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ABSTRACT

Many methods in differentially private model training rely on computing the sim-
ilarity between a query point (such as public or synthetic data) and private data.
We abstract out this common subroutine and study the following fundamental al-
gorithmic problem: Given a similarity function f and a large high-dimensional
private dataset X C R<, output a differentially private (DP) data structure which
approximates )\ f(z,y) for any query y. We consider the cases where f is a

kernel function, such as f(z,y) = e~lle=vlz/o? (also known as DP kernel density
estimation), or a distance function such as f(x,y) = ||z — yl|2, among others.
Our theoretical results improve upon prior work and give better privacy-utility
trade-offs as well as faster query times for a wide range of kernels and dis-
tance functions. The unifying approach behind our results is leveraging ‘low-
dimensional structures’ present in the specific functions f that we study, using
tools such as provable dimensionality reduction, approximation theory, and one-
dimensional decomposition of the functions. Our algorithms empirically exhibit
improved query times and accuracy over prior state of the art. We also present
an application to DP classification. Our experiments demonstrate that the simple
methodology of classifying based on average similarity is orders of magnitude
faster than prior DP-SGD based approaches for comparable accuracy.

1 INTRODUCTION

It is evident that privacy is an important and often non-negotiable requirement in machine learning
pipelines. In response, the rigorous framework of differential privacy (DP) has been adopted as the
de-facto standard for understanding and alleviating privacy concerns (Dwork et al., 2006). This is
increasingly relevant as non-private ML models have been shown to profusely leak sensitive user
information (Fredrikson et al., 2015; Carlini et al., 2019; Chen et al., 2020a; Carlini et al., 2021;
2022; 2023a; Haim et al., 2022; Tramer et al., 2022; Carlini et al., 2023b). Many methodologies have
been proposed in hopes of balancing DP requirements with retaining good downstream performance
of ML models. Examples include generating public synthetic data closely resembling the private
dataset at hand (and training on it) (Lin et al., 2020; Li et al., 2021; Yu et al., 2021; Yin et al.,
2022; Yue et al., 2022; Lin et al., 2023), or selecting similar public examples for pre-training ML
models (Hou et al., 2023; Yu et al., 2023). Furthermore, in the popular DP-SGD method, it is also
widely understood that the use of public data bearing similarity to private datasets vastly improves
downstream performance (Yu et al., 2020; 2021; Yin et al., 2022; Li et al., 2021; De et al., 2022).
To list some concrete examples, Hou et al. (2023) use a variant of the Fréchet distance to compute
similarities of private and public data, Yu et al. (2023) use a trained ML model to compute the
similarity between public and private data, and Lin et al. (2023) use a voting scheme based on the
{5 distances between (embeddings of) private and synthetic data to select synthetic representatives.

Common among such works is the need to compute similarities to a private dataset. While this is
explicit in examples such as (Hou et al., 2023; Yu et al., 2023; Lin et al., 2023), it is also implicit in
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many other works which employ the inductive bias that pre-training on similar public data leads to
better DP model performance (Yu et al., 2020; Li et al., 2021; De et al., 2022; Yin et al., 2022).

We study the abstraction of this key subroutine and consider the following fundamental algorithmic
problem: given a private dataset X C R and a similarity function f(z,y) : R x R? — R, such
as a kernel or distance function, output a private data structure Dx : R¢ — R which approximates
the map y — > f(z,y). We additionally require that Dx be always private with respect to
X, regardless of the number of times it is queried. This problem has garnered much recent interest
due to its strong motivation (Hall et al., 2013; Huang & Roth, 2014; Wang et al., 2016; Alda &
Rubinstein, 2017; Coleman & Shrivastava, 2021; Wagner et al., 2023). It is a meaningful abstrac-
tion since similarities between (neural network based) embeddings can meaningfully represent rich
relationships between objects such as images or text (Radford et al., 2021). Indeed, beyond training
private models, there is additional motivation from performing downstream tasks such as private
classification or clustering, where a natural methodology is to classify a query as the class which it
has the highest similarity to.

In addition to the privacy angle, computing similarity to a dataset is a fundamental and well-studied

problem in its own right. In the case where f is a kernel such as f(z,y) = e*”‘”’y”””z, this is
known as kernel density estimation (KDE), whose non-private setting has been extensively studied
(Backurs et al., 2018; 2019; Charikar et al., 2020; Bakshi et al., 2022), with many applications in
machine learning; see (Scholkopf et al., 2002; Shawe-Taylor et al., 2004; Hofmann et al., 2008) for a
comprehensive overview. In the case where f is a distance function, the sum represents the objective
of various clustering formulations, such as k-means and k-median.

1.1 OUR RESULTS

The aforementioned works have produced non-trivial utility-privacy trade-offs for computing sim-
ilarities privately for a wide class of f. On the theoretical side, we improve upon these results
by giving faster algorithms and improved utility-privacy trade-offs for a wide range of kernels and
distance functions. We also study utility lower bounds in order to understand the inherent algorith-
mic limitations for such problems. Our algorithms are also validated practically; they demonstrate
empirical improvements over baselines, both in terms of accuracy and query time.

Definitions. We wish to design differentially private algorithms (see Definition A.1 for a DP
primer) under the following natural and standard notion: datasets X, X’ are neighboring if they
differ on a single data point. We also work under the function release model; the data structure we
output must handle arbitrarily many queries without privacy loss.

Function release. Given a private dataset X and a public function f, we wish to release a differ-
entially private (DP) data structure capable of answering either kernel density estimation (KDE) or
distance queries. We focus on the function release model as in Wagner et al. (2023) and employ
their definition: the algorithm designer releases a description of a data structure D which itself is
private (i.e. D is the output of a private mechanism as per Definition A.1). A client can later use D
to compute D(y) for any query y. Since D itself satisfies -DP, it can support an arbitrary number
of queries without privacy loss. This is motivated by scenarios such as synthetic data generation, or
when we do not have a pre-specified number of queries known upfront. Our accuracy guarantees
are also stated similarly as in Wagner et al. (2023): we bound the error for any fixed query y. Thus,
while our outputs are always private (since D itself is private), some query outputs can be inaccurate.

Our private dataset is denoted as X C R, with | X'| = n. The similarities are computed with respect
to a public function f : R x R? — R. We define distance queries (for distance functions such as
= — y||2) and KDE queries (for kernel functions such as f(z,y) = e~ 12=vl3) as follows:
Definition 1.1 (Distance Query). Let f be a distance function. Given a query y € RY, a distance
query computes an approximationto ), f(x,y).

Definition 1.2 (KDE Query). Let f be a kernel function. Given a query y € R? a KDE query
computes an approximation to \71| Yowex f@y).

The normalization by | X| = n is inconsequential; we follow prior convention for KDE queries. For
distance queries, the un-normalized version seemed more natural to us.



Published as a conference paper at ICLR 2024

Type f Thm. Our Error Prior Error Our Query Time | Prior Query Time
5 1/3
|z —ylli | B3 (1+a, d—@) <1, (i) ) d d
. s 7\ 1/17
Distance |l —yll2 | D2 (l—l-a,m%_s) <1) (n182d7> ) d >d
Queries ) J
[z =yllz | D5 (1,£) - d -
Jo—ylp | D4 | (1+0,2%) - d
e-llz=vlz | E 1 (1,a) (1,) - 4
e—ll==vl3 | E.1 (1, ) (1, ) d+ 21 4
KDE L L
Queries eyl | (1,0) i d+ 5 i
1 1 d
1 d
T z—yl1 F.1 (1,0&) - a2 -

Table 1: Summary of the e-DP upper bounds. See Definition 1.3 for the error notation. For clarity,

we suppress all logarithmic factors. The KDE bounds assume that n > Q (a%z) The distance
query bounds are stated for points in a bounded radius. The prior distance query results are due

to Huang & Roth (2014), and the prior KDE results are due to Wagner et al. (2023).

Discussion of Theoretical Results. The main trade-off that we are interested in is between privacy,
as measured with respect to the standard DP definition (Definition A.1), and accuracy of our answers,
also called utility. For example, a data structure which always returns a fixed answer, such as 42,
is clearly always private regardless of the number of queries performed, but is highly inaccurate.
Thus, our goal is to obtain non-trivial accuracy guarantees while respecting privacy. Secondary,
but important, concerns are query time and data structure construction time and space. Our main
theoretical results are summarized in Table 1, where we use the following error notation.

Definition 1.3 (Error Notation). For a fixed query, if Z represents the value output by our private
data structure and Z' represents the true value, we say that Z has error (M, A) for M > 1 and
A>0fE[|Z-2Z"|] < (M —1)Z'+ A. That is, we have relative error M — 1 and additive error A.
The expectation is over the randomness used by our data structure.

We want M to be close to 1 and the additive error A to be as small as possible. Table 1 shows
our errors and query times, as well as those of the most relevant prior works. See Section 2 for a
technical overview of how we obtain these results.

For distance queries, the most relevant work is Huang & Roth (2014). They considered the ¢ and {5
functions and obtained additive errors with large dependence on n (dataset size) and d (dimension);
see Table 1. In contrast, we show that if we allow for a small multiplicative error (e.g. « = 0.001 in
Table 1), we can obtain additive error with improved dependence on d and no dependence on n.

Theorem 1.1 (Informal; see Theorem B.3 and Corollary D.2). Suppose the data points have
bounded diameter in 1. For any o € (0,1) and € > 0, there exists an algorithm which outputs an

e-DP data structure D capable of answering any {1 distance query with (1 +a,0 ( d\l/;)) error.

€

For the {5 case, where the points have bounded {5 diameter, we obtain error (1 +a,0 (#))
Our approach is fundamentally different, and much simpler, than that of Huang & Roth (2014), who
used powerful black-box online learning results to approximate the sum of distances. Furthermore,
given that we think of n as the largest parameter, we incur much smaller additive error. Our simpler
approach also demonstrates superior empirical performance as discussed shortly. Our ¢; upper
bounds are complemented with a lower bound stating that any e-DP algorithm supporting ¢; distance
queries for private datasets in the box [0, R]¢ must incur Q(Rd/¢) error.
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Theorem 1.2 (Informal; see Theorem C.2). Any e-DP data structure which answers {y distance
queries with additive error at most T for any query must satisfy T = Q(Rd/¢).

