
Under review as a conference paper at ICLR 2022

INPUT DEPENDENT SPARSE GAUSSIAN PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Gaussian Processes (GPs) are Bayesian models that provide uncertainty estimates
associated to the predictions made. They are also very flexible due to their non-
parametric nature. Nevertheless, GPs suffer from poor scalability as the number of
training instancesN increases . More precisely, they have a cubic cost with respect
to

::::
since

::::
their

::::
cost

::
is

:::::
cubic

::
in N . To overcome this problem, sparse GP approxima-

tions are often used, where a set of M � N inducing points is introduced during
training. The location of the inducing points is learned by considering them as
parameters of an approximate posterior distribution q. Sparse GPs, combined with
variational inference for inferring q, reduce the training cost of GPs

:::
per

:::::::
iteration

to O(M3). Critically, the inducing points determine the flexibility of the model
and they are often located in regions of the input space where the latent function
changes. A limitation is, however, that for some learning tasks a large number of in-
ducing points may be required to obtain a good prediction performance. To address
this limitation, we propose here to amortize the computation of the inducing points
locations, as well as the parameters of the variational posterior approximation q.
For this, we use a neural network that receives the observed data as an input and
outputs the inducing points locations and the parameters of q. We evaluate our
method in several experiments, showing that it performs similar or better than other
state-of-the-art sparse variational GP approaches. However, with our method the
number of inducing points is reduced drastically due to their dependency on the
input data. This makes our method scale to larger datasets and have faster training
and prediction times.

1 INTRODUCTION

Gaussian Processes (GPs) are non-parametric models that can be used to address regression and
classification machine learning problems (Rasmussen & Williams, 2006). GPs become more expres-
sive as the number of training instances N grows and, since they are Bayesian models, they provide
a predictive distribution that estimates the uncertainty associated to the predictions made. This
uncertainty estimation or ability to know what is not known is critical in many practical applications
(?)

::::::::::
(Gal, 2016). Nevertheless, GPs suffer from poor scalability as their training cost is O(N3)

:::
per

:::::::
iteration due to the need of computing the inverse of a covariance matrix of size N ×N

::::::
N ×N

:::::::::
covariance

:::::
matrix. Another limitation is that approximate inference is required

:::::
needed

:
with non-

Gaussian likelihoods (Rasmussen & Williams, 2006).

Sparse approximations can improve the cost of GPs (Rasmussen & Williams, 2006). The most
popular ones introduce a set of M � N inducing points (Snelson & Ghahramani, 2006; Titsias,
2009). The inducing points and their associated posterior values completely specify the posterior
process at test points. In Snelson & Ghahramani (2006), the computational gain is obtained by
assuming independence among the process values at the training points given the inducing points
and their values. This can also be seen as using an approximate GP prior (Quiñonero-Candela &
Rasmussen, 2005). By contrast, in Titsias (2009) the computational gain is obtained by combining
variational inference (VI) with a posterior approximation q that has a fixed part and a tunable part. In
both methods the computational cost is reduced to O(NM2)

::
per

::::::::
iteration and the inducing points,

considered as model’s hyper-parameters, are learned by maximizing an estimate of the marginal
likelihood.

Importantly, the VI approach of Titsias (2009) maximizes a lower bound on the log-marginal
likelihood as an indirect way of minimizing the KL-divergence between an approximate posterior

1

Under review as a conference paper at ICLR 2022

distribution for the process values at the inducing points and the corresponding exact posterior.
The advantage is that the objective is expressed as a sum over the training instances, allowing for
mini-batch training and stochastic optimization techniques to be applied on the objective (Hensman
et al., 2015b). This reduces the training cost to O(M3)

:::
per

:::::::
iteration, making GPs scalable to very

large datasets.

In sparse approximations one often observes in practice that after the optimization process the inducing
points are located in regions of the input space in which the latent function changes (Snelson & Ghahra-
mani, 2006; Titsias, 2009; Hensman et al., 2015a; Bauer et al., 2016). Therefore, the expressive power
of the model critically depends on the number of inducing points M and their correct location on the
input space. Some problems may require a large number of inducing points, in the order of several
hundreds

::::::::
thousands, to get good prediction results (Hensman et al., 2015b; ?; Tran et al., 2020)

:::
(Hensman et al., 2015b; Shi et al., 2020; Tran et al., 2020). This makes training inducing point based
sparse GPs difficult in those problems.

There have been some attempts to improve the computational
::::::
training

:
cost of sparse approximations,

including using different sets of inducing points for the computation of the posterior mean and
variance (Cheng & Boots, 2017). Other approaches use an orthogonal decomposition of the GP that
allows to introduce an extra set of inducing points with less cost (?)

::::::::::::::
(Shi et al., 2020). Finally, other

methods consider a large set of inducing points, but restrict the computations for a particular data
point to the nearest neighbors to that point from the set of inducing points (Tran et al., 2020).

In this work we are inspired by Tran et al. (2020) and propose a novel method to improve the
computational

::::::
training

:
cost of sparse GPs. Our method also tries to produce a set of inducing points

(and associated variational approximation q) that are specific of each input data point. For that, we
note that some works in the literature have observed that one can learn the mappings from inputs
to proposal distributions instead of directly optimizing their parameters (Kingma & Welling, 2014;
Shu et al., 2018). This approach, known as amortized variational inference, is a key contribution
of variational auto-encoders (VAE) (Kingma & Welling, 2014), and has also been explored in the
context of GP to solve other types of problems such as multi-class classification with input noise
(?)

::::::::::::::::::::::::::
(Villacampa-Calvo et al., 2021). Amortized inference has also been empirically shown to lead to

useful regularization properties that improve the generalization performance (Shu et al., 2018).

Specifically, here we propose to combine sparse GPs with a neural network architecture to compute
the inducing points locations associated to each input point. Moreover, we

:::
that

::::::::
computes,

:::
for

::::
each

:::::::
potential

::::
data

:::::
point,

:::
the

::::::::
associated

::::::::
inducing

:::::
points

::
to

::
be

::::
used

:::
for

:::::::::
prediction.

:::
We

:
also employ a neural

network to carry out amortized VI to compute the parameters of the approximate variational distri-
bution q modeling the posterior distribution associated to the values of

::::::::::::
approximating

:::
the

::::::::
posterior

::
of

:::
the

::::::
process

::::::
values

:::
for the outputted inducing points. Critically

:::::
While

:::
the

:::::::
number

::
of

:::::::::
parameters

:::
that

::::
need

:::::::::::
optimization

::::
may

:::::::
increase

::::
with

:::
the

:::
use

:::
of

:
a
::::::
neural

:::::::
network, this approach allows a

::
for

:
a

:::
big reduction in the

:::
total

:
number of inducing points drastically without losing expressive power,

as now we have
:
.
::
In

:::::::::
particular,

:
it
:::::::
enables different sets of inducing points associated to each input

location. The inducing points are simply given by a mapping from the inputs provided by a neural
network. We show on several experiments that the proposed method is able to perform similar
or better than standard sparse GPs and competitive methods for improving the cost of sparse GPs
(Tran et al., 2020; ?)

::::::::::::::::::::::::::::
(Tran et al., 2020; Shi et al., 2020). However, the training and prediction times

of our method are much better.

2 GAUSSIAN PROCESSES

A Gaussian Process (GP) is a stochastic process for which any finite set of variables has a Gaussian
distribution (Rasmussen & Williams, 2006). In a learning task, we use a GP as a prior over a
latent function. Then, Bayes’ rule is used to get a posterior for that function given the observed
data. Consider a dataset D = {(xi, yi)}Ni=1, where each scalar yi is assumed to be obtained as
yi = f(xi) + εi, with f(·) a latent function and εi Gaussian noise with variance σ2. Namely

:
,

::
i.e., εi ∼ N (0, σ2). We specify a prior distribution for f in the form of a GP, which is de-
scribed by a mean function m(x) (often set to zero) and covariance function k(x,x′) such that
k(x,x′) = E[f(x)f(x′)]

::::::::::::::::::::::::::::::::::::::
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. Covariance functions typ-

ically have some parameters θ. Given D, the predictive distribution for f at a new test point x? is

2

Under review as a conference paper at ICLR 2022

Gaussian with mean and variance given by

µ(x?) = k(x?)T(K+ σ2I)−1y , σ2(x?) = k(x?,x?)− k(x?)T(K+ σ2I)−1k(x?) , (1)

where µ(x?) and σ2(x?) are the prediction mean and variance, respectively. k(x?) is a vector
with the covariances between f(x?) and each f(xi). Similarly, K has the covariances between
f(xi) and f(xj) for i, j = 1, . . . , N . Finally, I stands for the identity matrix. A popular covariance
function

::::::
Popular

::::::::::
covariances

::::::::
functions k(·, ·) is

:::
are the squared exponential , which assumes that f is

smooth (Rasmussen & Williams, 2006). Its
:::
and

:::
the

::::::
Matérn

::::::::::::::::::::::::::
(Rasmussen & Williams, 2006).

