A Additional derivations

A.1 Derivation of the MSE decomposition

Definition A.1 (Mean Squared Error (MSE)). The mean squared error of an estimator is
MSE(f) = E[(f(x) — ).

Proposition A.2. MSE(f) > CEy(f)?

Proof.
MSE(f) :=E[(f(z) - ))*] = E[((f(z) — Ely | f(2)]) + (E[y | f(2)] —9))’]
=E[(f(z) —Ely | f())’] +E[(E[y | f(2)] —y)’]
=CE2

+2E[(f(z) — Ely [ f(2))(Ely | ()] —y)]

which implies
MSE(f) — CEx(f)* =E[(Ely | f(x)] —y)’]
+2E[(f(z) = Ely [ f(@))(Ely | f(2)] - y)]
=E[(Ely | f(x)] = 9)°] + 2E[(f (2)Ely | f(2)]
— 2E(f(x)y] — 2E[Ely | f(2)]*] +2E[Ely | f(x)]y]]
=E[E[y | f(2)]] + E[y*] - 2E[Ely | f(x)]y]
+ 2E[(f (=)Ely | f(=)]] — 2E[f()y]
—2E[E[y | f(2)]] + 2E[E[y | f(2)]y]]
=E[y*] + 2E[(f(2)Ely | f(2)]] - 2E[f(2)y]
~E[E[y | f(2))’]
=E[2f(z) =y —Ely | f(@))(E[y | f(2)]) —y]
=E[(f(z) = y)(Ely | f(2)] = y)]
+E[(f(z) = Ely [ f(2)])(Ely | f(2)] —v)]-

By the law of total expectation, we will write the above as

MSE(f) — CEx(f)* = E[E[(f(z) — »)(Ely | f(2)] —v)
+(f(@) —Ely | f(@)D)(E]y | f(=)] —y) | f@)]].

Focusing on the inner conditional expectation, we have that

E[(f(z) = 9)(Ely | f(2)] —y) + (f(2) = Ely | @) (E]y | f(2)] —y) | f(z)]
=Ely | f@)I(f(z) = DE[y [ f(2)] = 1) + (1 =Ely | f(@))f(=)Ely | f(2)]
+Ely | f(2)](f(z) —Ely | f(2)])(Ely | f(2)] -1)
+ A =Ely | f(@D(f () - Ely | f(@)DEy | f(2)]
=(1-Efy| f(@)Ely | f(z)] =0 Vf(z)

and therefore
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MSE(f) — CEx(f)* =E[(1 — Ely | f(x))E[y | f(=)]] >0
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The expectation in Equation (23) is over variances of Bernoulli random variables with probabilities

Ely [ f(2)]-
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A.2 Derivation of Equation (3)

By considering y € {0, 1}, we have the following:

_ Ly U Pr) o (f(2), v
24
Ely | f(z y;yykpy\f(x ) (k) P (J @) (24)
Py (@) vk = 1) prayy(F@)lyr = Dpy(yr = 1) 25)
Pf() (f(f)) Py (f(2))
s S K@) ) o
> Zz 1 k(f(@); f ()
5 (< Oty =BT T0) @
A.3 Derivation of Equation (6)

We consider the optimization problem for some A > 0:

f:agggiNBEU)+ACExff) (28)

Using Equation (23) we rewrite:
MSE(f) + ACEx(f)? = (1+ ) MSE(f) — A(MSE(/) — CEx(/)?)

= (1 ) MSECS) 28| (1~ Bly | £@))El | £)]]. 9

Rescaling Equation by a factor of (1 + \)~! and a variable substitution y = H—)\ €1[0,1),w
have that:

= in( MSE Eao(f)?

f = argmin (MSE(f) + A CEa(/)?)

= arg min (MSEm —E [(1 ~Ely | f(=)])Ely| f(z)]D

= arg min (MSE(f) +9E([Ely | f(2)]?] ) - (30)
B Bias of ratio of U-statistics
The unbiased estimator for the square of a mean p% is given by:

— 1 n.on 2 n
2 =~ XiXj = ——F Xl -y x?2). 1
i

This is a second order U-statistics with kernel h(x1, z2) = 2125. The bias of the ratio of two of these
estimators converges as O (1), as the following lemma proves.