Note that our lower bound only pertains to additive error and does not say anything about multi-
plicative error. It is an interesting direction to determine if multiplicative factors are also necessary.
We also obtain results for other functions related to distances, such as 62; see Appendix D.

. . 2 .
We now discuss our kernel results. For the Gaussian (e~ #~vll2), exponential (e~ llz=vll2) and

Cauchy (m) kernels, we parameterize our runtimes in terms of additive error . Here, we
2

obtain query times of O(d + 1/a*) whereas prior work (Wagner et al., 2023) requires O(d/a?)
query time. Thus our results are faster in high-dimensional regimes where d > 1/a?.

Theorem 1.3 (Informal; see Theorems E.1 and F.1). Consider the Gaussian, exponential, and
Cauchy kernels. In each case, for any € > 0 and o € (0, 1), there exists an algorithm which outputs

an £-DP data structure that answers KDE queries with error (1, ) and query times O(d + 1/a%).

For kernels L__ and L___ we obtain the first private data structures; see Table 1. We do
I+flz—yll2 I+ llz—yll

this via a black-box reduction to other kernels that already have private data structure constructions,
using tools from function approximation theory; this is elaborated more in Section 2. All KDE
results, including prior work, assume that n is lower-bounded by some function of o and €. These
two kernels and the Cauchy kernel fall under the family of smooth kernels (Backurs et al., 2018).

We also give faster query times for the non-private setting for the Gaussian, exponential, and Cauchy
KDE:s. Interestingly, our improvements for the non-private setting use tools designed for our private
data structures and are faster in the large d regime.

Theorem 1.4 (Informal; see Theorem G.l1). For the Gaussian kernel, we improve prior run-
ning time for computing a non-private KDE query with additive error o from O (WM)
to O (d + WMX Similarly for the exponential kernel, the improvement in the query time is

Jfrom O (ﬁ‘fﬂm) to O (d + m) The preprocessing time of both algorithms is asymptot-
ically the same as in prior works.

Discussion of Empirical Results. Our experimental results are given in Section 4. We consider
three experiments which are representative of our main results. The first setting demonstrates that
our ¢; query algorithm is superior to prior state of the art (Huang & Roth, 2014) for accurately
answering distance queries. The error of our algorithm smoothly decreases as € increases, but their
algorithms always return the trivial estimate of 0. This is due to the fact that the constants used in
their theorem are too large to be practically useful. We also demonstrate that our novel dimension-
ality reduction results can be applied black-box in conjunction with any prior DP-KDE algorithm,
leading to savings in both data structure construction time and query time, while introducing negli-
gible additional error.

Lastly, we explore an application to DP classification on the CIFAR-10 dataset. The standard setup
is to train a private classification model on the training split (viewed as the private dataset), with the
goal of accurately classifying the test split (Yu et al., 2020; De et al., 2022). Our methodology is
simple, fast, and does not require a GPU: we simply instantiate a private similarity data structure
for each class and assign any query to the class which it has the highest similarity to (or smallest
distance if f is a distance). We set f to be £3 since it has arguably the simplest algorithm. In contrast
to prior works, our methodology involves no DP-SGD training. For comparable accuracy, we use >
3 orders of magnitude less runtime compared to prior baselines (Yu et al., 2020; De et al., 2022).

2 TECHNICAL OVERVIEW

At a high level, all of our upper bounds crucially exploit fundamental ‘low-dimensionality struc-
tures’ present in the f’s that we consider. For different f’s, we exploit different ‘low-dimensional’
properties, elaborated below, which are tailored to the specific f at hand. However, we emphasize
that the viewpoint of ‘low-dimensionality’ is the extremely versatile tool driving all of our algorith-
mic work. We provide the following insights into the low-dimensional properties used in our upper
bounds.
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Distance Queries via One-dimensional Decompositions. For the /; distance function, our im-
provements are obtained by reducing to the one-dimensional case. To be more precise, we use the
well-known property that >~ [lz — y|l1 = 25:1 Y wex |Tj — y;|. In other words, the sum of
¢y distances decomposes into d one-dimensional sums (this is also true for other related functions
such as (7). This explicit low-dimensional representation offers a concrete avenue for algorithm de-
sign: we create a differentially private data structure for each of the d one-dimensional projections
of the dataset. In one dimension, we can employ many classic and efficient data structure tools.
Furthermore, using metric embedding theory (Theorem D.1), we can also embed /5 into ¢; using an
oblivious map, meaning that any algorithmic result for /; implies similar results for /5 as well.

Kernels via New Dimensionality Reduction Results. For kernels such as Gaussian, exponential,
and Cauchy, we obtain novel dimensionality reduction results. Our results show that KDE values
are preserved if we project both the dataset and the queries to a suitably low dimension via an
oblivious, data-independent linear map. Our dimensionality reduction schemes are automatically
privacy-respecting: releasing an oblivious, data-independent matrix leaks no privacy. Our results
also have implications for non-private KDE queries and give new state-of-the-art query times.

To obtain our new dimensionality reduction bounds, we analyze Johnson-Lindenstrauss (JL) matri-
ces for preserving sums of kernel values. The main challenge is that kernel functions are non-linear
functions of distances, and preserving distances (as JL guarantees) does not necessarily imply that
non-linear functions of them are preserved. Furthermore, JL-style guarantees may not even be true.
JL guarantees that distances are preserved up to relative error when projecting to approximately
O(logn) dimensions (Johnson & Lindenstrauss, 1984), but this is not possible for the kernel values:
if ||z — y||2 is extremely large, then after applying a JL projection G, |Gz — Gy||2 can differ from
||z — y||2 by a large additive factor A (even if the relative error is small) with constant probability,
and thus e~ 1G2=Gvll2 = ¢=A . e=lle=vll2 goes nor approximate e~ lI*=¥l2 up to relative error.

We overcome these issues in our analysis by noting that we do not require a relative error approx-
imation! Even non-private KDE data structures (such as those in Table 2) already incur additive
errors. This motivates proving additive error approximation results, where the additive error from
dimensionality reduction is comparable to the additive error incurred by existing non-private KDE
data structures. We accomplish this via a careful analysis of the non-linear kernel functions and
show that it is possible to project onto a constant dimension, depending on the additive error, which
is independent of the original dataset size n or original dimensionality d.

Theorem 2.1 (Informal; see Theorems E.2 and F.2). Consider the Gaussian and exponential ker-
nels. For any o € (0,1), projecting the dataset and query to O(1/a?) dimensions using an obliv-
ious JL map preserves the KDE value up to additive error . For the Cauchy kernel, projecting to
O(1/a?) dimensions preserves the KDE value up to multiplicative 1 + « factor.

We note that variants of ‘dimensionality reduction’ have been studied for Gaussian kernels, most
notably via coresets which reduce the dataset size (one can then correspondingly reduce the dimen-
sion by projecting onto the data span; see Luo et al. (2023); Phillips & Tai (2020)). However, these
coresets are data-dependent and it is not clear if they respect DP guarantees. On the other hand, our
results use random matrices that do not leak privacy. Lastly, our analysis also sheds additional light
on the power of randomized dimensionality reduction beyond JL for structured problems, comple-
menting a long line of recent works (Boutsidis et al., 2010; Cohen et al., 2015; Becchetti et al., 2019;
Makarychev et al., 2019; Narayanan et al., 2021; Izzo et al., 2021; Charikar & Waingarten, 2022).

Smooth Kernels via Function Approximation Theory. For DP-KDE, we also explmt low—
dimensional structures via function approximation, by approximating kernels such as W

terms of exponential functions. To be more precise, for h(x,y) = ||z —y||2, ||* —yl3, and ||z — y||1,
Corollary 3.2 allows us to express m ~ ZjeJ wje*tjh(‘”’y) for explicit parameters ;, w;.
The corollary follows from a modification of results in approximation theory, see Section 3. This
can be viewed as projecting the kernel onto a low-dimensional span of exponential functions, since
only |J| = O(1) terms in the sum are required. We can then benefit from already existing KDE
data structures for various kernels involving exponential functions, such as the exponential kernel!
Hence, we obtain new private KDE queries for a host of new functions in a black-box manner. The
fact that |J| (the number of terms in the sum) is small is crucial, as instantiating a differentially
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private KDE data structure for each j € [J] does not substantially degrade the privacy guarantees or
construction and query times. This reduction is detailed in Section 3.

Outline of the Paper. Due to space constraints, only the function approximation theory reduction
is presented in the main body in Section 3. The rest of our theoretical results is deferred to the
appendix with full proofs. In Section 4, we empirically verify our upper bound algorithms and give
applications to private classification. Our ¢; algorithm in one dimension is in Section B. It contains
the main ideas for the high-dimensional ¢; algorithm, given in Appendix B.1. Appendix C states our
lower bounds for the ¢; distance function. Applications of our ¢; upper bound, such as for ¢, and
¢b, are given in Appendix D, and improved DP bounds for the exponential and Gaussian kernels are
given in Appendix E. Appendix F contains improved DP results for smooth kernels (such as Cauchy
kernels). Appendix G contains our improved KDE query bounds in the non-private setting.

Related Work. We use the standard definition of differential privacy (Dwork et al., 2006), given
in Definition A.1. We survey the most relevant prior works. Additional related works are given
in Section A.2. We write guarantees in terms of the expected error for any fixed query. These
algorithms, and ours, can easily be converted to high-probability results by taking the median of
multiple (logarithmically many) independent copies. The theorem statement below pertains to the
distance functions ||z — y||;. It is stated for the case where all the dataset points and queries are in
the box [0, 1]%, but easily extend to a larger domain by scaling.

Theorem 2.2 (Huang & Roth (2014)). Assume the dataset and query points are contained in [0,1]%.