::::::
Their

parameters, θ, and σ2 can simply be found by maximizing p(y) (Rasmussen & Williams, 2006). The
computational complexity of this approach is O(N3) since it needs the inversion of K, a N × N
matrix. This makes GPs unsuitable for large data sets.

2.1 SPARSE VARIATIONAL GAUSSIAN PROCESSES

Sparse approximations improve the cost of GPs. The most popular methods introduce, in the same
input space as the original data, a new set of M � N points , called the inducing points, denoted
by Z = (z1, . . . , zM)T (Snelson & Ghahramani, 2006; Titsias, 2009). Let the corresponding latent
function values be u = (f(z1), . . . , f(zM))T. The inducing points are not restricted to be part of the
observed data and their location can be learned during training. A GP prior is placed on u. Namely,
p(u) ∼ N (0,KZ), where KZ is a matrix with the covariances associated to each pair of points from
Z. The idea is that the posterior for f can be approximated in terms of the posterior for u.

In this work we focus on a widely used variational inference (VI) approach to approximate the
posterior for f (Titsias, 2009). Let f = (f(x1), . . . , f(xN))T. In VI, the goal is to find an approximate
posterior for f and u, q(f ,u), that resembles as much as possible the true posterior p(f ,u|y).
Critically, q is constrained to be q(f ,u) = p(f |u)q(u), with p(f |u) fixed and q(u) a tunable multi-
variate Gaussian. To find q(u) a lower bound of the marginal likelihood is maximized. This bound is
obtained through

:::
The

::::::::
evidence

:::::
lower

:::::
bound

:::
(or

:::::::
ELBO)

:
is
::::::::
obtained

:::
via Jensen’s inequality, leading

to the following expression, (after some simplifications
:
):

L =
∑N

i=1 Eq(f)[log p(yi|fi)]− KL[q(u)|p(u)] , (2)

where p(yi|fi) is the model’s likelihood for the i-th point and KL[·|·] is the Kullback-Leibler diver-
gence between probability distributions. In Titsias (2009), they do optimize q(u) in closed-form.
The resulting expression is then maximized to estimate Z, θ and σ2. This leads to a complexity of
O(NM2). However, if the variational posterior q(u) is optimized alongside with Z, θ and σ2, as pro-
posed in Hensman et al. (2013), the ELBO can be expressed as a sum over training instances, which
allows for mini-batch training and stochastic optimization techniques. Using stochastic variational
inference (SVI) reduces the training cost toO(M3)

:::
per

:::::::
iteration (Hensman et al., 2013). Importantly,

the first term in (2) is an expectation that has closed-form solution in the case of Gaussian likelihoods.
It needs to be approximated for other cases, e.g., binary classification, either by quadrature or MCMC
methods (Hensman et al., 2015b). The second term is the KL-divergence between the variational
posterior and the prior, which can be computed analytically since they are both Gaussians.

After optimizing (2), one often observes that the inducing points are located
in those regions of the input space in which the latent function changes
(Titsias, 2009; Hensman et al., 2015a; Bauer et al., 2016). In consequence, the

:::
The

::
ex-

pressive power of the sparse GP critically depends on the number of inducing
points M and on their correct placement

:
in

:::::
the

:::::
input

:::::::
space

::::
via

::::::::::
optimizing

:::::
(2)

::
(Titsias, 2009; Hensman et al., 2015a; Bauer et al., 2016). In some learning problems , however, a
large number

::::::::
problems

::::::
several

:::::::::
thousands of inducing points , in the order of several hundred, is

:::
may

:::
be

:
required to get good prediction results (Hensman et al., 2015b; ?; Tran et al., 2020)

:::::
results

:::
(Hensman et al., 2015b; Shi et al., 2020; Tran et al., 2020). This makes difficult and expensive
using sparse GPs in those problems. In the next section we describe how to reduce the cost of
thismethod

:::::::
alleviate

:::
this.

3 INPUT DEPENDENT SPARSE GPS

We develop a new formulation of sparse GPs which for every given input computes the corresponding
inducing points to be used for prediction, and also the associated parameters of the approximate

3

Under review as a conference paper at ICLR 2022

distribution q. To achieve this, we consider a meta-point x̃ that is used to determine the inducing
points Z and the corresponding u. Namely, now u depends on x̃, i.e., u ∼ p(u|x̃). In particular, we
set p(u|x̃) = N (0,KZ(x̃)) where the inducing points Z depend non-linearly, e.g., via a deep neural
network, on x̃. The joint distribution of u and x̃ is then given by p(u, x̃) = p(u|x̃)p(x̃) for some
prior distribution p(x̃). Following (Tran et al., 2020), we can consider an implicit distribution p(x̃).
That is, its analytical form is unknown, but we can draw samples from it. Later on, we specify p(x̃).

Note that the marginalized prior p(u) is no longer Gaussian. However, we can show that this
formulation does not impact on the prior over f . For an arbitrary selected meta-point x̃ we have that

p(f ,u|x̃) =N
(
0
:
,

[
K KX,Z(x̃)

KZ(x̃),X KZ(x̃)

])
, (3)

where KX,Z(x̃) are the cross-covariances between f and u. Therefore, if u is marginalized out in
(3), the prior for f is the standard GP prior and does not depend on x̃. Hence, p(f |x̃) = p(f). Thus,
p(f ,u) =

∫
p(f ,u|x̃)p(x̃)dx̃ is a mixture of Gaussian densities, where the marginal over f is the

same for every component of the mixture. In the standard sparse GP, the inducing points also have an
impact on the variational approximation q via the fixed conditional distribution p(f |u) (Titsias, 2009).
Therefore, we also incorporate the input dependence on x̃ in q. This is done in the next section.

3.1 LOWER BOUND ON THE LOG-MARGINAL LIKELIHOOD

We follow Tran et al. (2020) to derive a lower bound on the log-marginal likelihood of the ex-
tended model described above. Consider a posterior approximation of the form q(f ,u, x̃) =
p(f |u)q(u|x̃)p(x̃), where only q(u|x̃) can be adjusted and the other factors are fixed. Using this
posterior’s factorization and Jensen’s inequality we obtain the lower bound after some simplifications:

L =
∑N

i=1

∫
p(x̃)

[
p(fi|u)q(u|x̃) log p(yi|fi)dfdu− 1

N KL[q(u|x̃)|p(u|x̃)]
]
dx̃ . (4)

Now, assuming that p(x̃) is an implicit distribution, we can draw samples from it and approximate
the expectation w.r.t p(x̃). Thus, for a meta-point sample x̃s from p(x̃), (4) is approximated as

L ≈
∑N

i=1

[
Ep(fi|u)q(u|x̃s)[log p(yi|fi)]− 1

N KL[q(u|x̃s)|p(u|x̃s)]
]
. (5)

We can evaluate (5) and its gradients to maximize the original objective in (4) using stochastic
optimization techniques. This is valid for any implicit distribution p(x̃). Consider now that we use
mini-batch-based training for optimization, and we set x̃s = xi. In this case, the value of x̃ remains
random, as it depends on the points (xi, yi) that are selected in the random mini-batch. This results
in a method that computes different inducing points for each input location. In practice, we use the
same sample to approximate the expectation w.r.t. p(x̃) and the sum across the data in (5). This could
introduce a bias in the objective. However, such a reusing of the samples is done in Tran et al. (2020)
with good empirical results. Moreover, our experiments in Section 5 also validate this approximation.

3.2 AMORTIZED VARIATIONAL INFERENCE AND DEEP NEURAL NETWORKS

Maximizing the lower bound finds the optimal approximate distribution q. A problem, how-
ever, is that we have a potential large number of parameters to fix, corresponding to each
q(u|xi). In particular, if we set q(u|xi) to be Gaussian, we will have to infer different

X nd

X nd

h()
P
1

h(1)P −1

h(1)2

h(1)1

h(2)P

h(2)P −1

h(2)2

h(2)1

h(L)P

h(L)P −1

h(L)2

h(L)1

Figure 1: The network’s inputs is x̃. The outputs
are the inducing points Z, the mean vector m and
the Cholesky factor, L, of q(u|xi).

means and covariance matrices for each differ-
ent xi. This is expected to be memory inefficient
and to make optimization more difficult. To re-
duce the number of parameters of our method
we use amortized variational inference and spec-
ify a function that can generate these parame-
ters for each xi (Shu et al., 2018). More pre-
cisely, we set the mean and covariance matrix
of q(u|xi) to be m(xi) and S(xi), for some
non-linear functions.

