
Under review as a conference paper at ICLR 2024

Appendix

A ADDITIONAL RESULTS

A.1 MODEL-BASED REINFORCEMENT LEARNING

In model-based reinforcement learning, the key distinctions between DiffTOP and TD-
MPC (Hansen et al., 2022) are: 1) TD-MPC employs the Model Predictive Path Integral
(MPPI (Williams et al., 2015)) in the planning stage, whereas we utilize trajectory optimization.
2) In addition to the original loss used in TD-MPC, we use an additional policy gradient loss and
back-propagate it through the differentiable trajectory optimization process to update the model pa-
rameters. Figure 6 shows that the improvement of DiffTOP over TD-MPC comes from the addition
of the policy gradient loss, instead of purely changing MPPI to trajectory optimization. To be more
specific, we compare TD-MPC with DiffTOP (w/o backward), a variant of DiffTOP that removes
the policy gradient loss for updating the model parameters. The results indicate that TD-MPC and
the DiffTOP (w/o backward) variant perform comparably, suggesting that using MPPI or trajectory
optimization at test-time for action generation have similar performances. With the inclusion of
the policy gradient loss, DiffTOPsignificantly outperforms both TD-MPC and the DiffTOP (w/o
backward) variant, demonstrating the efficacy of adding the policy gradient loss in DiffTOP.

DiffTOP (Ours)TD-MPC DiffTOP (w/o backward)

Cartpole Swingup Sparse Cheetah Run Cup CatchAverage

Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6)

Ep
iso

de
 re

tu
rn

Pendulum Swingup Quadruped Run Quadruped Walk Reacher Easy

Reacher Hard Walker Run Walker Stand Walker Walk

Finger Spin Finger Turn Easy Hopper StandFinger Turn Hard

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Figure 6: Performance of DiffTOP, in comparison to TD-MPC and DiffTOP (w/o backward) on 15
tasks from DeepMind control suite.

In addition to comparing the sample efficiency of DiffTOP to prior methods, we also compare
the computational efficiency of DiffTOP versus TD-MPC on some of the environments. This is
shown in Figure 7, where the y-axis is the return, and the x-axis is the wall-clock time used to train
DiffTOP and TD-MPC for 1M environment steps. As shown, it takes more wall-clock time for
DiffTOP to finish the training. In terms of computational efficiency, the results are environment-
dependent. DiffTOP achieves better computational efficiency on reacher-hard and cup-catch. On
pendum-swingup, TD-MPC converges to a sub-optimal value in the early training stage and DiffTOP
outperforms it within 24 hours of training time. DiffTOP has similar computational efficiency on
cartpole-swingup-sparse, reacher-easy, and finger-spin, and slightly worse computational efficiency

12

Under review as a conference paper at ICLR 2024

DiffTOP (Ours)TD-MPC

Figure 7: Return vs wall-clock time of DiffTOP and TD-MPC on some of the RL environments. The
x-axis is the training time in days (24 hours), and the y-axis is the return. Both methods are trained
for 1M environments steps. The training takes a long time (a few days on some environments)
because the policy observation is high-dimensional images.

on cheetah-run and walker-stand compared to TD-MPC. The gap is larger on hopper-stand. The ma-
jor reason for DiffTOP to take longer time for training is that solving and back-propagating through
the trajectory optimization problem in Equation 4 is slower than doing MPPI as used in TD-MPC.
As a reference, to infer the action at one time step, it takes 0.052 second to use Theseus to solve
and differentiate through the trajectory optimization problem in Equation 4, and 0.0092 second for
using MPPI in TD-MPC. However, we also want to note that the community is actively developing
better and faster algorithms/software libraries for differentiable trajectory optimization, which could
improve the computation efficiency of DiffTOP. For example, in all our experiments, we used the
default CPU-based solver in Theseus. Theseus also provides a more advanced solver named BaS-
paCho, which is a batched sparse Cholesky solver with GPU support. When we switch from the de-
fault CPU-based solver to BaSpaCho, the time cost of solving the trajectory optimization problem in
Equation 4 is reduced by 22% from 0.052 second to 0.041 second. With better libraries/algorithms
in the future for differentiable trajectory optimization, we believe the computational efficiency of
DiffTOP would further improve.

A.2 IMITATION LEARNING

We also present results of DiffTOP with zero initialization or random initialization, where instead of
initializing the action from a base policy, the action is initialized to be 0, or randomly sampled from
N (0, 1), on RoboMimic and Maniskill.

The results on RoboMimic is shown in Table 3. We notice a drop in performance of DiffTOP with
zero or randomly-initialized actions, possibly due to the convergence to bad local minima during
nonlinear trajectory optimization without a good action initialization. We note this would not be a
drawback of applying DiffTOP in practice for imitation learning: one could always first learn a base
policy using any behavior cloning algorithm, and then use DiffTOP to further refine the actions.