There exists an algorithm which outputs an e-DP data structure for the function ||x — y||1 with the
. ) .. . A (p1/3q7/3 S
Jollowing properties: (1) the expected additive error is O (” 5273 )1, (2) the construction time is

n2/322/3

(0] (n8/3€2/3d2/3), (3) the space usage is O (W) (4) and the query time is O(d).

(Huang & Roth, 2014) also obtained results for ¢, with additive errors containing factors of n and
d as shown in Table 1; see Appendix A.2 for the formal statement of their results. The result of
Wagner et al. (2023) concerns private KDE constructions for the exponential (e~ ==vll2), Gaussian

(6*”1*9”5), and Laplace (6*“1*9”1) kernels.

Theorem 2.3 (Wagner et al. (2023)). Let « € (0,1) and suppose n > ) (a%z) For h(z,y) =
2 = yllz, Iz = ylI3. or [z —y

1, there exists an algorithm which outputs an e-DP data structure
Jor f(z,y) = e~ M=Y) with the following properties: (1) the expected additive error is at most c,
(2) the query time is O (%), the construction time is O (Z—g), and the space usage is O (%)

Earlier works also study or imply DP KDE. The results of Wagner et al. (2023) were shown to be
superior, thus we only explicitly compare to Wagner et al. (2023); see Appendix A.2.

3 SPARSE FUNCTION APPROXIMATION

We provide details on the function approximation theory used in Section F to obtain our results on
smooth kernels. We use the fact that a small number of exponential sums can approximate smooth
kernels, enabling us to reduce this case to prior kernels in Section E. First we recall a classic result.

Theorem 3.1 (Sachdeva & Vishnoi (2014)). Givene,§ € (0, 1], there exist O(log(1/(e-9))) positive
numbers wj,t; > 0, all bounded by O (Wh/&)’ such that for all x € [e, 1] we have (1—8)z~! <
> wie " < (14 8)x~ . Furthermore, lwje™"| < O(1) for all j.

The theorem implies the following useful corollary, proved in Appendix F.2.
Corollary 3.2. Given a € (0, 1], there exist O(log(1/)) positive numbers w;, t; > 0, all bounded
by O (m) such that for all x > 1 we have ‘ZJ ’U)je_tj-’ﬂ — x—1’ < a.

"Throughout the paper, O hides logarithmic factors in n and d.



Published as a conference paper at ICLR 2024

Usmg Corollary 32, we can obtain private KDE data structures for the kernels f(x,y) =
> via a black-box reduction to the corresponding private KDE data

1+H$ yll2’ 1+H$ yll? 1+Hw yll3
structures for the kernels e~ I#=¥ll2 ¢~llz— y”2, and e~ ll==vllr,

Theorem 3.3. Let h(z,y) = ||x — yl|2, [|x — y||3, or ||z — y||1 and o € (0, 1). Suppose there exists
an algorithm for constructing an e-DP KDE data structure for the kernel e ~"(*¥) on a given dataset
of size n which answers any query with expected additive error o, takes C'(n, ) construction time,
Q(n, o) query time, and S(n, ) space, assuming n > L(e, a).

Then, there exists an e-DP data structure for answering KDE queries for f(x,y) = m which

answers any query with expected additive error o and the same construction, query, and space as
the exponential case, but with n replaced by O(nlog(1/a)) and « replaced by o/ log(1/a) in the
Sfunctions C,Q, S, and L.

Proof. We give a reduction showing how (a small collection of) private KDE data structures for
the kernel e ~(*%) can be used to answer KDE queries for f(z,y) = m Let g(z) be the

function guaranteed by Corollary 3.2 which approximates 1/z by an additive factor for all z > 1:
| ije*tfz —271 < O0(a) Vz>1.Wehave

N
9(2)
1
f(z - - w;e” i FE) | 4L O(a)
|X|z§ |X\21+h<xy |X|m€zx; 1e
ije_tj X Z —tih(z.y) +O0(a) = ije_tj X Z —h(z,y5) + O(«)
j | | reX J ‘ | zeX;

where X is the dataset X; = {t; - « | # € X} and y; is the query ¢, - y in the cases that h(x,y) =
lz — yl|1 or |z — y||2. In the case where h(z,y) = ||z — y||3 we have X; = {/%; = | z € X} and
y; is the query /; - y.

Note that the function g is public so the parameters w; and ¢; are publicly known (and do not depend
on the dataset). Now we simply instantiate private KDE data structures which approximate each of
the sums ﬁ . X, e~ @) More specifically, we release O(log(1/a)) kernel KDE data struc-

tures, one for each X, and each of which is O(e/log(1/a))-DP. Then the overall data structures
we release are e-DP by composition. Furthermore, since each wje™% = O(1) and there are only
O(log(1/a)) of these terms, if each data structure has expected additive error O(c/ log(1/«)), then
the overall error is O(«) as well. To summarize, the logarithmic blowup happens in the query/space,
as well as any lower-bound assumption on the size of the dataset.

4 EMPIRICAL EVALUATION

We evaluate our algorithms on synthetic and real datasets. We consider three experimental settings
which together are representative of our main upper-bound results. We show the average of 20 trials
and +1 standard deviation is shaded where appropriate. All experiments unless stated otherwise are
implemented in Python 3.9 on an M1 MacbookPro with 32GB of RAM.

¢, Experiments. The task here is to approximate the (normalized) map y — 1 3~ |z — y| for
a one dimensional dataset X of size n = 10°, with points randomly picked in [0, 1]. The query
points are O(n) evenly spaced points in [0,1]. We implement our one-dimensional ¢; distance
query algorithm and compare to the prior baseline of (Huang & Roth, 2014). Both our and (Huang
& Roth, 2014)’s high-dimensional algorithms are constructed by instantiating d different copies
of one-dimensional data structures (on the standard coordinates ). Thus, the performance in one
dimension is directly correlated with the high-dimensional case. In our case, the map we wish
to approximate converges to fol |z — y|de = y?> —y + 1/2 for y € [0,1], allowing us to easily
compare to the ground truth. In Figure la, we plot the average relative error across all queries as
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a function of €. The explicit parameter settings for the algorithm given in (Huang & Roth, 2014)
are extremely large in practice, meaning the output of their algorithm was always the identically 0
function, which gives relative error equal to 1 (the distance query was always estimated to be 0) for
the values of ¢ tested, as shown in Figure 1a. On the other hand, our algorithm gives non-trivial
empirical performance and its error decreases smoothly as € increases. Indeed, Figure 1b shows our
output values (scaled by 1/n) for various £’s. We can observe that our estimates converge to the true
function as € increases. We observed qualitatively similar results for for n = 10° as well.

L6 {1 Distance Query : e=1 e=4
. 0.50 : : @
14 —e— Qurs 045
0.40
1o [HR14] o
8 0.30
& .
o 1.0 025
Qo8
E
E 06 0.50 %
D 0457
~ 0.4 040
0 2 0.35
' 0.30
0.0 02
0 1 2 3 4 5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

) . (b) Our performance for various fixed ¢.
(a) Our relative error decreases as € increases.

Figure 1: Our algorithm for /; queries has smaller error than prior SOTA of (Huang & Roth, 2014).

Dimensionality Reduction Experiments. We empirically demonstrate that dimensionality reduc-
tion provides computational savings for DP-KDE without significantly degrading accuracy. Our

task is to approximate KDE values for the Gaussian kernel e~ lz=vll3. We compare against the prior
SOTA (Wagner et al., 2023). Our provable dimensionality reduction result of Theorem E.2 gives a
general framework: apply an oblivious dimensionality reduction to the data and use any DP-KDE al-
gorithm in the projected space. Indeed, Theorem E.1 follows by applying the framework to the prior
SOTA algorithm of Wagner et al. (2023). Thus in our experiment, we use the randomized dimension
reduction of Theorem E.2 in conjunction with the implementation of Wagner et al. (2023). Note
that while we fix the DP-KDE implementation used after dimensionality reduction, our framework
is compatible with any other choice and we expect qualitatively similar results with other choices.

Our dataset consists of embeddings of CIFAR-10 in dimension 2048, computed from an Inception-
v3 model (Szegedy et al., 2016), pre-trained on ImageNet (Deng et al., 2009). Obtaining embeddings
of private datasets from pre-trained ML models is standard in the applied DP literature (Yu et al.,
2020; De et al., 2022). The intuition is that the embeddings from the network are powerful enough
to faithfully represent the images in Euclidean space, so computing kernel values on these features
is meaningful. We project the embeddings to lower dimensions d ranging from 200 to 2000. We use
the training points of a fixed label as the private dataset and the corresponding test set as the queries.

Figure 2a shows the relative error of our approach (in blue) and the baseline of Wagner et al. (2023)
(in orange) which does not use any dimensionality reduction. The relative errors of both are com-
puted by comparing to the ground truth. Figure 2b shows the construction time of the private data
structure and Figure 2¢ shows the total query time on the test points. We see that the relative error
smoothly decreases as we project to more dimensions, while construction and query time smoothly
increase. Note the construction time includes the time to compute the projection. For example,
projecting to d = 1000 increases the relative error by 0.015 in absolute terms, while reducing the
construction time by ~ 2x and reducing the construction time by a factor of > 4x.

Differentially Private Classification. We consider the DP classification task on Cifar-10. The
train and test splits are the private data and query respectively, and the task is to train a private
classifier on the train set to classify the test set. Our methodology is extremely simple, fast, and
does not require any specialized hardware like GPUs: we instantiate an (e, §)-DP distance query
data structure on each class. The classes disjointly partition the data so the output, which is an
(e,9)-DP data structure for each class, is overall (¢,d)-DP (Ponomareva et al., 2023). We use
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Figure 2: Results for our dimensionality reduction experiments.
f(x,y) = ||z — yl||3 since it has the simplest algorithm (see Section D.1). It essentially reduces

to releasing a noisy mean for every class. To classify a query, we assign it to the class whose
(noisy) mean is closest to the query. For other potential choices of f like kernels, one would instead
assign to the class with the highest KDE value. There are two competing SOTA works: one from
Deepmind (De et al., 2022) and (Yu et al., 2020). We give a high-level methodology of prior works
(see Appendix H for more details): they start with a pre-trained model on ImageNet” and fine tune
using DP-gradient descent/SGD. Their specific model details are given in Appendix H. Note that
the vectors we build our private data structures on are the penultimate layer embeddings of the
ResNet pre-trained model used in Yu et al. (2020). Thus, all methods have the access to the same
‘pre-training’ information.