Deep neural networks (DNN) are flexible mod-
els that can describe complicated functions. In

4

Under review as a conference paper at ICLR 2022

these models, the inputs go through several lay-
ers of non-linear transformations. We use these
models to compute the non-linearities that gen-
erate from xi the inducing points, Z(xi), and
the means and covariances of q(u|xi), i.e., m(xi) and S(xi). The architecture employed is displayed
in Figure 1. At the output of the DNN we obtain Z, a mean vector m and the Cholesky factor of the
covariance matrix S = LLT. The maximization of the lower bound in (4) when using DNNs for the
non-linearities is shown in Algorithm 1. The required expectations are computed in closed-form, in
regression. In binary classification, we use 1-dimensional quadrature, as in Hensman et al. (2015a).

Algorithm 1 Training input dependent sparse GPs
Input: D, M , neural network NNet with L hidden layers and P hidden units
Output: Optimal parameters of the model

initialize neural network’s weights and kernel’s parameters θ
while stopping criteria is False do

Loglk = 0,KLdiv = 0
:::::::::
Loglk = 0,

::::::::
KLdiv = 0

:

gather mini-batch Mb of size n from D
for (xi,yi) in Mb do

(Zxi ,mxi ,Lxi) = NNet(xi); Loglk ::::
Loglk :

+= Eq(fi,u)[log p(yi|fi)] ;;KLdiv ::::
KLdiv: +=

KL[q(u|xi)|p(u|xi)]

ELBO ← N
n × Loglk −

1
n ×KLdiv :::::

ELBO
:::::::
← N

n× ::::::::::
Loglk − 1

n×:::::
KLdiv

Update parameters of the model using the gradient of ELBO
:::::
ELBO

:

3.3 PREDICTIONS AND COMPUTATIONAL
:::::::::
TRAINING COST

At test the instances are not randomly chosen. In that case, we simply set p(x̃) to be a deterministic
distribution placed on the candidate point x?. The DNN is used to obtain the associated information.
Namely, Z, and the parameters of q(u|x?), m and S. The predictive distribution for f(x?) is:

f(x?) ∼ N
(
Kx?,ZK

−1
Z m, k(x?,x?) +Kx?,ZK

−1
Z (S−KZ)K

−1
Z KT

x?,Z

)
. (6)

Given this distribution for f(x?), the probability distribution for y? can be computed in closed
form in the case of regression problems and with 1-dimensional quadrature in the case of bi-
nary classification.

::::
Note

::::
that

:::
(6)

::
is

::::
only

:::::::
suitable

:::
for

::::::::::
predictions

::
at

:::::::::
individual

::::
test

::::::
points,

::
as

::
in

::::::::::::::
Tran et al. (2020).

:::::
This

:::
can

:::
be

:
a
::::::::
limitation

::
in
:::::::::::

applications
:::::::
needing

::::::::::
covariances.

:::
As

::
a

:::::::
solution,

:::
one

::::
could

::::::::
consider

:::
for

::::::::
prediction

:::
the

::::::
union

::
of

::
all

:::::
input

:::::::::
dependent

:::::::
inducing

::::::
points

:::
for

:::
test

::::::
points.

::::
This

:::::
would

::
be

:::::::::::
inconsistent

::::
with

:::
the

::::::::
proposed

::::::
training

::::::::
method.

:::::::::::
Nonetheless,

::::
such

::::::::
approach

:::
can

::::
also

::
be

:::::::
modified

::
to

::::::::
consider

:::
the

:::::
union

::
of

:::::
input

:::::::::
dependent

:::::::
inducing

::::::
points

:::
for

:::
the

:::::::
training

:::::
points

::::::
within

:
a

:::::::::
mini-batch,

::
as

::
in
:::::::::::::::
(Tran et al., 2020)

:
.

The cost of our method is smaller than the cost of a standard sparse GP if a smaller number of
inducing points M is used. The cost of a DNN with L layers, P hidden units, di dimension of the
input data, and output dimension do is O(ndiP + nP 2L + nPdo + n(L + 1)). The cost of the
sparse GPs is O(nM3), with n the mini-batch size. Therefore, the cost of our method

:::
per

:::::::
iteration is

O(ndiP + nP 2L+ nPdo + n(L+ 1) + nM3). Since in our method the inducing points are input
dependent, we expect to obtain good prediction results even for M values that are fairly small.

4 RELATED WORK

Early works on sparse GPs simply chose a subset of the training data for inference based on
an information criterion (?Lawrence et al., 2003; Seeger et al., 2003; Henao & Winther, 2012)
:::
(Csató & Opper, 2002; Lawrence et al., 2003; Seeger et al., 2003; Henao & Winther, 2012). This
approach is limited in practice and more advanced methods in which the inducing points need not be
equal to the training points are believed to be superior. In the literature there are several works ana-
lyzing and studying sparse GP approximations based on inducing points. Some of these works include
Quiñonero-Candela & Rasmussen (2005); Snelson & Ghahramani (2006); ?); Titsias (2009); Bauer et al. (2016); ?
::
Quiñonero-Candela & Rasmussen (2005); Snelson & Ghahramani (2006); Naish-Guzman & Holden (2007); Titsias (2009); Bauer et al. (2016); Hernández-Lobato & Hernández-Lobato (2016)

5

Under review as a conference paper at ICLR 2022

. We focus here on a variational approach (Titsias, 2009) which allows for stochastic optimization
and mini-batch training (Hensman et al., 2013; 2015a). This enables learning in very large datasets
with a cost of O(M3)

:::
per

:::::::
iteration, with M the number of inducing points.

In general, however, a large number of inducing variables is desirable to
obtain a good approximation to the posterior distribution. For some problems,
even several hundreds

::::::::
however,

::::::::
several

::::::::::
thousands

::
of inducing points may be

needed to get good prediction results (Hensman et al., 2015b; ?; Tran et al., 2020)
:::
(Hensman et al., 2015b; Shi et al., 2020; Tran et al., 2020). There is hence a need to improve
the computational cost of sparse GP approximations

:::
GPs, without losing expressive power. One

work addressing this task is that of Cheng & Boots (2017). In that work it is proposed to
decouple the process of inferring the posterior mean and variance, allowing to consider a different
number of inducing points for each one. Importantly, the computation of the mean achieves

::
has

a linear complexity, which allows to have more expressive posterior means at a lower cost. A
disadvantage is that such an approach suffers from optimization difficulties. An alternative decoupled
parameterization that adopts an orthogonal basis in the mean is proposed in ?

::::::::::::::::::::
Salimbeni et al. (2018a)

. Such a method can be considered as a specific case of ?
:::::::::::::
Shi et al. (2020). There, it is introduced

::
the

::::::
authors

::::::::
introduce a new interpretation of sparse variational approximations for GP using inducing

points. For this, the GP is decomposed as a sum of two independent processes. This leads to
tighter lower bounds on the marginal likelihood and new inference algorithms that allow to consider
:::::::::
considering

:
two different sets of inducing points. This enables including

::::
using

:
more inducing points

at a linear cost, instead of cubic.

Our work is closer to Tran et al. (2020). There, it
:
a
::::::::::
mechanism

:
is also described a mechanism to

consider input dependent inducing points in the context of sparse GP. However, the difference is
significant. In particular, in Tran et al. (2020) a very large set of inducing points M is considered
initially. Then, for each input point, a subset of these inducing points is considered. This subset is
obtained by finding theK �M nearest inducing points to the current data instance xi. This approach
significantly reduces the cost of the standard sparse GP described in Titsias (2009). However, it suffers
from the difficulty of having to find the K nearest neighbors for each point in a mini-batch, which is
very expensive. Therefore, the final cost is higher than what would be thought initially. Our method
is expected to be better because of the extra flexibility by the non-linear relation between xi and Z
given by the DNN. Furthermore, the DNN is expected to make a better use of GPU acceleration.

Another method to improve the computational
::::::
training

:
cost of GP is described in Wilson & Nickisch

(2015); Evans & Nair (2018); Gardner et al. (2018). It consists in placing the inducing points on
a grid. This allows to perform fast computation exploiting the inducing points structure. One can
easily consider values for M that are even larger than N . However, to get such benefits the inducing
points need to be fixed due to the structure constraints. This may be detrimental in high-dimensional
problems.

Instead of using inducing points, there are some works that scale GPs by approximating the posterior
GP process using an inference network (Shi et al., 2019; Sun et al., 2019). An inference network
receives some random noise and outputs function values for each input. Particular examples include
among others Bayesian DNNs. Inference networks are expected to lead to flexible stochastic processes.
However, it is difficult to enforce that the approximate posterior process looks similar to the prior
GP in regions where there is no data. For this, approximate inference is carried out on a finite
subset of points chosen at random from the input space. This is expected to lead to poor results in
high-dimensional spaces. Moreover, another problem of using an inference network is that tuning the
prior GP hyper-parameters is challenging and has often to be done in a separate step.

Amortized variational inference (Shu et al., 2018) has also been explored in the context of GPs in ?
:::::::::::::::::::::::::
Villacampa-Calvo et al. (2021). There, input noise is considered in a multi-class learning problem
and the

:::::::::::
performance

::
of

:::
the

::::
final

:::::
model

::
is

::::::::
improved

:::
by

:::::::::
amortizing

:::
the variational parameters of the

posterior approximation for the noiseless inputsare amortized ,
:
using a DNN receiving

:::
that

::::::
receives

both xi and yi. Amortized VI improves the performance of the final model.