Lemma B.1. Let 61 and 05 be two estimable parameters and let Uy and Uy be the two corresponding
U-statistics of order m1 and mo, respectively, based on a sample of n i.i.d. RVs. The bias of the ratio
U, /Us of these two U-statistics will converge as O (%)

Proof. Let R = 61/02 be the ratio of two estimable parameters and » = Uy /U, the ratio of the
corresponding U-statistics. Note, that U; is an unbiased estimator of 8;, E[U;] = 6;, 7 = 1, 2, however,
the ratio is usually biased. To investigate the bias of that ratio we rewrite

—1
U Sl 2R Y PR bl (32)
m 0,

16




—1
If UQT*QGQ < 1, we can expand <1 + []20292) in a geometric series:
(Ur — 61) Uz —02)  (Uz—02)* (Us—062)° (U~ 62)*
= 1+ ——- 1-— — — ...
r R( + 7, o + 52 63 + 6
(33)
(Ur—61) (Uz—0) (Uz—0)(Ur—61)
—rl1 _ _
R( M , 6,6,
(Uz = 62)* (U2 =62)*(Ur —61) _ (U2—62)° (U2 =02)°(Us —61)
0 020, 7 630,
Us — 65)* Uy —62)* Uy — 6
(a2 42) (G 2)4( ! 1)—...>. (34)
0 030,

If (1 > 0, a U-statistic U of order m obtained from a sample of n observations converges in
distribution [Shaol 2003|]:

Vi (U = E[U]) % N(0,m*G,). (35)
Keeping the terms up to © (+):
B Ui —=61) (Uz—62) (Uz—6)(Ui—61)  (Uz—62)° 1
e R<1 M , 66, e teln) ) 69

To examine the bias, we take the expectation value of this expression:

IE[(U1 - 91)] E[(UQ - 92)] E[(UQ —09)(Uy — 01)} E[(UQ - 02)2]
E[r] —R<1+ o - % - 66: + 2 +o
(37
‘We now make use of the following expressions:
E[(U1—61)] =E[(Uz —06,)] =0 (38)
]E[(Ug - 92)([]1 — 91)] = COV(UQ, Ul) (39)
E[(U; — 602)*] = Var(Us) (40)
(4D
Using these expressions the expectation of r becomes:
Cov(Us,Uy) = Var(Us) 1
Elr| = 1— — 42
[r] R( ba0, + 62 +o - (42)
Using Equation , the linearity of covariance and with Var(aX) = a? Var(X) we obtain:
1 1
Cov(Usy, Uy), Var(Us) € O (n) = E[r] = R<1 +0 (n)) (43)
O

C De-biasing of ratios of straight averages

Let X and Y be random variables and let ;1 x and py be the means of their distributions, respectively.
Consider the problem of finding an unbiased estimator for the ratio of means:
R=M (44)
KX
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A first approach to estimate this ratio R is to compute the ratio of the sample means: Let
(X1,Y7), ..., (X, Y,,) be pairs of i.i.d. random variables that are jointly distributed:

D YR (S
T_R_ ~ _1/'17—7.
px o o Xi X

(45)
This, however, is a biased estimator, which can be seen as follows (we follow [Tin, 19635} Ogliore
et al.,[2011]] here):

> o\ —1 > - -1
T_?_M«Y)<X><_<HY’M)O+X/M),
X px \py nx

By Ux
This has now the form of a converging geometric series. Thus, if

(46)

X —
“ﬂ<L 7
nx

we can expand (1 4 Xopx

-1
e > in a geometric series, which is defined as:

Zabk:a+ab+ab2+...: 1ab.
k=0

(48)

In our case we can identify a = R(l + Y;;”) and b = —X—4x

Ux
Thus, using the geometric series expansion, we can write:

V- X - X — ux)?
T:R<1+ uy>(1_< px) | (K =)
Hy nx

(X —px)?
Hx

1w

L &)t —>

I55%

=R(1+ (Y = uy) _ (X — px) B (X — px)(Y — py)
Hy KX My X
I (X —px)?(Y —py) (X —px)?
Hﬁ#y

X _ 2
n ( 2MX)
Ux
X PV ) | (Xt )
5% by 1

(50)
Neglecting higher order terms Since X and Y are U-statistics, we make use of the asymptotic

behaviour of U-statistics. If ¢(; > 0, a U-statistics U,, of order m obtained from a sample of n
observations behaves as n — oo like ([[Shaol 2003])):

Vi (Un —E[U,]) S N(0,m2¢y).