Let us temporarily ignore § for simplicity of discus-

sion. If they use 7" steps of training, every model up-

. . . = =5
date step approximately satisfies €/ VT privacy (ex- CIFAR10, 6 =10

act bounds depend on the DP composition formulas), 0.9 4, > 3 orders of magnitude
ensuring the overall final model is (g, ¢)-DP. Thus, 0.8
every step for them incurs some privacy budget, with 2.0.7
the benefit of increased accuracy. Therefore, these 0.6
works can stop training at intermediate times to ob- E 0'5
tain a model with stronger privacy guarantees (lower 0'4
€), but worse accuracy. However, the same proce- ’

. .. . 0.3 A Ours(e=1)
dure also gives an accuracy vs model training time Yo et i,
trade-off for these prior works. This is shown in Fig- 0.2 — Deepmind
ure 3. The right most endpoints of both baselines 102 103 10%* 105 106 107
(the largest times), correspond to models with € = 1. Time (ms)

In other words, their models with the worst privacy
guarantees has the highest accuracy, while also re-

quiring the longest training time. Figure 3: Runtime vs Accuracy.

In contrast, our algorithm of Section D.1 simply re-

leases a noisy collection of fixed vectors. Our data structure construction time, which corresponds
to their model training time, is independent of (e, §) (but accuracy depends on them). In Figure 3,
we plot the accuracy of our data structure for e = 1 (we use the best hyper-parameter choices for
all methods). For other values of ¢, we would simply incur the same construction time, but observe
differing accuracy since the construction time is independent of ¢ (but again accuracy improves for
higher €). The time to initialize our data structure (for all classes) is 28.8 ms on a CPU, and the
query time for all queries was 73.8 ms. On the other hand, fully training the model of Yu et al.
(2020) up to € = 1 takes > 8.5 hours on a single NVIDIA RTX A6000 GPU. The runtimes of De
et al. (2022) are even longer since they use larger models. Thus, as shown in Figure 3, creating our
private data structure is > 3 orders of magnitude faster than the time to create models of corre-
sponding accuracy via the two baselines. Note that we are also using arguably inferior hardware.
The best accuracy of all methods as a function of ¢, ignoring run-time considerations, is shown in
Figure 4.

>The works consider other alternate datasets, but we only compare to the Imagenet case. We expect quali-
tatively similar results when pre-training with other datasets.
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A ADDITIONAL PRELIMINARIES

A.1 STANDARD DIFFERENTIAL PRIVACY RESULTS

Two datasets X, X' are neighboring if they differ on a single data point.

Definition A.1 (Dwork et al. (2006)). Let M be a randomized algorithm that maps an input dataset
to a range of outputs O. For e, § > 0, M is defined to be (g, 0)-DP if for every neighboring datasets
X, X" and every O C O, Pr[M(X) € O] < e* - Pr[M(X’) € O] + 6. If 6 = 0, we say that M is
€-DP (this is called pure differential privacy).

Theorem A.1 (Advanced Composition Starting from Pure DP (Dwork et al., 2010)). Let
My,...,My : X" — Y be randomized algorithms, each of which is e-DP. Define M : X" — Y*
by M (z) = (My(x),..., My(x)) where each algorithm is run independently. Then M is (¢',§)-DP
forany e, § > 0 and

2
e = ’"% +ev/2k log(1/3).

For 6 =0, M is ke-DP.

A.2 ADDITIONAL RELATED WORKS

Distance Query Related Works. The construction times and query times in the result below are
not explicitly stated in Huang & Roth (2014), but they are likely to be similar to that of Theorem
2.2.

Theorem A.2 (Huang & Roth (2014)). Assume the dataset and query points are contained in the {5
ball of diameter 1. There exists an algorithm which outputs an e-DP data structure for the distance

i .. = 15/17 ;7/17
Sunction f(x,y) = ||x — yl||2 such that the expected additive error is O (%)

Feldman et al. (2009) give lower bounds for additive errors of private algorithms which approximate
the k-median cost function, which is related to the ¢; distance query. However, their lower bound
only applies to coresets specifically, whereas our lower bounds hold for any private mechanism.
There have also been recent works designing scalable algorithms for computing distance functions
in the non-private setting; see Indyk & Silwal (2022) and references therein.

KDE Related Works. Earlier works such as the mechanisms in (Gupta et al., 2012; Blum et al.,
2013; Alda & Rubinstein, 2017) also study or imply results for DP-KDE. However, many suffer
from drawbacks such as exponential dependency on d for running time. The results of Wagner et al.
(2023) were shown to be superior to such prior methods (see therein for more discussions), so we
only compare to the current state of the art DP KDE results from Wagner et al. (2023).

Generic Private Queries. We refer the reader the the excellent survey of Vadhan (2017a) and
references therein for an overview of algorithms and discussions for broad classes of queries for pri-
vate datasets. Lastly, we note that dimensionality reduction has been studied in differential privacy
in non-KDE contexts in (Blocki et al., 2012; Singhal & Steinke, 2021); see the references therein
for further related works.

B ¢ DISTANCE QUERY

We construct a private data structure for answering ¢; distance queries in one dimension. The
general high-dimensional case, given fully in Appendix B.1, can be handled as follows: create a
collection of d one-dimensional data structures, constructed on the standard coordinate projections
of the dataset. We now describe our one-dimensional algorithm. For the sake of simplicity, let us
assume for now that all dataset points are integer multiples of 1/n in [0, 1]. This holds without loss
of generality as shown later. Furthermore, let us also instead consider the slightly different interval
query problem. Here we are given an interval I C R as the query, rather than a point y, and our
data structure outputs |7 N X |. We can approximate a distance query at any y by asking appropriate
interval queries I, for example geometrically increasing intervals around the query point y.
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To motivate the algorithm design, let us additionally ignore privacy constraints for a moment. We
use the classic binary tree in one dimension: its leaves correspond to the integer multiples of 1/n
in [0, 1] and store the number of dataset points in that particular position, while internal nodes store
the sum of their children. It is well-known that any interval query I can be answered by adding up
the values of only O(logn) tree nodes. To handle privacy, we release a noisy version of the tree.
We note that changing any data point can only change O(logn) counts in the tree, each by at most
one (the leaf to root path). This bounds the sensitivity of the data structure. The formal algorithm
and guarantees are stated below. Before presenting them, we make some simplifications which hold
without loss of generality.

Remark B.1 (Simplifications). (1) We scale all dataset points from [0, R] to [0, 1] by dividing by
R. We also scale y. We can undo this by multiplying our final estimate by R. (2) After scaling,
we assume y € [0,1]. If y is outside [0, 1], for example if y > 1, we can just instead query 1
and add n(y — 1) to the final answer; since all dataset points are in [0, 1). This does not affect the
approximation. (3) Lastly, we round all points to integer multiples of 1/n, introducing only O(R)
additive error.

Algorithm 1 Pre-processing data structure

Input: A set X of n numbers in the interval [0, 1], privacy parameter &
Output: An ¢-DP data structure
procedure PREPROCESS
Round every dataset point to an integer multiple of 1/n
Compute the counts of the number of dataset points rounded to every multiple of 1/n
Build a balanced binary tree T where internal nodes store the sum of the counts of their
children and leaf nodes store the counts of the multiples of 1/n
Independently add noise drawn from Laplace(n) where = O(log(n)/¢) to every count
Return tree T'
9: end procedure

ANNANE S e

[e BN |

Algorithm 2 Interval Query

1: Input: Tree T, interval Q C [0, 1]

2: procedure NOISYCOUNT

3: Round the endpoints of @ to the closest multiple of 1/n

4 Break () up into the smallest number of contiguous and disjoint pieces such that there is a
node in T representing each piece > At most O(logn) pieces are required

5: Return the sum of the counts in each of the nodes in I" computed above

end procedure

&

Algorithm 3 One dimensional Distance Query

1: Input: data structure T from Algorithm 1, query y € [0, 1], accuracy parameter « € (0, 1).
2: procedure DISTANCEQUERY

3: Round y to the closest integer multiple of 1/n

4: Value < 0

5: for j =0,1,...,0(log(n)/a) do

6: Qj+— |y+ (Hi)jﬂ Y+ (Hla)j) > This will consider the points to the right of y
7: Value <— Value + NoisyCount(Q);) ﬁ

8: end for

9: Repeat the previous loop for intervals to the left of y

10: Return Value
11: end procedure

Lemma B.1. The tree T returned by Algorithm 1 is e-DP.

Proof. We can encode the tree 7" as a vector in dimension O(n). Changing one input data point only
changes O(logn) entries of this vector, each by 1, thus the sensitivity of 7" is O(logn). Adding
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coordinate-wise Laplace noise of magnitude n = O(log(n)/¢) suffices to ensure e-DP using the
standard Laplace mechanism. O

We now analyze the utility of the algorithm.