Finally, our method also relates to transductive inference in the sense that it uses test
point information,

:::::
Other

::::::
sparse

:::::
GPs

::
in

::::
the

::::::::
literature

:::
do

::::
not

:::::
fully

::::
rely

:::
on

::::::::
inducing

:::::::
points,

i.e
::
.g., via the DNN, to find the parameters of q and the inducing points, to compute the

predictions
::
(Tresp, 2000; Snelson, 2007; Gramacy & Apley, 2015).

::::::::
These

::::::::::
techniques,

:::::::::
however,

6

Under review as a conference paper at ICLR 2022

:::::
cannot

::::
use,

:::
in

:::::::
general,

::::::::
stochastic

:::::::::::
optimization

::::
and

:::
do

:::
not

:::::
scale

::
to

::::
very

:::::
large

::::::::
problems.

::::::::
Finally,

:::::
sparse

:::::
GPs,

:::
and

::::
our

:::::::
method,

::::
can

::::::
benefit

:::::
from

::::::::::::::
natural-gradients

:::::::::::::::::::::
(Salimbeni et al., 2018b).

::::::
They

::::
could

:::::
result

::
in
:::
an

:::::::::
orthogonal

:::::::::::
improvement.

5 EXPERIMENTS

We evaluate the performance of the proposed method, to which we refer to as Input Dependent Sparse
GP (IDSGP). We consider both regression and binary classification with a probit likelihood. In this
later case, we approximate the expectation in the lower bound using 1-dimensional quadrature, as
in Hensman et al. (2015a). An implementation

:::
The

::::
code

:
of the proposed method in Tensorflow 2.0

::::::::::::::::
(Abadi et al., 2015) is provided in the supplementary material(Abadi et al., 2015). In the experiments
we compare results with the standard variational sparse GP (Titsias, 2009). We refer to such a method
as VSGP. We also compare results with two of the methods described in Section 4. Namely, the sparse
within sparse GP (SWSGP) described in Tran et al. (2020), and the sparse GP based on an orthogonal
decomposition that allows to consider two different sets of inducing points (?)

::::::::::::::
(Shi et al., 2020). We

refer to this last method as SOLVE. All methods use a Matérn 3/2 covariance function (Rasmussen
& Williams, 2006). The DNN architecture employed in IDSGP is described in detail in Appendix B.

5.1 TOY PROBLEMS

We show the posterior mean and standard deviation of each method on a 1-dimensional regression
problem (Snelson & Ghahramani, 2006). We compare results with a full GP. Figure 2 shows the
results obtained, including the learned locations of the inducing points. In the case of IDSGP we
show the locations of the inducing points for the point represented with a star at x = 3.9. The number
of inducing points, for each method, are indicated in the figure’s caption. We consider a small number
of inducing points to study the benefits of having input dependent inducing points. IDSGP uses
smaller number of inducing points than the other methods. The figure shows that, in regions with
observed data, IDSGP’s predictions look closer to those of the full GP. Appendix D.1 has results
for an increasing number of inducing points M . They show that as M increases IDSGP becomes
more similar to the full GP. Figure 3 shows the decision boundary of each method on the banana
classification dataset (Hensman et al., 2013). IDSGP produces the most accurate boundaries.

IDSGPVSGP

SWSGP SOLVE

Figure 2: Toy data set with N = 200 points. Initial and final locations for the inducing points are
shown on the top and bottom of each figure. In IDSGP, the inducing points correspond to the point
drawn with star. The posterior mean and standard deviation of full GP are shown with blue and brown
dashed lines, respectively. VSGP method with M = 4. IDSGP with M = 2 and a neural network
with 2 layers with 50 units. SWSGP with M = 4 and 2 neighbors. SOLVE with M1 =M2 = 2.

7

Under review as a conference paper at ICLR 2022

VSGP IDSGP

SOLVESWSGP

Figure 3: Banana classification data set with N = 5300 points. The final location of inducing points
are shown inside the figures. For IDSGP, we show the location of inducing points related to the green
colored point. VSGP with M = 4. IDSGP with M = 2 and a neural network with 2 hidden layers
each contains 50 hidden nodes. SWSGP with M = 4 and 2 neighbors. SOLVE with M1 =M2 = 2.

5.2 EXPERIMENTS ON UCI DATASETS

We consider several regression and binary classification datasets extracted from the UCI repository
(Dua & Graff, 2017). The number of inducing points of IDSGP is set to M = 15. In SOLVE we
use M1 = 1024 and M2 = 1024 inducing points. In VSGP we set M = 1024. In SWSGP we set
M = 1024 and K = 50 neighbors. All the methods are trained using ADAM (Kingma & Ba, 2015)
with a mini-batch size of 100 and a learning rate of 0.01. In the classification setting we use the same
setup, but the number of inducing points of IDSGP is set to M = 3. All methods are trained on a
Tesla P100 GPU with 16GB of memory. On each dataset we use 80% of the data for training and the
rest for testing. We report results across 5 splits of the data since the datasets are already quite big.

The average negative test log-likelihood of each method on each dataset is displayed in Table 1, for
the regression datasets, and in Table 2, for the classification datasets, respectively. The average rank
of each method is also displayed at the last row of each table. The RMSE and prediction accuracy
results are similar to those displayed here. They can be found in Appendix D.3 and D.4. Each table
also shows the number of instances N and dimensions d of each dataset. We observe that in the
regression datasets, the proposed method, IDSGP, obtains best results in 6 out of the 8 datasets.
IDSGP also obtains the best average rank (closer to always performing best on each train / test data
split). This is remarkable given that IDSGP a much smaller number of inducing points (e.g., M = 15
for IDSGP vs. M = 1024 for VSGP). In classification, however, all the methods seem to perform
similar to each other and the differences between them are smaller. Again IDSGP uses here a smaller
number of M = 3 inducing points. Increasing M in IDSGP does not improve the results.
In these experiments we also measure the average training time per epoch, for each method. The
results corresponding to the UCI regression datasets are displayed in Table 3. The results for the UCI
classification datasets are found in Appendix D.4. They look very similar to ones reported here. We
observe that the fastest method in terms of training time is the proposed approach. Namely, IDSGP.
Nevertheless, the speed-up obtained is impaired by the overhead of having to compute the output
of the DNN and update its parameters. IDSGP also results in fastest prediction times than VSGP,
SOLVE or SWSGP. See Appendix D.3 and D.4 for further results showing average prediction times.

8

Under review as a conference paper at ICLR 2022

Table 1: Avg. neg. test log-likelihood values for the UCI regression datasets. The numbers in
parentheses are standard errors. Best mean values are highlighted in bold face.

N d VSGP SOLVE SWSGP IDSGP
Kin40k 32,000 8 -0.047 (0.003) -0.415 (0.006) -0.110 (0.007) -1.461 (0.019)
Protein 36,584 9 2.848 (0.002) 2.818 (0.003) 2.835 (0.002) 2.775 (0.007)
KeggDirected 42,730 19 -1.955 (0.013) -1.756 (0.073) -2.256 (0.012) -2.410 (0.012)
KEGGU 51,686 26 -2.344 (0.012) -2.531 (0.015) -2.396 (0.006) -2.908 (0.042)
3dRoad 347,899 3 3.691 (0.006) 3.726 (0.010) 3.879 (0.026) 3.399 (0.009)
Song 412,276 90 3.613 (0.003) 3.608 (0.002) 3.618 (0.004) 3.637 (0.002)
Buzz 466,600 77 6.272 (0.012) 6.297 (0.009) 6.137 (0.008) 6.317 (0.055)
HouseElectric 1,639,424 6 -1.737 (0.006) -1.743 (0.005) -1.711 (0.010) -1.774 (0.004)
Avg. Ranks 3.125 (0.125) 2.475 (0.156) 2.850 (0.150) 1.550 (0.172)
Inducing points 1024 1024 / 1024 (K=50) / 1024 15

Table 2: Avg. test neg. log-likelihood values for the UCI classification datasets. The numbers in
parentheses are standard errors. Best mean values are highlighted in bold face.

N d VSGP SOLVE SWSGP IDSGP
MagicGamma 15,216 10 0.308 (0.004) 0.314 (0.005) 0.371 (0.005) 0.311 (0.002)
DefaultOrCredit 24,000 30 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
NOMAO 27,572 174 0.113 (0.004) 0.103 (0.004) 0.134 (0.004) 0.121 (0.004)
BankMarketing 36,169 51 0.206 (0.001) 0.199 (0.001) 0.304 (0.021) 0.209 (0.002)
Miniboone 104,051 50 0.151 (0.001) 0.142 (0.001) 0.180 (0.007) 0.153 (0.001)
Skin 196,046 3 0.005 (0.000) 0.005 (0.000) 0.006 (0.001) 0.003 (0.000)
Crop 260,667 174 0.003 (0.000) 0.003 (0.000) 0.002 (0.000) 0.003 (0.000)
HTSensor 743,193 11 0.003 (0.001) 0.001 (0.000) 0.030 (0.009) 0.005 (0.001)
Avg. Ranks 2.425 (0.143) .775

::::
1.775 (0.158) 3.175 (0.182) 2.625 (0.155)

Inducing points 1024 1024 / 1024 (K=50) / 1024 3

5.3 LARGE SCALE DATASETS

A last set of experiments considers two very large datasets. The first dataset is the Airlines Delay
binary classification dataset, as described in ?