The results on Maniskill is shown in Table 4. Again, if we use zero or random action initialization
with DiffTOP, the performance drops to be similar to or slightly worse than vanilla BC. Therefore,

13

Under review as a conference paper at ICLR 2024

we think a good practice of using DiffTOP for imitation learning would be to always try to pro-
vide it with a good action initialization, e.g., by first training a BC policy and use its action as the
initialization in DiffTOP.

IBC BC-RNN Residual
+BC-RNN

DiffTOP (Ours)
+ BC-RNN Diffusion IBC

+ Diffusion
Residual
+ Diffusion

DiffTOP (Ours)
+ Diffusion

DiffTOP (Ours)
+ zero init.

DiffTOP (Ours)
+ random init.

Square 0.04±0.00 0.82±0.00 0.84±0.01 0.90±0.02 0.88±0.03 0.68±0.05 0.88±0.02 0.92±0.01 0.84±0.02 0.80±0.00
Transport 0.00±0.00 0.72±0.03 0.74±0.03 0.83±0.02 0.93±0.04 0.08±0.03 0.92±0.01 0.96±0.01 0.42±0.01 0.36±0.04
ToolHang 0.00±0.00 0.67±0.04 0.72±0.03 0.82±0.00 0.90±0.00 0.06±0.01 0.90±0.00 0.92±0.01 0.00±0.00 0.00±0.00

Push-T 0.11±0.01 0.70±0.02 0.72±0.02 0.75±0.02 0.91±0.00 0.08±0.01 0.91±0.00 0.91±0.01 0.62±0.04 0.57±0.02

Table 3: Comparison of DiffTOP with all other mehtods on the Robomimic tasks. DiffTOP achieves
the best performances on all tasks when using diffusion policy as the base policy. If zero or random
initialization are used in DiffTOP, the performance drops, possibly due to the convergence to bad
local minima during nonlinear trajectory optimization without a good action initialization.

PickCube Fill Hang Excavate Pour OpenCabinet
Drawer

OpenCabinet
Door PushChair MoveBucket

BC 0.19±0.03 0.72±0.04 0.76±0.02 0.25±0.02 0.13±0.01 0.47±0.03 0.35±0.04 0.12±0.01 0.10±0.01
BC + residual 0.21±0.04 0.75±0.02 0.75±0.02 0.27±0.03 0.12±0.01 0.49±0.02 0.36±0.03 0.15±0.02 0.10±0.01

DiffTOP(Ours) + BC 0.32±0.02 0.82±0.01 0.85±0.03 0.29±0.01 0.17±0.02 0.53±0.02 0.45±0.02 0.20±0.02 0.15±0.02
DiffTOP (Ours)

+ zero init. 0.20±0.03 0.76±0.03 0.72±0.02 0.25±0.01 0.04±0.00 0.50±0.04 0.34±0.04 0.04±0.01 0.06±0.00

DiffTOP (Ours)
+ random init. . 0.18±0.02 0.68±0.03 0.67±0.01 0.19±0.04 0.04±0.00 0.39±0.04 0.30±0.02 0.00±0.00 0.05±0.01

Table 4: Comparison of all the methods on the Maniskill2 baseline. DiffTOP consistently outper-
forms both baselines on all tasks with action initialization from the BC policy. If zero or random
initialization are used in DiffTOP, the performance drops, possibly due to the convergence to bad
local minima during nonlinear trajectory optimization without a good action initialization.

In the original Diffusion Policy (Chi et al., 2023) paper, it was observed that the use of positional
controllers yielded superior results for Diffusion Policy compared to the default velocity controller
on Robomimic (Mandlekar et al., 2021) tasks. We evaluate Diffusion Policy, which is the strongest
baseline, and DiffTOP on the most difficult three tasks with ph (proficient-human demonstration)
and mh (multi-human demonstration) demonstrations using positional controller. The results with
the positional controller are presented in Table 5. Diffusion Policy already achieves nearly the
maximal possible performance on most tasks with the positional controller. DiffTOP, however, is
able to achieve similar or even higher performances on most of these tasks.

Square (ph) Square (mh) Transport (ph) Transport (mh) ToolHang (ph)

Diffusion 0.98±0.01 0.97±0.02 1.00±0.00 0.88±0.02 0.95±0.02
DiffTOP + Diffusion 0.98±0.01 0.96±0.02 1.00±0.00 0.91±0.01 0.96±0.01

Table 5: Performance Comparison of DiffTOP and Diffusion Policy using Positional Controllers on
Robomimic Tasks.