Theorem B.2. Suppose X C [0, R] is a dataset of n numbers in one dimension. Let o € (0,1)
be the accuracy parameter used in Algorithm 3. Let A be the output of Algorithm 3 and let A’ =

> wex |y — | be the true distance query value. Then we have E|A — A’| < a A’ + O (65&)

Proof. For simplicity, we only consider the distance query to the points in X to the right of y. The
identical proof extends to the symmetric left case. We also work under the simplifications stated
in Remark B.1. They only affect the additive error by at most O(R). For an interval ), define
TrueCount(Q) to be the true value |Q N X|. Let

1
Estimate; = Z Atay - TrueCount(Q;) and A = z Z ly — .

§>0 1+a) >0 2€XNQ;
First, we know that |Estimate; — A’| < a - A’, as for all j, the distanced between y and different
points € X N @Q; only differ by a multiplicative (1 4+ «) factor. Thus, it suffices to show the
output as returned by Algorithm 3, i.e. A, differs from Estimate; by O (ﬁ) . Let NoisyCount(Q)

denote the interval query answer returned by our noised-tree via Algorithm 2. Algorithm 3 outputs
A=3"i50 m - NoisyCount(Q;). We wish to bound

Estimate; — A| < —_ .
Futimates =A< 12 oy

Note that Z; := TrueCount(();) — NoisyCount(Q);) is equal to the sum of at most O(logn) Laplace
random variables, each with parameter O((logn)/<). This is because we compute all noisy counts
by accumulating the counts stored in the individual nodes in 7" corresponding to ;. We only query
O(logn) nodes for any (); and each node has independent noise added. Thus, EZ; = 0 and

(TrueCount(Q);) — NoisyCount(Q;))| -

Var |:Zj . ﬁ} < % : W In addition, the Z;’s are also independent of each other since

the intervals ();’s are disjoint, meaning we query disjoint sets of nodes in the tree for different @);’s.
Hence,

1 0(1) 1 0o(1)
Var Zi"zj S Z 5 = 2 (D
= (14 )i e 14+ a)% = ae
meaning with large constant probability, say at least 0.999, the quantity |Estimate; — A| is at most
O(1)/(ey/@) by Chebyshev’s inequality. A similar conclusion also holds in expectation since for

any centered random variable W, E |W| < /Var(WW). We recover our desired statement by multi-
plying through by R to undo the scaling. O

B.1 HIGH-DIMENSIONAL ¢; QUERY

Algorithm 3 automatically extends to the high dimensional case due to the decomposability of the
{1 distance function. Indeed, we simply instantiate d different one-dimensional distance query data
structures, each on the coordinate projection of our private dataset. The algorithm is stated below.
For simplicity, we state both the preprocessing and query algorithms together.

Algorithm 4 High-dimensional ¢; distance query

1: Input: Set X of n d-dimensional points in the box [0, R]%, privacy parameter ¢, mulitplicative
accuracy parameter «, query y
2: procedure /¢ QUERY

3: Instantiate d different one-d data structures Dy, ..., Dy. D; is the output of Algorithm 1 on
the ith coordinate projections of X. Each data structure is ¢/d-DP > Preprocessing Stage
4: Return The sum of outputs when D; is queried on y; for every ¢ > Query Stage

5. end procedure
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The following theorem is a corollary of Lemma B.1 and Theorem B.2.
Theorem B.3. Let A be the output of Algorithm 4. Let A" = 3\ ||y — x|[1 be the true answer.

We have E|A — A'| < oA’ + O (Izd—\/l;). Furthermore, Algorithm 4 is e-DP.

Proof. The £-DP guarantee follows from standard DP composition results (Theorem A.1), so it
remains to argue about the approximation guarantee. Let A; be the estimate returned by D; and
let A} be the true answer in the ith dimension. Note that A" = >~ A% and A = ) . A;. Naively
applying Theorem B.2 gives us additive error O(Rd?/(e/c)). However, we can exploit the fact
that the data structures in the individual dimensions are using independent randomness to get a
better bound.

Let us inspect the proof of Theorem B.2. Let Z]i- be the variables Z; used in the proof of Theorem
B.2 for coordinate ¢. Similar to the proof of Theorem B.2, we can note that the error incurred by our
estimate among all coordinates, can be upper bounded by the absolute value of ), W (>: 21,
where each Z; are independent across ¢ and j and are each the sum of at most O(logn) different
Laplace O((logn)/e) random variables. The variance of each individual dimension is given by
Equation 1 (with ¢ scaled down by ¢/d), i.e., it is of the order O(d?)/(as?). The total variance
across d copies is then O(d?)/(ae?). Finally, the same calculations as the proof of Theorem B.2

imply an additive error of the square root of this quantity, namely O(d"®)/(y/ae). O

If we relax the privacy guarantees to approximate DP, we can get a better additive error, matching
the additive error term in the lower bound of Theorem C.2 (note however that Theorem C.2 is a
lower bound on pure DP algorithms, not approximate DP).

Theorem B.4. Let 6 > 0 and A be the output of Algorithm 4 where every one dimensional al-

gorithm is instantiated to be (ce/\/dlog(1/6))-DP for a sufficiently small constant c¢ indepen-
dent of all parameters. Let A" = ) ||y — x|y be the true answer. We have E|A — A’| <

aA' + O <Rd ”El\o/ga(l/é)> Furthermore, Algorithm 4 is (g,6)-DP assuming ¢ < O(log(1/4)). O

hides logarithmic factors in n.

Proof. The same proof as Theorem B.3 applies, but instead we use the approximate DP advanced
composition result A.1, and an appropriately smaller noise parameter in Algorithm 1. O

C LOWER BOUNDS FOR /; DISTANCE QUERIES

First we obtain lower bounds for the one-dimensional case, which is then extended to the arbitrary
dimensional case. Recall the definition of the dimensional distance query problem: Given a dataset
X of n points in the interval [0, R], an algorithm outputs a data structure which given query y € R,
computes the value ) |y [z —y|. Our lower bound idea is via the ‘packing lower bound” technique
used in DP (Hardt & Talwar, 2010; Beimel et al., 2014; Vadhan, 2017b). At a high level, we construct
many datasets which differ on very few points. By the restrictions of DP, the ¢; distance queries on
these datasets must be similar, since they are all ‘nearby’ datasets. However, our construction will
ensure that these different datasets result in vastly different true ¢, distance queries for a fixed set of
queries. This implies a lower bound on the additive error incurred from the privacy requirements.

Theorem C.1. For sufficiently large n and any € < 0.2, any e-DP algorithm which outputs a data
structure such that with probability at least 2/3, the distance query problem is correctly answered
on any query y with additive error at most T, must satisfy T = Q(R/¢).

Proof. Let T be the additive error of an algorithm A as described in the theorem statement. Our
goal is to show that we must have T' > Q(R/¢). Note that crucially we know the value of 7. Since
the purported algorithm outputs an £-DP data structure, we use the value of 7" to design a ‘hard’
instance for the algorithm.

Let « € [0, 1] be a parameter. Define 2R different datasets as follows: we first put markers in the
interval [0, R] at locations kR* for all 0 < k < R!=“. At every marker besides 0, we either put 0
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or-y := [f‘gﬂ data points, and consider all such possible choices. The rest of the data points are put

at location 0. For sufficiently large n, this results in the claimed number of datasets.

Now for every such dataset D, define the function fp : R — R defined as

foy) =Y lz—yl.

zeD

We claim that the (exact) vector of evaluations

[fD(O)’fD<Ra)7fD(2Ra)’ e "fD(R)’fD(R+ Ra)]

uniquely determines D. Indeed, fp is a piece wise linear function consisting of at most R'~% 4 2
pieces. Its slopes can only change precisely at the locations kR“. Thus, exactly calculating fp ((k+
1)R™) — fp(kR®) gives us the exact values of the slopes, and thus allows us to reconstruct the piece
wise linear functions that comprise fp. Correspondingly, this allows us to determine which markers
contain a non zero (i.e. v) number of points, reconstructing D.

The second claim is that the vector of evaluations with entry wise additive error at most 7" allows
for the exact reconstruction of the vector of evaluations. This follows from the fact that the exact
evaluation values are multiples of YR and the additive error is small enough to determine the
correct multiple. Formally, we have that T < £yR® and since each fp(kR®) is a multiple of vR®,
any entry of a noisy evaluation vector with additive error at most 7" can be easily rounded to the
correct value, as it lies closest to a unique multiple of yR®.

Now the rest of the proof proceeds via the ‘packing’ argument for proving lower bounds in differ-
ential privacy. Let @ be the queries defined above and let Pp be the set of allowable vectors of
evaluations (i.e. those that achieve entry wise error of at most T") for dataset D on (). As argued
above, the probability that A on dataset D outputs a vector in Pp is at least 2/3, and all these sets
Pp are disjoint as argued above. Furthermore, all datasets differ in at most

,lefa S 3TR17204 + lea
data points. Let D’ be the dataset with all points at 0. Group privacy gives us

1> Pr(A(D',Q) € Pp)
D
>3 e GTRTHRTNE . pr(A(D, Q) € Pp)
D
2 1—-2«a 1—a
> 4 —(3TR +R'")e
> %: 3¢

> 2R1—(x ) 267(3TR172Q+317(¥)6

It follows that
11—« Y Y
STRI-2 4 Rl-o > log(2)R n log(2/3) _, o > log(2)R™ | log(2/3) R*
5 5 3e 3eR1—22 3
Taking a@ — 1, we can check that for e < 0.2, T > 0.02R/e = Q(R/¢), as desired. O

Let us now extend the lower bound to d dimensions. Recall the problem we are interested in is
the following: Given a dataset X of n points in R? with every coordinate in the interval [0, R],
give an algorithm which outputs a data structure, which given a query y € R?, computes the value
> zex Iz —ylli. The goal is to prove that ~ Rd/e additive error is required for answering queries
of this form. For a vector v, let v(j) denote its jth coordinate.

Theorem C.2. For sufficiently large n and R as a function of d and sufficiently small constant ¢,
any £-DP algorithm which outputs a data structure which with probability at least 2/3 answers the

above query problem for any query with additive error at most T', must satisfy T = Q(Rd/e).