::::::::::::::::::::::::::::::::::::::
Hernández-Lobato & Hernández-Lobato (2016), with

N = 2, 127, 068 data instances and d = 8 attributes. The second dataset is the Yellow taxi dataset, as
described in Salimbeni & Deisenroth (2017), with N = 1 billion data-points and d = 9 attributes. In
each dataset we use a test set of 10, 000 instances chosen at random. The number of inducing points
is set to be equal to M = 50 in IDSGP. In the other methods, we use the same number of inducing
points as in the previous section. The mini-batch size is set to 100. Training is also performed on the
same GPU as in the previous section. The ADAM learning rate is set to 0.001.

The average negative test log-likelihood of each method on the test set is displayed in Figure 4, for
each dataset. We report performance in terms of the training time, in a log10 scale. The results
corresponding to the RMSE are very similar to the ones displayed here. They can be found in
Appendix D.5. We observe that the proposed method IDSGP performs best on each dataset. In
particularit is able to obtain ,

::
it
::::::
obtains

:
a better performance in a smaller computational time. We

believe this is a consequence of using a smaller number of inducing points, and also because of the
extra flexibility that the DNN provides for specifying the locations of the inducing points.

Table 3: Average training time per epoch across the 5 splits for the UCI regression datasets. The
numbers in parentheses are standard errors. Best mean values are highlighted.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric
VSGP 591.7 (0.58) 737.2 (1.16) 932.7 (2.56) 1128.1 (3.78) 7880.9 (66.79) 9777.7 (42.84) 9901.0 (146.07) 32784.2 (190.18)
SOLVE 1739.3 (0.45) 2015.9 (0.66) 2357.3 (1.70) 2909.1 (1.19) 19567.1 (10.34) 23196.6 (98.35) 25769.5 (20.12) 92214.9 (452.18)
SWSGP 875.7 (0.68) 1023.5 (0.35) 1220.6 (1.89) 1458.0 (5.57) 10203.4 (12.03) 12241.7 (62.01) 13371.5 (12.34) 46163.3 (427.23)
IDSGP 190.3 (0.75) 371.5 (1.25) 533.0 (1.73) 693.7 (5.77) 4070.1 (201.09) 4296.5 (25.03) 3640.4 (33.36) 16352.2 (90.15)

9

Under review as a conference paper at ICLR 2022

6.75

7.00

7.25

7.50

7.75

0 1 2 3 4 5
Training time in log10 scale

N
eg

at
iv

e
Te

st
 L

og
−

Li
ke

lih
oo

d

IDSGP

SOLVE

SWSGP

VSGP

Yellow Taxi

0.60

0.65

0 1 2 3 4 5
Training time in log10 scale

N
eg

at
iv

e
Te

st
 L

og
−

Li
ke

lih
oo

d

IDSGP

SOLVE

SWSGP

VSGP

Airplane Delays

Figure 4: Negative log-likelihood on the test set for each method as a function of the training time in
seconds, in log10 scale, for the Yellow taxi and the Airline delays datasets. Best seen in color

:
.

6 CONCLUSIONS

Gaussian processes (GPs) are flexible models for regression and classification. However, they have
a cost of O(N3)

::
per

::::::::
iteration with N the number of training points. Sparse approximations based

on M � N inducing points reduce such a cost to O(M3). A problem, however, is that in some
situations a large number of inducing points have to be used in practice, since they determine the
flexibility of the resulting approximation. There is hence a need to reduce their computational

::::::
training

cost.

We have proposed here input dependent sparse GP (IDSGP), a method that can improve the training
time and the flexibility of sparse GP approximations. IDSGP uses a deep neural network (DNN) to
output specific inducing points for each point at which the predictive distribution of the GP needs to be
computed. The DNN also outputs the parameters of the corresponding variational approximation on
the inducing values associated to the inducing points. IDSGP can be obtained under a formulation that
considers an implicit distribution for the input instance to the DNN. Importantly, such a formulation
is shown to keep intact the GP prior on the latent function values associated to the training points.

The extra flexibility provided by the DNN allows to significantly reduce the number M of inducing
points used in IDSGP. Such a model provides similar or better results than other sparse GP approx-
imations from the literature at a smaller computational

::::::
training

:
cost. IDSGP has been evaluated

on several regression and binary classification problems from the UCI repository. The results ob-
tained show that it improves the quality of the predictive distribution and reduces the computational
::::::
training

:
cost of sparse GP approximations. Better results are most of the times obtained in regression

problems. In classification problems, however, the performances obtained are similar to those of
the state-of-the-art, although the training and prediction times are always shorter. The scalability
of IDSGP is also illustrated on massive datasets for regression and binary classification of up to 1
billion points. There, IDSGP also obtains better results than alternative sparse GP approximations at
a smaller training cost.

10

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

The authors acknowledge to have read and commit to adhering to the ICLR Code of Ethics 1. We do
not see any direct potential negative societal impact, because this paper focuses on the development
of a new methodology. We believe these would be indirect through the particular application in which
the proposed method is used. As one of the main advantages of GPs is that they provide uncertainty
estimates associated with the predictions made, we think the potential harm of these models in society
could arise in applications when this uncertainty estimation is critical. For example, an AI system in
which the decisions made can have an influence on people’s life, such as autonomous vehicles or
automatic medical diagnosis tools.

REPRODUCIBILITY STATEMENT

Most of the details needed to reproduce this paper’s results are described in Section 5. In Appendix B
we give further details about the neural network architecture and initialization. We provide the code
used to run the experiments in the supplementary material, with implementation of our method and
the rest of methods of the experimental comparison. Regarding the pre-processing of the data, you
can find all the information needed to reproduce this step in Appendix A.

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org.

M. Bauer, M. van der Wilk, and C. E. Rasmussen. Understanding probabilistic sparse Gaussian
process approximations. In Advances in Neural Information Processing Systems 29, pp. 1533–1541.
2016.

C.-A. Cheng and B. Boots. Variational inference for Gaussian process models with linear complexity.
In Advances in Neural Information Processing Systems, pp. 51845194, 2017.

L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14:641–668, 2002.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

T. Evans and P. Nair. Scalable Gaussian processes with grid-structured eigenfunctions (GP-GRIEF).
In International Conference on Machine Learning, pp. 1417–1426, 2018.

Y. Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

J. Gardner, G. Pleiss, R. Wu, K. Weinberger, and A. G. Wilson. Product kernel interpolation for
scalable Gaussian processes. In International Conference on Artificial Intelligence and Statistics,
pp. 1407–1416, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

R. B. Gramacy and D. W. Apley. Local Gaussian process approximation for large computer experi-
ments. Journal of Computational and Graphical Statistics, 24:561–578, 2015.

R. Henao and O. Winther. Predictive active set selection methods for Gaussian processes. Neurocom-
puting, 80:10–18, 2012.

1https://iclr.cc/public/CodeOfEthics

11

http://tensorflow.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2022

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in
Artificial Intelligence, pp. 282290, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification.
In International Conference on Artificial Intelligence and Statistics, pp. 351–360, 2015a.

J. Hensman, A. G. Matthews, M. Filippone, and Z. Ghahramani. MCMC for variationally sparse
Gaussian processes. In Advances in Neural Information Processing Systems 28, pp. 1648–1656.
2015b.

D. Hernández-Lobato and J. M. Hernández-Lobato. Scalable Gaussian process classification via
expectation propagation. In Artificial Intelligence and Statistics, pp. 168–176, 2016.

D. P. Kingma and J. Ba. ADAM: a method for stochastic optimization. In Inrernational Conference
on Learning Representations, pp. 1–15, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative
vector machine. In Neural Information Processing Systems, pp. 609–616, 2003.

A. Naish-Guzman and S. Holden. The generalized FITC approximation. Advances in neural
information processing systems, 20:1057–1064, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2006.

H. Salimbeni and M. Deisenroth. Doubly stochastic variational inference for deep Gaussian processes.
In Advances in Neural Information Processing Systems, pp. 4588–4599, 2017.

H. Salimbeni, C.-A. Cheng, B. Boots, and M. Deisenroth. Orthogonally decoupled variational
Gaussian processes. In Neural Information Processing Systems, pp. 8725–8734, 2018a.

