: Spatial resolution We study the effect of spatial resolution on dense MultiMix.
By default, we use a resolution of 4 x 4 at the last residual block of R-18 on CIFAR-100. Here, we
additionally investigate 1 x 1 (downsampling by average pooling with kernel size 4, same as GAP),
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2 x 2 (downsampling by average pooling with kernel size 2) and 8 x 8 (upsampling by using stride
1 in the last residual block). We measure accuracy 81.07% for spatial resolution 1 x 1, 81.43% for
for 2 x 2, 81.88% for 4 x 4 and 80.83% for 8 x 8. We thus observe that performance improves with
spatial resolution up to 4 x 4, which is the optimal, and then drops at 8 x 8. This drop may be due
to assuming the same target at each spatial position. The resolution 8 x 8 is also more expensive
computationally.
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