Proof. We reduce the 1 dimensional version of the problem to the d dimensional version which
allows us to use the lower bound of Theorem C.1. Pick « such that (Rd)* = Rd/log(Rd) and
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suppose R satisfies R > 2? for a sufficiently large constant C. Furthermore, assume that R is
an integer multiple of R“. Now consider the lower bound construction from Theorem C.1 where
the parameter ‘R’ there is replaced by Rd and « is as stated. Theorem C.1 implies that an e-DP
data structure which with probability at least 2/3 correctly answers any distance query for a one
dimensional input y must have additive error at least Q((Rd)*/e) = Q(Rd/e). We will now show
how to simulate any one dimensional query y on this lower bound instance with one d dimensional
query on a related d dimensional instance.

To construct the d dimensional instance, consider the interval [0, Rd] as d different blocks, separated
by integer multiples of R as [0, R), [R,2R), ... etc. Note that in the one dimensional hard instance
we are considering from Theorem C.1, we can always ensure that every one of these d blocks
contains the same number of points (For example by only considering such ‘balanced’ allocations
of dataset constructions in the marker construction from C.1. Due to our choice of R and «, it is
casy to see that the number of such balanced allocations is at least 22(BD" ™)) Let X be this
one dimensional dataset and let n’ be the number of (one dimensional) points that are contained
within each block. Consider the d dimensional dataset on n’ points where the (one dimensional)
points in the first block are the first coordinate projections of the dataset and in general, the points
in the ¢th block are the ¢th coordinate projections of the dataset. Since every block has the same
number of points, we can construct such a dataset which is consistent with respect to these coordinate
projections®. Denote this dataset by X 4. For a one dimensional query y, make a vector §j € R% which
just has y copied in all its coordinates.

We have
D ly—al= 3 > ly-al
reX blocks b x€b
d
=> > =)~ 90
j=lzeXy
= > llz =l
rx€EXy

Thus, the exact value of the single d dimensional query we have constructed is equal to the exact
value of the one dimensional query we are interested in. This reduction immediately implies that
any ¢-DP data structure which with probability at least 2/3 answers all d dimensional queries with

additive error at most 7" must satisfy 7' = €)(Rd/¢), as desired. O

Remark C.1. The lower bound is slightly stronger than stated since we only assume the query
vectors have their one dimensional coordinates bounded by O(R).

Remark C.2. There is a gap between our upper and lower bounds. Our £-DP data structure has
a O(d*®) dependency whereas the lower bound we prove only states Q)(d) dependency is required.
Note that our approx-DP result of Theorem B.4 has only O(d) dependency, but the lower bound we
proved only applies to pure DP algorithms. It is an interesting question to close this gap between
the upper and lower bounds.

D COROLLARIES OF OUR /; DATA STRUCTURE

Our high dimensional ¢; distance query result implies a multitude of downstream results for other
distances and functions. For example, it automatically implies a similar result for the {5 case via
a standard oblivious mapping from /5 to ¢1. A similar procedure was applied in Huang & Roth
(2014), but using our version of the ¢; distance query obtains superior results for the /o case. The
guarantees of the mapping is stated below.

Theorem D.1 (Matousek (2002)). Let v € (0,1) and define T : R — RF by

d
1
T(x)1:@ZZ”x]7 Z:].,,k‘
j=1

3Note there are many ways to assign the coordinate projections to the points in R%. We can just consider
one fixed assignment.
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where 8 = \/2/m and Z;; are standard Gaussians. Then for every vector x € R, we have

—C 2
Pr((1—y)[lzllz < [T(2)]s < A +)[|lzl2] > 1—eF,
where ¢ > 0 is a constant.

The mapping 7" given by Theorem D.1 is oblivious to the private dataset and can be released for free
without any loss in privacy, and the distances are preserved up to a 1 + « multiplicative error if we
take k = O(log(n) log(1/a)/a?) for a dataset of size n.

Corollary D.2. Let X be a private dataset of size n with a bounded diameter of R in {5. There
exists an -DP data structure such that for any fixed query y, with probability 99%, it outputs Z

satisfying |Z =" cx lle —ylz] < @Y ex llz —ylz + O (7).

Proof. We sketch the argument since it is follows from a combination of the prior listed results.
We just apply the embedding result of Theorem D.1 as well as the guarantees of our ¢; distance
query data structure from Theorem B.3. The only thing left to check is the bounds of the individual
coordinates after we apply the embedding. Note that with high probability, every coordinate after
applying 7" will be bounded by O(Roﬂ).“ The bound follows by just plugging into the statement of
Theorem B.3. O

Note that minor modifications to the one dimensional ¢; algorithm also implies the following:

Corollary D.3. Let p > 1 and suppose all points in our one-dimensional datasets are in the interval
[0, R]. Let Z be the output of Algorithm 3 but with o scaled down by a factor of p and all counts
weighted instead by (R/(1 + a/p)? )P in Lines 8 and 13 of Algorithm 3. Let Z' =" _ |y — z|P

be the true answer. We have B |Z — Z'| < aZ' + O (M).

ev/a

The higher dimensional version also follows in a similar manner to Theorem B.3 due to the decom-
ey e d . .
posibility of £ : >° v [z —yllb =325 Xsex [2(7) —y(i)IP.
Corollary D.4. Let Z be the output of Algorithm 4 but with modifications made as in Corollary D.3.
~ 1.5

Let 7' = ) cx lly — =||b be the true answer. We have, B |Z — Z'| < aZ' + O (R%%\/‘)&g(l/m)
Furthermore, Algorithm 4 is e-DP. Similarly to Theorem B.4, we can get an (g,0)-DP algorithm
satisfying B|Z — Z'| < aZ' + O (W).

D.1 AN ALTERNATE ALGORITHM FOR E%

. . . o »
We give an alternate, simpler algorithm, with slightly better guarantees than our general /7 result.

Corollary D.5. There exists an e-DP algorithm which answers the (3 distance query with additive

R34\ . . .
error O (?> in expectation and requires O(d) query time.

Proof. The following identity holds:

Dollz—yllz=Y le—EX|5+nlly—EX|3
zeX reX

where EX = L 3~ . x. Note that the first quantity }___  [|[# — E X ||3 is a scalar which does not

depend on the query y. Thus, an alternate e-DP algorithm in the ¢3 case is to first release a (noisy)
version of 3 ||z — E X||3 as well as a noisy E X.

If all coordinates are in [0, R], then changing one data point can change every coordinate of E X by
a R/n factor. Analyzing Y _ ||z — E X3 is a bit trickier since changing one data point changes

“We need to clip the the coordinates of the embedding output so that every coordinate lies in the correct
range. But this event happens with high probability, so it does not affect the distance-preserving guarantees.
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a term in the sum as well as E X. Let z denote the new mean after changing one data point in X
and let E X denote the old mean. We have

Yollz—zl5=> le—EX+EX — 2|3
rzeX reX
=Y (lz-EX3+2(z-EX,EX —2) + |[EX — 2[3).
rzeX

Now n||EX — 2|3 < O(R?d/n) and

Y 2w -EX,EX —2)|<2) |z —EX|2 |z —EX|2 < O(R?).

zeX zeX
Thus, the simple Laplacian mechanism of adding Laplace(O(R2d/c)) and releasing the value
of > cxllz — EX||3 ensures £/2-DP. Then we can release the vector EX by adding
Laplace(O(Rd/(ne))) noise to every coordinate, to also ensure ¢/2-DP. Overall, the algorithm
is e-DP. To analyze the error, note that we get additive error O(R?d/e) from the noisy value
> eex lz —EX|3. Assuming n is sufficiently large, we can easily repeat a calculation similar
to above which shows that the overall additive error is at most O(R?d/¢) in expectation. Indeed,
letting z denote the noisy mean we output, we have

lly = 2115 = lly —EX|3] < 2lly - 22 - [l = EX|l2 + [|l= = EXJ3,

from which the conclusion follows. O

E IMPROVED BOUNDS FOR THE EXPONENTIAL AND GAUSSIAN KERNELS

In this section we provide our bounds for the exponential and Gaussian kernels, improving the query
time of the result of Wagner et al. (2023) stated in Theorem 2.3.

Theorem E.1. Let o € (0,1) and suppose n > O (zX5). For h(z,y) = ||z — yl|2 and ||z — y
there exists an algorithm which outputs an e-DP data structure for the kernel f(x,y) = e~ M=)

with the following properties:

2
2

1. The expected additive error is o,

N

The query time is O (d + ﬁ)
3. The construction time is O (nd + %)
4. and the space usage is O (d + a—ﬂ)

Note that our bound improves upon Wagner et al. (2023) in the large dimension regime d > 1/a?,
by disentangling the factors of d and 1/«. We prove this via a general dimensionality reduction
result, which maybe of general interest. Note that our dimensionality reduction result also implies
improved bounds for KDE queries in the non-private setting as well, as elaborated in Section G.

E.1 DIMENSIONALITY REDUCTION FOR GAUSSIAN KDE

We obtain general dimensionality reduction results for the Gaussian and exponential KDE, using
variants of the Johnson-Lindenstrauss (JL) transforms. See 2 for an overview and motivations.

Theorem E.2 (Dim. Reduction for Gaussian and exponential kernels). Let G : R? —

ROU0s(1/2)/0%) pe the standard Gaussian JL projection where o < 1 is a sufficiently small con-
stant. Fix a query y € R%. Let

1
= m Z f(x7y)a
reX
i ﬁ S £(Ga,Gy)
zeX

for f(z,y) = e~ le=vlz o f(z,y) = e Io=YI5 Then, E |z — 2| < «.
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As stated, Theorem E.2 requires a projection matrix of dense Gaussian random variables, making the
projection time O(d /a?). We can speed this up by using the fast JL transform of Ailon & Chazelle
(2009), which only requires O(d + 1/a?) time, a significant speedup in the case where the original
dimension d is large.

Corollary E.3. The same guarantees as in Theorem E.2 holds if we use the fast JL transform and
project to O(log(1/a)? /a?) dimensions.