H. Salimbeni, S. Eleftheriadis, and J. Hensman. Natural gradients in practice: Non-conjugate
variational inference in Gaussian process models. In International Conference on Artificial
Intelligence and Statistics, pp. 689–697, 2018b.

M. W. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, pp. 254–261, 2003.

J. Shi, M. Titsias, and A. Mnih. Sparse orthogonal variational inference for Gaussian processes. In
International Conference on Artificial Intelligence and Statistics, pp. 1932–1942, 2020.

Jiaxin Shi, Mohammad Emtiyaz Khan, and Jun Zhu. Scalable training of inference networks for
gaussian-process models. In International Conference on Machine Learning, pp. 5758–5768.
PMLR, 2019.

R. Shu, H. H Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference regularization.
In Advances in Neural Information Processing Systems, pp. 4393–4402, 2018.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems, pp. 1257–1264, 2006.

Z. Snelson, E.and Ghahramani. Local and global sparse Gaussian process approximations. In
International Conference on Artificial Intelligence and Statistics, pp. 524–531, 2007.

12

Under review as a conference paper at ICLR 2022

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. In International Conference on Learning Representations, 2019.

M.K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In International
Conference on Artificial Intelligence and Statistics, pp. 567–574, 2009.

G.-L. Tran, D. Milios, P. Michiardi, and M. Filippone. Sparse within sparse Gaussian processes using
neighbor information, 2020. 2011.05041 arXiv stat.ML.

V. Tresp. A Bayesian committee machine. Neural Computation, 12:2719–2741, 2000.

C. Villacampa-Calvo, B. Zaldı́var, E. C. Garrido-Merchán, and D. Hernández-Lobato. Multi-class
gaussian process classification with noisy inputs. Journal of Machine Learning Research, 22:1–52,
2021.

A. G. Wilson and H. Nickisch. Kernel interpolation for scalable structured Gaussian processes
(kiss-gp). In International Conference on International Conference on Machine Learning, pp.
17751784, 2015.

A DATASETS PRE-PROCESSING

All the datasets are publicly available. The UCI repository datasets can be down-
loaded from the repository (Dua & Graff, 2017). Yellow taxi dataset was prepro-
cessed following Salimbeni & Deisenroth (2017) and downloaded from https://www1.
nyc.gov/site/tlc/about/tlc-trip-record-data.page, where we have used data
records from year 2015. Similarly, the Airlines Delay dataset was preprocessed fol-
lowing ?

:::::::::::::::::::::::::::::::::::::::
Hernández-Lobato & Hernández-Lobato (2016) and was downloaded from https://

community.amstat.org/jointscsg-section/dataexpo/dataexpo2009, keeping
only the records from January 2008 to April 2008. All datasets have been standardized using scikit-
learn’s built-int StandardScaler class (Pedregosa et al., 2011), which removes the mean and scales to
unit variance.

B NEURAL NETWORK ARCHITECTURE

About the choice of architecture for the DNN we have tried to keep it small in order to take more
advantage of the computational gain of the amortized scheme. In particular, we used a 2 hidden-layer
with 50 hidden units network for the toy problems in Section 5.1, a 1 layer with 50 hidden units
network for the UCI datasets in Section 5.2 and a 2 layer with 25 hidden units for the large scale
datasets in Section 5.3. We used ReLu activation functions. Keeping the network small reduces the
number of parameters to optimize making the optimization process easier. In all problems we are
using fully-connected layers with batch normalization and no skip layers. Regarding the initialization
of the weights, all were initialized using the Glorot initialization (Glorot & Bengio, 2010). In our
experiments we did not exhaustively explore the DNN architecture. This choice of architecture and
initialization was based on some preliminary tests done before running the experiments. This does
not mean that this is the best possible configuration. We did not optimize the architecture of the
neural network. In practical applications, we suggest to run some preliminary tests in order to choose
a configuration that performs well. The main suggestion, however, is to keep the network small as the
input dependence will make the model expressive enough to still get very good results.

C CHOOSING THE NUMBER OF INDUCING POINTS

We have observed that our proposed method IDSGP performs well in general with a fairly small
number of inducing points, much smaller than the number of inducing points used in the other
methods. Namely, SOLVE, VSGP and SWSGP. This is probably related to the extra flexibility of
having input-dependent inducing points in IDSGP. In very large datasets we recommend using around
M = 50 inducing points. In medium-size regression datasets M = 15 inducing points seem enough.
In medium-size binary classification datasets, however, a smaller number of inducing points is enough
M = 3. We believe the reason is that binary classification problems require less complicated latent

13

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

Under review as a conference paper at ICLR 2022

functions. We did not optimize the number of inducing points. In practical applications, we suggest
to run some preliminary tests in order to choose a number of inducing points that performs well.

C.1
:::::::::::::::
KL-DIVERGENCE

::::::::::::::
MINIMIZATION

::
In

:::
this

:::::::
section

:::
we

:::::
show

::::
that

::::::::::
maximizing

:::
(4)

::::::::::
effectively

:::::::::
minimizes

:::
the

:::::::::::::
KL-divergence

:::::::
between

::::::::
q(x̃, f ,u)

:::
and

:::::::::::
p(x̃, f ,u|y).

::
In

:::::::::
particular,

KL(q(x̃, f ,u)|p(x̃, f ,u|y))
::::::::::::::::::::::

= −
∫
q(x̃, f ,u) log

p(y, x̃, f ,u)

q(x̃, f ,u)
d

::::::::::::::::::::::::::::

x
:
dfdu+ const.
:::::::::::

= −
∫
q(x̃, f ,u) log

p(y|f)p(f |u)p(u|x̃)p(x̃)
p(f |u)q(u|x̃)p(x̃)

d

::::::::::::::::::::::::::::::::::::::

x
:
dfdu+ const.
:::::::::::

= −
∫
q(x̃, f ,u) log

p(y|f)p(u|x̃)
q(u|x̃)

d

:::::::::::::::::::::::::::::

x
:
dfdu+ const.
:::::::::::

= −
∫
q(f , x̃,u) log p(y|f)dfd

:::::::::::::::::::::::::

x
:
du
::

+

∫
q(u, x̃) log

p(u|x̃)
q(u|x̃)

d

::::::::::::::::::::::

x
:
du+ const.
:::::::::

= −Eq[log p(y|f)] + Ep(x̃)[KL(q(u|x̃)|p(u|x̃))]
:::::::::::::::::::::::::::::::::::::::

= −L+ const. ,
:::::::::::::

(7)

:::::
where

:::
we

::::
have

::::
used

::::
that

:::
the

::::::::
posterior

:
is
:::::

equal
:::
to

:::
the

::::
joint

::::::::::
p(x̃, f ,u,y)

:::::::
divided

::
by

::
a
:::::::::::
normalization

:::::::
constant,

::::
i.e.,

:::
the

::::::::
marginal

::::::::::
likelihood.

::::::::::
Moreover,

::
L

::
is
:::::::

simply
:::
the

:::::
lower

::::::
bound

:::::::
defined

::
in

::::
(4).

::::::::
Therefore,

:::::::::::
maximizing

::
L
::::::::::

effectively
:::::
leads

::
to

:::
the

::::::::::::
minimization

:::
of

:::
the

:::::::::::::
KL-divergence

:::::::
between

::::::::
q(x̃, f ,u)

:::
and

:::::::::::
p(x̃, f ,u|y).

D EXTRA EXPERIMENTAL RESULTS

In this section, we include some extra results that do not fit in the main manuscript. Namely, the
RMSE in the test set results and prediction times for the UCI regression datasets, and the accuracy in
the test set, training and prediction times for the UCI classification datasets. In both cases, the setup
is the same as described in Section 5 and the results are similar that the ones obtained in terms of
the negative test log likelihood and training times in that section. Finally, we include similar plots to
those in Section 5.3 but in terms of the test RMSE for the Yellow Taxi dataset and in terms of the test
classification error for the Airline Delays dataset.

D.1 TOY REGRESSION DATASETS

Our method looks more and more similar to the full GP as number of inducing points M increases.
However, with a small number of inducing points, it gives similar results to those of the full GP and
similar to the results obtained when more inducing points are considered, which does not happen in
the other methods. This is probably due to the extra flexibility of the neural network. The figures
below (Figures 6 to 8) show the results of each method on the toy regression problem as we increase
the number of inducing points M . For M = 128 IDSGP gives almost the same results as VSGP.

14

Under review as a conference paper at ICLR 2022

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 2)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 4)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 8)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 16)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 32)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 64)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

2 0 2 4 6 8 10

2

1

0

1

2

IDSGP (number of inducing points for each point = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points for X
point X

Figure 5: Toy regression example by varying number of inducing points Mx =
{2, 4, 8, 16, 32, 64, 128} with location of initial and final inducing points for an arbitrary selected
point x from training sets. The mean and standard deviation of full GP prediction are shown with
dashed blue and brown lines, respectively. The blue lines and the dashed red lines are the mean and
standard deviation of IDSGP.