Additionally, we do ablation experiments on the planning horizon H for imitation learning, with the
results presented in Table 6. We observe that simply increasing the planning horizon H in imitation
learning does not necessarily enhance performance. As the horizon increases from H = 1 to H = 3,
the performance remains nearly the same; however, when H is increase to 5, we observe a slight
decline in the performance.

B IMPLEMENTATION DETAILS

In this section, we describe the implementation details of DiffTOP for the model-based RL ex-
periments. For the imitation learning part, the code structure is very similar to this model-based
RL implementation. For more detailed information, please refer to the code we will release upon
acceptance of the paper. We implement DiffTOP on top of the open-source implementation of
TD-MPC (Hansen et al., 2022) from the authors. Below we show the pseudo-code of the training
function in DiffTOP.

14

Under review as a conference paper at ICLR 2024

Square (ph) Transport (ph) ToolHang (ph) Push-T

H = 1 0.92±0.01 0.96±0.01 0.92±0.01 0.91±0.01
H = 3 0.92±0.01 0.94±0.02 0.92±0.00 0.88±0.02
H = 5 0.91±0.01 0.94±0.01 0.90±0.00 0.88±0.01

Table 6: Ablation experiments for the planning horizon H in imitation learning.

def train():
"""
Training code
"""
for step in range(total_steps):

obs = env.reset()
Differentiable trajectory optimization and update model
action, info = agent.plan_theseus_update(obs)
Env step
obs, reward, done, _ = env.step(action.cpu().numpy())
collect data in buffer and update model (TD-MPC loss)
replay_buffer += (obs, action, reward, done)
agent.update(replay_buffer)

Then, we demonstrate how the policy gradient loss is computed by differentiable trajectory opti-
mization in DiffTOP with PyTorch-like pseudocode:

def plan_theseus_update(obs):
"""
Differentiable trajectory optimization and update model using policy
gradient loss.
h, R, Q, d: model components.
c0: loss coefficients.
"""
import theseus as th

Encode first observation
z = self.model.h(obs)

Get initialization action from pi
init_actions = self.model.pi(z)

Theseus variable
actions = th.Vector(tensor=actions, name="actions")
obs = th.Variable(obs, name="obs")

Cost Function and Objective
cost_function = th.AutoDiffCostFunction([obs], [action]

,value_cost_fn)
objective = th.Objective().add(cost_function)

Trajectory optimization optimizer
theseus_optim = th.TheseusLayer(th_optimizer)

Theseus layer forward
theseus_inputs = {"actions": init_actions, "obs": obs}
updated_inputs, info = theseus_optim.forward(theseus_inputs)
updated_actions = updated_inputs[’actions’]

Update model using policy gradient losss
a_loss = - torch.min(*self.model.Q_s(obs, updated_actions[0]))*c0
a_loss.backward()
optim_a.step()

15

Under review as a conference paper at ICLR 2024

For model-based reinforcement learning, We provide the network details for the added networks
we used upon TD-MPC, which are the twin Q networks Q̃ϕ learned in the original state space for
computing the deterministic policy gradient.

(Q_s1): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))
(3): Linear(in_features=Z+A, out_features=512)
(4): LayerNorm((512,), elementwise_affine=True)
(5): Tanh()
(6): Linear(in_features=512, out_features=512)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=1))

(Q_s2): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))
(3): Linear(in_features=Z+A, out_features=512)
(4): LayerNorm((512,), elementwise_affine=True)
(5): Tanh()
(6): Linear(in_features=512, out_features=512)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=1))

For Imitation Learning, The default network details are as follows. Note that for Robomimic (Man-
dlekar et al., 2021) and Push-T tasks, we use the RNN-encoder from Robomimic; for ManiSkill (Mu
et al., 2021; Gu et al., 2023) tasks, we use the PointNet encoder from ManiSkill2 Gu et al. (2023).

(ho): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=Zs))

(ha): Identity
(hl): Sequential(

(0): Linear(in_features=Zs+A, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=128))

(R): Sequential(
(0): Linear(in_features=Zs+A+64, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=1))

(d): Sequential(
(0): Linear(in_features=Zs+A+64, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=Zs+64))

Hyperparameters used for DiffTOP for both model-based RL and imitation learning are shown in
Tab 7. In model-based RL, we use the same parameters with TD-MPC (Hansen et al., 2022) when-
ever possible.