In the proof of Theorem E.2, we use the following facts about a standard Johnson-Lindenstrauss
(JL) projection using Gaussians:

Lemma E.4 (Indyk & Naor (2007); Narayanan et al. (2021)). Let x be a unit vector in R and let
G be an (appropriately scaled) Gaussian random projection to k dimensions. Then for t > 0:

Pr(||Ga|| — 1] > t) < e *H/5,
and

Pr(||Gal| < 1/t) < (i’)k

Proof of Theorem E.2 . We give the full proof for f(z,y) = e~ l*=¥ll2. Carrying out the identical
steps with very minor modifications also implies the same statement for f(z,y) = e~ “f”*y”g, whose

details are omitted. Fix a z € X. We calculate E | f(z,y) — f(Gz, Gy)| (note the randomness is
over (7). We consider some cases, depending on the value of f(z,y).

Case 1: f(z,y) < a. In this case, if |Gz — Gyll2 > ||z — y||2, then f(Gz,Gy) < a, so the
additive error | f(x,y) — f(Gz,Gy)| < a. Thus, the only relevant event is if the distance shrinks,
ie., |Gz — Gyll2 < ||z — yll2. If f(Gz,Gy) < 3« after the projection, then the additive error
|f(z,y) — f(Gz,Gy)| < O(«). Thus, we just have to consider the event f(Gz, Gy) > 3a.

For this to happen, we note that ||z — y||2 > log(1/a), but |Gz — Gy||2 < log(a™!/3). Thus, the
distance has shrunk by a factor of

|Gz = Gylls = log(a=1/3) log(a=t/3)  * log(a=!/3)’

By setting k = O(log(1/)3) and t = O(1/log(1/c)) in Lemma E.4, the probability of this event
is at most «, meaning the expected additive error E | f(x, y) — f(Gx, Gy)| can also be bounded by c.

lz—yll> _ loga™' _ log(3)+logla”l/3) ., =~ log(3)

Case 2: f(z,y) > «. This is a more involved case, as we need to handle both the sub-cases where
the distance increases and decreases. Let f(z,y) =r > .

Sub-case 1: In this sub-case, we bound the probability that f(Gz, Gy) < r — a/2. The original
distance is equal to log(1/7) and the new distance is at least log((r — a;/2)~!). The ratio of the new
and old distances is g(r) = log(r — a/2)/log(r). Writing r = wa,/2 for w > 2, we have

_log((w —1)a/2)  log((w —1)/w-wa/2) log(1 —1/w)
9(r) = log(wa/2) log(wa/2) =1+ log(wa/2)

As |log(1l — 1/w)| = O(1/w) for w > 2, it suffices to upper bound |wlog(wa/2)| in the
interval 2 < w < 2/a. One can check that the upper bound occurs for w = 2/(ec), resulting
in log(1 — 1/w)/log(wa/2) = Q(«). Thus by taking k = O(log(1/a)/a?) in Lemma E.4, the
probability that f(Gz, Gy) < r — «/2 is at most a.

Sub-case 2: In this sub-case, we bound the probability that f(Gz, Gy) > r + /2. Again the ratio
of the old and new distances is at least log(r)/ log(r + a/2). Writing r = wa/2 for w > 2, we have
log(r)  log(wa/2) 14 log(1—1/(w+ 1))
log(r +a/2)  log((w+1)a/2) log((w +1)a/2)
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Thus a similar calculation as above implies that the probability of f(Gz, Gy) > r + a/2 is at most
a by setting k = O(log(1/a)/a?) in Lemma E.4.

Altogether, we have bounded the probability of | f (Gx, Gy)— f(x, y)| > «/2 by at most «, meaning
E|f(Gz,Gy) — G(z,y)| < a, as desired.

Then by linearity and the triangle inequality, it follows that
. 1
Elz =2 < 157 2_El (@) = f(Co, Gy)| < 57 ZO
as desired. O

We now prove Corollary E.3 where we use the fast JL transform of Ailon & Chazelle (2009). How-
ever, the fast JL transform, denoted as II, does not exactly satisfy the concentration bounds of
Lemma E.4. In fact, only slightly weaker analogous concentration results are known. Nevertheless,
they suffice for our purposes. We quickly review the concentration inequalities known for the fast
JL transform and sketch how the proof of Theorem F.2 can be adapted.

Theorem E.5 (Makarychev et al. (2019)). LetII : R? — R™ be the fast JL map of Ailon & Chazelle
(2009). Then for every unit vector x € R%, we have:

1. Ift < 52 then

27?’1,
Pr(||[Tz|3 — 1] > ) < e~ 05%),

2. If 80 <t <1, then
Pr(||[Tz|3 — 1] 2 ) < =2V,

3. Ift > 1, then
Pr([|[Tz|2 — 1| > ) < e~ 2(Vim),

Proof of Corollary E.3. We sketch the modification needed and everything else is identical to the
proof of Theorem E.2. Going through the proof, we can check that Case 2 is the only bottleneck that
potentially requires a higher projection dimension than Theorem E.2. Here, we need to sett = «
in Theorem E.5 and the first inequality there is relevant. However, due to the logm factor in the
denominator, we require an additional log(1/«) factor in the projection dimension to achieve the
same probaiblity of failure as in the proof of Theorem E.2. O

Proof of Theorem E.1. We simply apply our dimensionality reduction result of Corollary E.3 in a
black-box manner in conjunction with the data structure of Theorem 2.3 from Wagner et al. (2023):
First we project the datapoints to dimension O(1/a?) and build the data structure on the projected
space. We also release the fast JL projection matrix used which is oblivious of the dataset so it leaks
no privacy. Finally, to compute a KDE query, we also project the query vector y using the fast JL
projection and query the data structure we built in the lower dimensional space. The construction
time, query time, and space all follow from the guarantees of the fast JL transform Ailon & Chazelle
(2009) and Theorem 2.3 from Wagner et al. (2023). O]

F NEW BOUNDS FOR SMOOTH KERNELS

In th1s section, We give new bounds for prlvately computing KDE queries for the kernels f(x,y) =
and . Our main result is the following.

1+Hr yll2 ’1+Hac —-yll3°

Theorem F.1. Let o € (0,1) and suppose n > O (5Lkz). For the kernels f(z,y) = m

and f(x,y) = m, there exists an algorithm which outputs an -DP data structure with the

1+Hz ylla

following properties:

1. The expected additive error is o,
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2. The query time is O (d + %),
3. The construction time is O (nd + %),
4. and the space usage is 0 (d + i)

For the kernel f(x,y) = we can obtain the following:

1

I+[z—yll’

1. The expected additive error is a,

2. The query time is 0) (a%)

3. The construction time is O ( g—gl)
. A (d

4. and the space usage is O (?)

The road-map for this section is described in two steps. First, we give new dimensionality reduction
results for the first two kernels which obtain the stronger relative error guarantee. Then we show
how to combine our dimensionality reduction result with classical function approximation theory to
reduce the smooth kernel case to our prior Gaussian and exponential kernel result of Theorem E.1.
These results assume a similar condition on 7 as in our Theorem E.1 and prior works Wagner et al.
(2023): n > O ( L ) We present our novel dimensionality reduction for the kernels f(x,y) =

ag?
and

1 1
I+lz—yll2 I+[lz—yl3"

F.1 DIMENSIONALITY REDUCTION

Our main result is the following. As before, we assume the projection is chosen independently of
the dataset and query.

Theorem F.2 (Dim. Reduction for Smooth Kernels). Let G : R? — RY/ °* be a Gaussian JL
projection where o < 1 is a sufficiently small constant. Fix a query y € R%. Let

Z:%Zf(xvy)a

zeX

5= \Tll > f(Gx,Gy).

zeX
for f(z,y) = m or f(z,y) = m Then, E |z — 2| < O(az).

A similar corollary as Corollary F.3 also applies to the exponential and Gaussian KDE case.

Corollary F.3. The same dimensionality reduction bound, up to constant factors, holds as in Theo-
rem F.2, if we use the fast JL transform.

Proof of Theorem F.2. We give the full proof for f(z,y) = m Carrying out the identical

steps with small modifications also implies the same statement for f(z,y) = whose

1
I+[[z—y[l3°
details are omitted. Fix a z € X. We calculate E | f(z,y) — f(Gz, Gy)| (note the randomness is
over (). First we consider the case where the distance |Gz — Gyl|2 expands. Let A; be the event
that

|Gz = Gyll2 = [lz — yl2
[l = yll2

€ [at,a(i + 1))

25



Published as a conference paper at ICLR 2024

for ¢ > 0. We have

r —i?/8 1 1 )
S PHALELS )~ 16 G 141 < S (S - e )

>0 >0

=Y e 2 —yll2 a(i+1)

= I+ o=yl 1+ [e—yl(l+a+1)
< Zeﬂ'?/sl ai+1)

= +llz =yl

« -2

Y NT(i41)e

e
< To

L+ |z —yll2

‘We now handle the cases where the distance shrinks. We further subdivide this case into sub-cases
where the distance shrinks by a factor ¢ satisfying 1 < ¢ < 6 and the sub-case where t > 6. To
handle the first sub-case, let [3; be the event that

2 —yll2 ‘ .
—€c[l+ o, 1l +a(t+1
Gz =Gyl <! i+1)
for 0 < i < 5/a. Note that
1 1
ST gl Tl -yl
eyl ai+ 1)
[z —yla+1 14z —yl2+ali+l)
_ali+l)
T 14tz -yl

Furthermore, under the event 5;, we have that

1 at
- — [|Gx — G >(1-— — > — ||z — .
o=yl = 162 = Gulle = (1= 1 ) o= vl = 5 o = ol

Thus,
32 ot +1
S PBIENS () — f(Go Gyl | B < YD e CUED
0<i<5/a 0<i<5/a L+ e =yl
(0] :2
< 72(’L+ 1)671 /288
T e =yl 2
< 160a
Ltz =yl
For the other sub-case, write it as the union U2 ; D; where D is the event that
3.91t1 > M > 3.20
|Gz = Gyll2

i.e., |Gz — Gyl|2 shrinks by a factor between 3 - 2 and 3 - 2°7!. Lemma E.4 gives us