15

Under review as a conference paper at ICLR 2022

2 0 2 4 6 8 10

3

2

1

0

1

2

SOLVE (inducing points U = 2, inducing points V = 2)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

3

2

1

0

1

2

SOLVE (inducing points U = 4, inducing points V = 4)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

2

1

0

1

2

SOLVE (inducing points U = 8, inducing points V = 8)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

2

1

0

1

2

SOLVE (inducing points U = 16, inducing points V = 16)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

2

1

0

1

2

SOLVE (inducing points U = 32, inducing points V = 32)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

2

1

0

1

2

SOLVE (inducing points U = 64, inducing points V = 64)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

2 0 2 4 6 8 10

2

1

0

1

2

SOLVE (inducing points U = 128, inducing points V = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points U
Inducing points V

Figure 6: Toy regression example by varying number of inducing points Mu,Mv =
{2, 4, 8, 16, 32, 64, 128} with location of initial and final inducing points. The mean and standard
deviation of full GP prediction are shown with dashed blue and brown lines, respectively. The blue
lines and the dashed red lines are the mean and standard deviation of SOLVE.

16

Under review as a conference paper at ICLR 2022

2 0 2 4 6 8 10

3

2

1

0

1

2

VSGP (number of inducing points = 2)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10
3

2

1

0

1

2

VSGP (number of inducing points = 4)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

VSGP (number of inducing points = 8)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

VSGP (number of inducing points = 16)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

VSGP (number of inducing points = 32)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

VSGP (number of inducing points = 64)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

VSGP (number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

Figure 7: Toy regression example by varying number of inducing points M =
{2, 4, 8, 16, 32, 64, 128} with location of initial and final inducing points. The mean and standard
deviation of full GP prediction are shown with dashed blue and brown lines, respectively. The blue
lines and the dashed red lines are the mean and standard deviation of VSGP.

17

Under review as a conference paper at ICLR 2022

2 0 2 4 6 8 10

3

2

1

0

1

2

SWSGP (number of closest inducing points = 2, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10
3

2

1

0

1

2

SWSGP (number of closest inducing points = 4, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

3

2

1

0

1

2

3

SWSGP (number of closest inducing points = 8, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10
3

2

1

0

1

2

SWSGP (number of closest inducing points = 16, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

SWSGP (number of closest inducing points = 32, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

SWSGP (number of closest inducing points = 64, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

2 0 2 4 6 8 10

2

1

0

1

2

SWSGP (number of closest inducing points = 128, total number of inducing points = 128)

mean prediction
mean GP prediction
Standard deviation
Standard deviation GP
Training data
Initial inducing points
Inducing points

Figure 8: Toy regression example by varying number of the neighbor inducing points Mc =
{2, 4, 8, 16, 32, 64, 128} and total number of inducing points M = 128, with location of initial and
final inducing points. The mean and standard deviation of full GP prediction are shown with dashed
blue and brown lines, respectively. The blue lines and the dashed red lines are the mean and standard
deviation of SWSGP.

D.2
::::::
EXTRA

::::::::
RESULTS

::::
FOR

::::
THE

::::
TOY

:::::::::::
REGRESSION

::::::::::::
EXPERIMENT

::::
Here

:::
we

::::
run

:::
the

:::
1D

::::
toy

:::::::::
regression

::::::::::
experiment

:::
of

::::::
Section

::::
5.1

:::::
using

::::
the

::::::::::
closed-form

:::::::
solution

:::::::
approach

:::
of

::::::::::::
Titsias (2009)

::
for

:::::::
finding

::
q.

::::::
More

::::::::
precisely,

::::
this

::::::
method

::
is
:::::::

exactly
:::
the

:::::
same

::
as

:::
the

:::::
SVGP

:::::::
method

:::
we

:::::::
compare

::::::
results

::::
with,

::::
but

:::::
where

:::
the

:::::::::::
approximate

:::::::::
distribution

::
q
::
is

:::
not

::::::::
optimized

:
at
::::

all.
::::

The
::::::

reason
::::

for
:::
this

::
is
::::

that
::

it
::
is
::::::::

possible
::
to

::::
find

::
a

::::::::::
closed-form

:::::::
solution

::::
for

::
q.

:::::::::
However

:::
and

::::::::::
importantly,

:::
the

::::::::
resulting

:::::::
method

::::
does

:::
not

:::::
allow

:::
for

::::::::::
mini-batch

:::::::
training.

:::::
Since

:::::::
SVGP*

::::
does

:::
not

:::::
allow

:::
for

::::::::
stochastic

::::::::::::
optimization,

:::
the

:::::
batch

::::
size

::
is

::
set

:::::
equal

:::
to

:::
the

:::::::
number

::
of

:::::::
training

:::::
points

:::::::::
(N = 200).

:::::::
Figure

:
9
::::::
shows

:::
the

::
fit

::::::::
obtained

:::
for

::
an

:::::::::
increasing

:::::::
number

::
of

::::::::
inducing

:::::
points

:::
M .

::::
The

:::::
results

:::
are

::::
very

::::::
similar

::
to

:::
the

::::
ones

:::
of

:::::
SVGP

::
in

::::::
Figure

::
7.

:

18

Under review as a conference paper at ICLR 2022

Figure 9:
:::
Toy

:::::::::::
regression

:::::::::
example

::::
by

:::::::::
varying

:::::::::
number

::::
of

:::::::::
inducing

:::::::
points

::::::::::::::::::::::::
M = {2, 4, 8, 16, 32, 64, 128}

:::::
with

:::::::
location

:::
of

::::::
initial

::::
and

:::::
final

::::::::
inducing

::::::
points.

::::::
The

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

:::
of

::::
full

:::
GP

::::::::::
prediction

:::
are

::::::
shown

:::::
with

:::::::
dashed

::::
blue

::::
and

::::::
brown

::::::
lines,

::::::::::
respectively.

::::
The

::::
blue

::::
lines

:::
and

:::
the

::::::
dashed

:::
red

::::
lines

:::
are

:::
the

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
of

:::::::
VSGP*.

D.3 UCI REGRESSION DATASETS

Table 4: Test Root Mean Squared Error (RMSE) values for the UCI regression datasets. The numbers
in parentheses are standard errors. Best mean values are highlighted.

N d VSGP SOLVE SWSGP IDSGP
Kin40k 32,000 8 0.198 (0.002) 0.157 (0.001) 0.215 (0.002) 0.050 (0.002)
Protein 36,584 9 4.161 (0.011) 4.062 (0.011) 4.133 (0.008) 3.756 (0.019)
KeggDirected 42,730 19 0.032 (0.001) 0.079 (0.032) 0.024 (0.000) 0.022 (0.001)
KEGGU 51,686 26 0.024 (0.000) 0.020 (0.000) 0.022 (0.000) 0.014 (0.000)
3dRoad 347,899 3 9.641 (0.063) 10.020 (0.095) 11.726 (0.327) 7.250 (0.069)
Song 412,276 90 8.966 (0.022) 8.925 (0.020) 9.013 (0.029) 9.068 (0.011)
Buzz 466,600 77 175.076 (15.021) 173.352 (14.957) 160.744 (13.467) 166.784 (18.040)
HouseElectric 1,639,424 6 0.035 (0.000) 0.034 (0.000) 0.036 (0.001) 0.032 (0.000)
Avg. Ranks 3.075 (0.126) 2.400 (0.138) 3.025 (0.170) 1.500 (0.151)
Inducing points 1024 1024 / 1024 (K=50) / 1024 15

19

Under review as a conference paper at ICLR 2022

Table 5: Average prediction time per epoch across the 5 splits for the UCI regression datasets. The
numbers in parentheses are standard errors. Best mean values are highlighted.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric
VSGP 0.9(0.00) 1.1(0.0) 1.4(0.01) 1.7(0.01) 11.6(0.07) 14.5(0.08) 18.0(0.08) 48.3(0.12)
SOLVE 2.4(0.00) 2.8(0.0) 3.2(0.00) 4.0(0.00) 27.0(0.04) 31.8(0.19) 37.0(0.03) 127.7(0.43)
SWSGP 1.3(0.00) 1.5(0.0) 1.8(0.01) 2.1(0.01) 14.8(0.03) 17.6(0.02) 21.3(0.10) 66.2(0.88)
IDSGP 0.3(0.00) 0.5(0.0) 0.7(0.00) 1.0(0.02) 5.7(0.26) 5.6(0.05) 8.1(0.08) 22.1(0.14)

D.4 UCI CLASSIFICATION DATASETS

Table 6: Test Accuracy values for the UCI classification datasets. The numbers in parentheses are
standard errors. Best mean values are highlighted.