(51
As we seek an estimator that is unbiased up until order n~2 and since E[X] = ux, we can neglect
all terms of order 5 or higher since for n — oo:

(X — px)” € O(n™?)

(52)
(X = pux)' (Y = py) € O(n=2?) (53)
Therefore, we obtain:
v v v v v 2
A R(l + Y —py) _ (X — px) _ (X —px)Y — py) + (X 2MX)
oAy px py x S . (54)
L X PV mpy) (X mpx)® (X = px)? Y —py) | (X —HX)4)
1 by 5% Wy 155
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Identities to compute the terms of the series expansion of

E[X — px]

E[(X — ux)?]
o[(x- ux><y )
_MY>-

E|: X ,uX

Bias Using these expressions we can compute the expectation value of r = R:

1= Cov(X?3,

=E[Y —uy] =0
= Var(X) = %Var(X)
= Cov(X,Y) = %COV(X7Y)

= Cov(X2Y) — 2ux Cov(X,Y)

_ 1 2
== (COV(X ,Y) — 2ux Cov(X, Y))

= Cov(X?, X) — 2ux Var(X)

1 2
== Cov(X?, X) — —ahx Var(

3 _
=3 Var(X) Cov(X,Y) + O(n

3 _
=3 Var(X)? 4+ O(n™?)

]mﬂw3<1+;(wﬂx)_

Ux

B (Cov(X?,X) — 2ux Var(X)) _

X)
V) = 3ux Cov(X2,Y) + 3u% Cov(X
%)

= Cov(X?3, X) — 3ux Cov(X?, X) + 3u% Var(X)

¥)

Cov(X,Y) N 1 ((Cov(X?,Y) = 2ux Cov(X,Y))
n? Go0%

nx Ky

1w

The bias or Ris deﬁned as:

Bias(r) = [}

1 1y

_R 1 VargX) B
n\  p%

(COV(X2

X) - 2ux Var(X))

3Var(X) Cov(X,Y) N

)

mx py

Cov(X, Y)) N 1 ((COV(XQ,Y) —2ux Cov(X,Y))
n? 13y
3 Var(X) Cov(X,Y)

3 3
Hx Hx Ly
Therefore an unbiased version of r is:

1 /Var(X
Tunbiased = T — R<n< ( ) —

mx
~ (Cov(X?,X)

3 Var(X)?
n ar(X)

mx Ky
— 2ux Var(X))

3Var(X) Cov(X,Y) N

1% 115 1y

A corrected version of the estimator r = R is consequently given by:

Tcorr = T’(l - l (Vaz(\X) —
AT

(Cov(X2, X) — 2ji% Var(X))

fix by

1 iy
3Var( )COV(X Y)

Cov(X.Y) ) 1 ((COW, Y) = 2jix Cov(X,Y))

—

3

Hx “X/LY
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X)2>>

(55)
(56)

(57
(58)
(59)
(60)
(61)
(62)
(63)
(64)

(65)

(66)

(67)

(68)

) ) (69)

Cov(X,Y 1 /(Cov(X2,Y) —2uyx Cov(X,Y
)Y | 1 (Coto) =BGt )

X)2>>

(70)

(71)

(72)



In the above equation we again encounter rations of estimators which again might be biased. Since
we want to achieve a second order de-biasing we have to again recurse on the terms that have a O (%)
dependency. However, we do not have to recurse on the terms that have a O (#) dependency, since
any recursion would increase the power of the n-dependency. Therefore a debiased estimator up to

order O(n?) is:

1 1 v(X2,Y) — 2fix Cov(X,Y
Teorr :=T <1 - — <rl’; — 7«;‘) _ n2<(COV( > )/2\ //iXCOV( ) ))
_ B
~ (Cov(X?,X) —2fix Var(X))  3Var(X)Cov(X,Y) N 3Var(X) )
5 WX iy 5%
where
. Cov(X)Y) (1 L1 (@cfx\ Y) + ixCov(YZ X) 4>
¢ 22908 (n—1) Cov(X,Y)jix ity
=r, (74)
1 [ Var(X) Var(Y) _Cov(X,Y
n Wy wy 125,920
Jar(X 1Cov(X2, X ar(X
o YarX) (4 (2(W£AL‘)—1>—» 1 Varld)) (75)
5% (n—1) fix Var(X) (n—1) 1%