1\" 1 1
Y pipd Elsta) ~ 1660l 12032 (5) (e~ 17 o)

i>1
1/a? i+1
<y (1> oo
20 L+ flz =yl

i>1
1/a%-1
2 1
=T+ 0zl Z(2>
i>1
2c
< —
T+ [z — vl
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Together, the above cases imply that
1
E|f(z,y) — f(Gz,Gy)| < O(a) » ————.
|f(z,y) = )| < 0(a) T
Then by linearity and the triangle inequality, it follows that
1 1 1
Elz —2[ < 57 ) _Elf(z,y) — f(Gz,Gy)| < O() - = D 7~ < O(az),
¥ > ¥ 2 T Tl

as desired. O

Proof of F.3. We outline the steps in the proof of Theorem F.2 which required concentration bounds
for the standard JL transform stated in Lemma E.4, and show how they can be appropriately replaced
by the guarantees of Theorem E.5. The first step is the sum bounding the contribution of the events
A;, defined as the event where
|Gz = Gyll2 = [lz = yl2
e — ylls

for¢ > 0. Here, for some smaller values of 7, the second condition of Theorem E.5 is appropriate and

€ [at,a(i + 1))

for the rest, the third event is appropriate. Since the sum ) .., ieVi converges to a constant, this
portion of the proof carries through. The same comment applies where we bound the contribution
of the events B;. The last place we need to check is when we bound the contribution of the events
D;. Here, the third statement of Theorem E.5 is relevant, and the calculation boils down to showing

the sum Y-, e~ 2(V32'=1) . 2% converges to a constant, which is clearly true. O

F.2 PROOF OF COROLLARY 3.2

Proof of Corollary 3.2. Let f(z) be the approximation to x~! in the interval [, 1] given by Theo-
rem 3.1 for 6 = O(«). Now consider g(z) = «- f(ax). For any z € [1,1/a], we have

lg(@) =27 = la- fax) — 27! < |§/2] < O()

where the first equality follows from the fact that « -  is in the interval [«, 1] for 2 € [1,1/a]. Thus,
g(z) is an additive O(«) approximation to ! in the interval [1,1/«]. Now since g and z~! are
both decreasing functions of x, and ' <aforz>1 /a, it immediately follows that g(x) is an
O(«) additive error approximation for z~! for all x > 1 (note the constant in the O notation has
increased). The bounds on the coefficients of g in its exponential sum representation follows from
the guarantees of Theorem 3.1. O

We are now able to prove Theorem F.1.

Proof of Theorem F.1. The claimed guarantees follow from a simple combination of the tools we
have developed so far, and a black-box appeal to the result of Theorem 2.3. For the kernel f(x,y) =
T —y], > We can first perform dimensionality reduction to O(1/a?) dimensions via an oblivious
fast JL projection as stated in Corollary F.3. We then use the reduction given by Theorem 3.3
to instantiate O(log(1/«)) copies of private exponential KDE data structure of Theorem 2.3. The

same procedure works for the kernel f(xz,y) = WI*W We don’t have a dimensionality reduction
2

result for the kernel f(x,y) = m, so we just repeat the same steps as above, except we do
not perform any dimensionality reduction. The guarantees follow from the guarantees of Theorem

2.3 along with the black box reduction given in Theorem 3.3. O

G FASTER KERNEL DENSITY ESTIMATION IN THE NON-PRIVATE SETTING

Our novel dimensionality reduction results also obtain faster query algorithms for KDE queries in
the non-private settings as well in the high-dimensional regime where d >> 1/a? where d is the
original dimension and « is our desired additive error. Indeed, we can combine our dimensionality
reduction bounds of Theorems E.2 and F.2 with any KDE data structure by first projecting to a
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reduced dimension and then instantiating the KDE data structure in the projected space. Since the
dimensionality reduction preserves kernel sums, we can guarantee accurate answers in the projected
dimension. In particular, by combining our dimensionality reduction results (the fast JL versions
of corollaries E.3 and F.3) with prior KDE data structures whose preprocessing and query times are
listed in Table 2, the following new results easily follow for KDE queries. They give improved query
times for the Gaussian, exponential, and the Cauchy kernels. For the Gaussian and exponential
kernels, we project to dimension O(1/a?) where « is the additive error that prior data structures
incur and for the Cauchy kernel, we project to dimension O(l /€?), where 1 + ¢ is the multiplicative
factors that prior data structures incur.

Theorem G.1. By combining with Charikar et al. (2020), for the Gaussian and exponential kernels,

we obtain a data structure which gives a (1 + ¢) multiplicative and « additive error guarantee for
any fixed query with 90% probability with the following preprocessing and query time:

e Gaussian kernel:  the preprocessing time is O (mo?igwm) and query time

O (d + maztrem )-

e Exponential kernel: the preprocessing time is O(#ﬁo(n) and query time
A 1
0 (dJr W)

For the kernel EL by combining with Backurs et al. (2018), we obtain a data structure which
2

1
1+||lx—
gives a (14 ¢) multiplicative error with 90% probability for any fixed query with preprocessing time
O(nd/e?) and query time O(d + ).

Table 2: Prior non-private KDE queries. The query times depend on the dimension d, accuracy &,
and additive error oe. The parameter /3 is assumed to be a constant and log factors are not shown.

Kernel flz,y) Preprocessing Time | KDE Query Time Reference
: ETPS P :

Gaussian € lle=yll2 W Wm Charikar et al. (2020)
Exponential e~ llz=vl: Pt uys S Charikar et al. (2020)
Exponential e~ llz=vll2 2,05 52%05 Backurs et al. (2019)

Laplacian e~ llz=vllx —nd s Backurs et al. (2019)

e € (é
Rational Quadratic W g—g’ =1 Backurs et al. (2018)
2

H ADDITIONAL EXPERIMENTAL DISCUSSION

Note a simple but important point: £, are input parameters, so we cannot just output the data
structure or ML model with the highest accuracy. The data structure or model we output must
satisfy the given privacy guarantee. Thus, accuracy vs privacy vs runtime are non-trivial trade-offs.

Methodology of Yu et al. (2020). We use the “GP” baseline from Yu et al. (2020), which trains
a linear classifier with DP-SGD (Abadi et al., 2016) on top of features from SimCLR (Chen et al.,
2020b). Deviating from the vanilla DP-SGD, GP uses all samples to compute gradients at every
iteration (i.e., no subsampling) as it was found to perform better. In our implementation, we use
the “r152_2x_sk1” SimCLR network released from Chen et al. (2020b) to extract the features of the
images. When training the linear classifier, we do a grid search of the hyper-parameters (learning rate
€ [0.1,0.05,0.1], gradient clipping threshold € [1.0, 0.1, 0.01], noise multiplier € [100, 500, 1000])
and take the best combination. Following the common practice (Yu et al., 2020), we ignore the
privacy cost of this hyper-parameter tuning process.

Methodology of De et al. (2022). De et al. (2022) pretrains the WRN-28-10 network (Zagoruyko
& Komodakis, 2016) on ImageNet and fine-tunes it on CIFAR10 with DP-SGD (Abadi et al., 2016).
We use their official code for the experiments. We do a grid search of the noise multiplier (€
[9.4,12.0,15.8,21.1,25.0]) where the first four values are used in the paper and the last value is an
additional one we test. We report the best results across these values and ignore the privacy cost of
this hyper-parameter tuning process.
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Our hyper-parameters. For our method, we take the embeddings from the pre-trained
“r152_3x_sk1” SimCLR network released from Chen et al. (2020b). Our embeddings were in dimen-
sions 6144. Since we are computing the /5 distance squared, we can apply Johnson-Lindenstrauss
to reduce the dimensionality, without any privacy loss. Furthermore, we can clip the embeddings
as well, which reduces the overall sensitivity of our algorithm (to reduce the R dependency in Sec-
tion D.1) Thus, our hyper-parameters were the projection dimensions, which we looped from 100 to
2000 and the clipping threshold, which we picked from 10 choices in [0.001, 1].

Additional Results. In Figure 4, we also show the € vs accuracy trade-off, ignoring runtime. We
plot accuracy as a function of the privacy . J is always 10~°. We also plot the best performance
of every tested method: we iterate over the hyper-parameters of all methods including both De et al.
(2022) and Yu et al. (2020) using their code, and we display the best accuracy for every value of ¢.
Hyper-parameters are described above. Note the trivial accuracy is .1 via random labels. We see that
for small values of ¢, we obtain the second best results, but lag behind both prior SOTA for large ¢
regime. The accuracy in the large € > 1 regime are 0.87,0.93, 0.95 respectively for ours, Yu et al.
(2020), and De et al. (2022). However, our approach has a major run-time benefit compared to these
prior works, as argued in Section 4. Such a boost in runtime may justify the drop in accuracy in
some applications.

Note that the main bottleneck in accuracy of our method is the quality of embeddings used. If
we ignore all privacy constraints, then our average similarity based methodology obtains accuracy
close to 0.87 without accounting for privacy. This is very close to the performance obtained by our
€ = 1 private data structure of Figure 4. Thus, we cannot hope to do better in terms of accuracy.
However, our method is extremely flexible in the sense that better initial embeddings, for example
from other models or models pre-trained on additional or different data, can automatically lead to
better downstream performance.
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Figure 4: Accuracy of all methods as a function of ¢, ignoring all run-time constraints. The best
hyper-parameter choices are used for all methods.

I FUTURE DIRECTIONS

We give improved theoretical algorithms for computing similarity to private datasets for a wide range
of functions f. Our algorithms have the added benefit of being practical to implement. We view our
paper as the tip of the iceberg in understanding similarity computations on private datasets. Many
exciting open directions remain such as obtaining improved upper bounds or showing lower bounds
for the f’s we considered. It is also an interesting direction to derive algorithms for more compli-
cated ‘similarity’ measures, such as Optimal Transport (OT), although it is not clear what notion of
privacy we should use for such measures. Lastly, generalizing our proof-of-concept experiment on
DP image classification to text or other domains, using embeddings computed from models such as
LLMs, is also an interesting empirical direction.
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