N d VSGP SOLVE SWSGP IDSGP
MagicGamma 15,216 10 0.876 (0.001) 0.877 (0.002) 0.867 (0.002) 0.877 (0.002)
DefaultOrCredit 24,000 30 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NOMAO 27,572 174 0.956 (0.002) 0.960 (0.001) 0.961 (0.001) 0.955 (0.001)
BankMarketing 36,169 51 0.906 (0.001) 0.907 (0.001) 0.897 (0.001) 0.905 (0.001)
Miniboone 104,051 50 0.941 (0.001) 0.945 (0.001) 0.938 (0.000) 0.937 (0.001)
Skin 196,046 3 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000)
Crop 260,667 174 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000)
HTSensor 743,193 11 0.999 (0.000) 1.000 (0.000) 0.989 (0.003) 0.999 (0.000)
Avg. Ranks 2.475 (0.127) 1.975 (0.152) 2.900 (0.187) 2.650 (0.168)
Inducing points 1024 1024 / 1024 (K=50) / 1024 3

Table 7: Average training time per epoch across the 5 splits for the UCI classification datasets. The
numbers in parentheses are standard errors. Best mean values are highlighted.

Magic DefaultOrCredit NOMAO BankMarket Miniboone Skin Crop HTSensor
VSGP 3105(459) 4759(516) 4445(549) 6231(862) 18447(1279) 37835(7065) 49962(9292) 115463(17511)
SOLVE 5154(1061) 7554(1039) 6718(1028) 8949(1635) 37022(7902) 64606(13314) 88819(18864) 168709(21194)
SWSGP 1547(145) 2354(182) 2728(188) 3682(351) 10040(347) 20283(2796) 21770(3038) 67687(5880)
IDSGP 1143(100) 1293(90) 2026(94) 2987(354) 7654(134) 15700(1918) 21378(2561) 53895(5652)

Table 8: Average prediction time per epoch across the 5 splits for the UCI classification datasets. The
numbers in parentheses are standard errors. Best mean values are highlighted.

MagicGamma DefaultOrCredit NOMAO BankMarketing Miniboone Skin Crop HTSensor
VSGP 3.6(0.56) 4.1(0.59) 4.4(0.74) 9.5(4.39) 17.9(1.84) 49.7(11.15) 58.7(12.82) 139.7(41.67)
SOLVE 4.0(0.85) 5.4(0.73) 3.4(0.76) 4.9(1.24) 49.2(17.83) 48.8(16.73) 86.8(36.26) 93.5(15.73)
SWSGP 3.0(0.43) 3.9(0.38) 4.3(0.51) 5.4(0.72) 16.4(1.82) 36.0(8.00) 33.9(6.25) 88.4(9.16)
IDSGP 2.5(0.24) 2.5(0.21) 3.5(0.39) 4.8(0.54) 13.9(0.75) 26.1(4.92) 37.5(4.96) 83.4(8.23)

D.5 LARGE SCALE DATASETS

200

300

400

500

0 1 2 3 4 5
Training time in log10 scale

Te
st

 R
M

S
E

IDSGP

SOLVE

SWSGP

VSGP

Yellow Taxi

0.30

0.35

0.40

0.45

0 1 2 3 4 5
Training time in log10 scale

Te
st

 E
rr

or

IDSGP

SOLVE

SWSGP

VSGP

Airplane Delays

Figure 10: (left) Test RMSE for each method as a function of the training time in seconds, in log10
scale, for the Yellow taxi dataset. (right) Predictoin

::::::::
Prediction error on the test set for each method

as a function of the training time in seconds, in log10 scale, for the Airlines Delays dataset. Best seen
in color

20

Under review as a conference paper at ICLR 2022

D.6
::::::::
NEURAL

:::::::::
NETWORK

::::::::
TRAINED

::::
VIA

:::::::::
MAXIMUM

:::::::::::
LIKELIHOOD

::
In

:::
this

:::::::::
subsection

:::
we

::::
show

:::::
extra

:::::::::
experiment

::::::
results

::
on

:::
the

::::
UCI

::::::
datasets

:::::
when

:::::
using

:
a
::::::
neural

:::::::
network

::::::
trained

::
via

:::::::::
maximum

:::::::::
likelihood.

::::
The

::::::::::
architecture

::
of

:::
the

:::::
neural

:::::::
network

::
is

:::
the

::::
same

::
as

:::
the

::::
one

::
of

::
the

:::::::
network

::::
used

::
in

:::
the

:::::::
proposed

:::::::
method

::::::
IDSGP.

::::::::
Training

:
is
:::::
done

::::
using

:::::::
ADAM.

::::
The

:::::::
learning

:::
rate

::::
used

:
is
::::::
0.001.

:::
The

::::::::::
mini-batch

:::
size

::
is

:::
the

::::
same

:::
for

:::
the

::::::::
GP-based

::::::::
methods.

::
In

:::::::::
regression,

:::
we

:::
use

:::
the

:::::
neural

:::::::
network

::
to

::::::
predict

:::
the

:::::
mean

:::
and

::::::::
variance

::
of

:::
the

::::::::
Gaussian

::::::::
predictive

:::::::::::
distribution.

::
In

::::::::::::
classification,

::
we

::::
use

:
a
::::::::

sigmoid
::::::::
activation

::::::::
function.

::::
The

:::::::
average

::::
test

:::::::
negative

::::::::::::
log-likelihood

::::::::
obtained

::
in

::::
each

:::::::
problem

::
is

:::::
shown

::
in
:::::

Table
::

9
::::
and

:::::
Table

:::
10.

::::
The

:::::
results

:::
are

:::::::::::
high-lighted

::
in

::::::::
bold-face

:::::
when

:::
the

:::
NN

:::::::
performs

::::::
worse

::::
than

:::
any

:::::
other

:::
GP

:::::
based

::::::::
method.

::::
The

:::::
tables

:::::
show

::::
that,

::
in

:::
the

::::
case

:::
of

::::::::
regression

::::::::
problems,

::::
most

:::
of

:::
the

::::
times

:::
the

::::::
neural

:::::::
network

::::::::
performs

:::::
worse

::::
than

:::
the

:::
GP

:::::
based

::::::::
methods.

:::
In

::
the

:::
case

:::
of

::::::::::
classification

:::::::::
problems,

:::
the

::::::::::
performance

::
of
:::
the

::::::
neural

:::::::
network

::
is

:::::
worse

::
in

:::::
those

:::::::
problems

::
in

:::::
which

:::
the

::::
error

::
is

::::::
higher

::::::::
according

::
to

:::::
Table

::
6.

:::
By

:::::::
contrast,

::
in

:::::
those

::::::::
problems

::
in

:::::
which

:::
the

::::::::
accuracy

:
is
::::::
almost

:::::
equal

::
to

::::::
100%,

::::
there

:::
are

:::
no

:::::::::
differences

::
or

::
it

:::::::
performs

:::::::
slightly

:::::
better.

:

Table 9:
::::
Avg.

::::
neg.

:::
test

::::::::::::
log-likelihood

::::::
values

:::
for

:::
the

:::
UCI

:::::::::
regression

:::::::
datasets

:::
for

:::
the

:::::
neural

::::::::
network.

:::
The

:::::::
numbers

:::
in

:::::::::
parentheses

:::
are

::::::::
standard

:::::
errors.

::::::
Kin40k

::::::
Protein

::::::::::
KeggDirected

:::::::
KEGGU

::::::
3dRoad

::::
Song

::::
Buzz

::::::::::
HouseElectric

0.099(0.03) 2.794(0.02)
:::::::::

-2.407(0.14)
:::::::::
-5.124(0.18) 3.661(0.02) 3.363(0.01) 27.840(33.44)

:::::::::
-2.110(0.03)

Table 10:
::::
Avg.

::::
neg.

:::::
test

::::::::::::
log-likelihood

:::::
values

:::
in

:::
the

::::
UCI

:::::::::::
classification

:::::::
datasets

::::
for

:::
the

:::::
neural

:::::::
network.

::::
The

:::::::
numbers

::
in

::::::::::
parentheses

:::
are

:::::::
standard

::::::
errors.

::::::::::
MagicGamma

: ::::::::::::
DefaultOrCredit

::::::
NOMAO

: :::::::::::
BankMarketing

: ::::::::
Miniboone

:::
Skin

::::
Crop

:::::::
HTSensor

0.315(0.02)
::::::::
0.000(0.00)

:
0.119(0.01) 0.232(0.00) 0.152(0.00)

::::::::
0.002(0.00)

: ::::::::
0.002(0.00)

: ::::::::
0.000(0.00)

21

	Introduction
	Gaussian processes
	Sparse variational Gaussian processes

	Input dependent sparse GPs
	Lower bound on the log-marginal likelihood
	Amortized variational inference and deep neural networks
	Predictions and training cost

	Related work
	Experiments
	Toy problems
	Experiments on UCI datasets
	Large scale datasets

	Conclusions
	Datasets pre-processing
	Neural Network Architecture
	Choosing the Number of Inducing Points
	KL-Divergence Minimization

	Extra experimental results
	Toy regression datasets
	Extra results for the toy regression experiment
	UCI regression datasets
	UCI classification datasets
	Large scale datasets
	Neural network trained via maximum likelihood