C ENVIRONMENT DETAILS

For model-based reinforcement learning evaluation, we use 15 visual continuous control tasks from
Deepmind Control Suite (DMC). For imitation learning, we use 13 tasks (detailed information can

16

Under review as a conference paper at ICLR 2024

Hyperparameter Value

Model-based RL

Max planning iterations 100 (50)
Planning step size 1e-4 (5e-3)
Discount factor 0.99
Action loss coefficient (c0) 1
optimizer Adam(β1 = 0.9, β2 = 0.999)
Gradient Norm 10
Planning horizon schedule 1 → 5 (25k steps)
Batch size 256
Latent dimension 50
Sampling technique PER(α = 0.6, β = 0.4)
Learning rate 1e-3

Imitation Learning

Max planning iterations 100
Planning step size 1e-4
Planning horizon schedule 1
Latent dimension 50
Posterior Gaussian dimension 64
KL coefficien 1
Learning rate 3e-4
GMM Num Modes 5
RNN Seq Len 16
RNN Hidden Dim 1000
Point Cloud Sampled Points (ManiSkill) 1200

Table 7: Hyperparameters used in DiffTOP.

be found in Table 8) from Robomimic (Mandlekar et al., 2021), IBC (Florence et al., 2022), Man-
iSkillp (Mu et al., 2021), and ManiSkill2 (Gu et al., 2023).

Task Source Obs. Type Ac Dim Object Demo Task Description

Square Robomimic Img 7 Rigid 200 Pick a square nut and place it on a rod.
Transport Robomimic Img 14 Rigid 200 Transfer a hammer from a container to a bin
ToolHang Robomimic Img 7 Rigid 200 assemble a frame consisting of a base and hook
Push-T IBC Img 2 Rigid 200 Push a T-shaped object to a specified position
OpenCabinetDrawer ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific drawer of the cabinet
OpenCabinetDoor ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific door of the cabinet
PushChair ManiSkill1 Point Cloud 22 Rigid 300/obj. Push the swivel chair to the target position
MoveBucket ManiSkill1 Point Cloud 22 Rigid 300/obj. Move a bucket and lift it onto a platform
PickCube ManiSkill2 Point Cloud 7 Rigid 1000 Pick up a cube and move it to a goal position
Fill ManiSkill2 Point Cloud 7 Soft 200 Fill clay from a bucket into the target beaker
Hang ManiSkill2 Point Cloud 7 Soft 200 Hang a noodle on a target rod
Excavate ManiSkill2 Point Cloud 7 Soft 200 Lift a amount of clay to a target height
Pour ManiSkill2 Point Cloud 7 Soft 200 Pour liquid from a bottle into a beaker

Table 8: Imitation Learning Tasks Summary.

We visualize the keyframes of the imitation learning tasks in Fig 8.

D MORE IMPLEMENTATION DETAILS ON USING CVAE FOR IMITATION
LEARNING

We provide more details on how we instantiate DiffTOP with CVAE in imitation learning, in which
the goal is to reconstruct the expert actions conditioned on the state. The CVAE encoder is composed
of three networks: the first network is a state encoder hoθ that encodes the state into a latent feature
vector zs = hoθ(si), which is the conditional information in our case. The second is an action
encoder haθ that encodes the expert action into a latent feature vector za = haθ(a

∗
i). The last is a

17

Under review as a conference paper at ICLR 2024

fusing encoder hlθ(z
s, za) that takes as input the concatenation of the state and action latent features,

and outputs the mean µ and variance σ2 of the posterior Gaussian distribution N (·|µ, σ2). During
training, the final latent state z for state si used in Equation 7 is the concatenation of a sampled
vector z̃ from the posterior Gaussian distribution N (·|µ, σ2), and the latent state feature vector zs:
z = [z̃, zs], z̃ ∼ N (·|µ, σ2).

The latent state z will then be used as input for the decoder, which consists of the reward function Rθ,
and the dynamics function dθ. Trajectory optimization is performed with the reward and dynamics
function in the decoder to solve Equation 7 to generate the reconstructed action a∗(θ; si). The loss
for training the CVAE is the evidence lower bound (ELBO) on the demonstration data:

LILDiffTOP (θ) =
N∑
i=1

||a(θ; si)− a∗i ||22 − β · KL(N (·|µ, σ2)|N (0, I)), (9)

where KL(P ||Q) denotes the KL divergence between distributions P and Q. At test time, only
the decoder of the CVAE is used for generating the actions. Given a state s, the latent state z
is the concatenation of the encoded latent state feature zs, and a sampled vector z̃ from the prior
distribution N (0, 1).

18

Under review as a conference paper at ICLR 2024

Sq
ua
re

Tr
an

sp
or

t
To

ol
 H

an
g

Pu
sh

 T
O

pe
nC

ab
in

et
D

oo
r

O
pe

nC
ab

in
et

D
ra

w
er

Pu
sh

 C
ha

ir
M

ov
e

Bu
ck

et
Pi

ck
 C

ub
e

Fi
ll

H
an

g
Ex

ca
va

te
Po

ur

Figure 8: Visualization of the tasks for imitation learning.

19

	Additional results
	Model-based Reinforcement Learning
	Imitation Learning

	Implementation Details
	Environment Details
	More implementation details on using CVAE for imitation learning