D De-biasing of ratios of squared means

Now consider the problem of finding an unbiased estimator for the ratio of the squared means of z
and Y:

R=Hxy (76)

Both the numerator and denominator of R can separately be estimated by a second order U-statistics,
respectively:

1 n n —
re B [ ATy 2uim1 2jmingri YiYj Y

_ = 22 77)
1 n n
I sy DI D DHRYS IS, (0 C R €

The subscript 2 in X, should emphasize that we are dealing with a second order U-statistics here.
Again, the ratio %,is a biased estimator. Using the approach with the converging geometric series
and neglecting the higher order terms, we obtain:

Yo — Xy — 142 Xo — 2 (Yo — 12 X, — 22
rzR<1+(22“Y)_( 2 MX)_( 2 Nx)(2 My)+( 2 MX)

13y 1% 13 15 1wk
+(Xé—uifﬁé—u%)_(Xz—u§P_&Xé—uﬁfGé—u%)+(Xz—u§V>
w3 5% B 1y 5%
(78)
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Identities to compute the terms of the series expansion of

E[Xs — p%] = E[Y2 — p§] = 0 (79)

E[(Xy — p%)?] = Var(X2) (80)

E[(Xz i) (¥a - 1) | = Cov(Xe. Vo) 81)
_ 2/ _ . o _

E[(XQ - ;@() (YQ ~ /ﬁy) = Cov(X3,Ys) — 2p% Cov(Xa,Ys) (82)

B[(%o - )| = Cov(X3, %) — 20 Var(Xs) 53)

_ 3/_ 1 _ _ _ _ _
E[(%2-1k) (Yo — )] = Cov(X3, V2) — 3% Cov(X3, V) + 3k Cov(Xa,Va)  (84)

_ 47 . _ _ _
E <X547u§) = Cov(X3, Xs) — 3p% Cov(X2, Xy) + 3uk Var(Xs)  (85)

Bias Computing E[r] using the above identities:

E[r] ~

rl1_ Cov(Xs,Y2)  Var(Xa) N (Cov()_(%,?g) —2u% Cov()_(g,}_/g)>
Wi x I

Cov(X3, Xo) — 2% Var(X2)> B (Cov(XS’,Yz) — 3u% Cov(X2,Ys) + 3u% Cov(Xa,Ya)

1% 13-

8

(R
i

<mwx;xg_3@4waaxg+&@vMu@)>

Hx
(36)
Term (a) Term (b) Term (c) Term (d)
_ el 6 Cov(Xa, Ya) N 6 Var(X2) N 4Cov(X32,Y2) 4Cov(X2, Xo)
IG5 1 HxHy 1
e .- 37)
Cov(X3,Ys)  Cov(X3, Xs)
1S ny 1
Term (e) Term (f)
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12 Cov(X,Y)? 24
= — —Ra
R{l (n(n 0 W n

224
n 12 Var(X) n Rb)

(n(n -1) p% n

+

32(n — 2) (cov(X2, Y) N 2Cov(X,Y)(Var(X) + ;@))

n(n—1)2\ pipy 1 by

LA —2)(n—3) (8Ra - 12 Cov(X, Y)2>)

n(n—1) n—1)  pkul
- (32(n —92) (Cov(XQ,X) | 2Var(X)(Var(X) + ;&))

n(n —1)2 1wk 1wk )
4n—2)(n=3) (8 12 Var(X)?
T - (nR” W 1) ik ))
[ 24(n=2)(n—3)(n—4) <COV(X2,Y) N 4 Cov(X,Y)(Var(X) + ,u%))
n*(n —1)° [y B fry 1%

n?(n —1)2 n—1)  piu3

. (24(n —2)(n—3)(n—4) (cov(X2, X) | 4 Var(X)(Var(X) + ;@())

n2(n —1)3 1 1k
(n=2)(n—=3)(n—4)(n—5) (12 30  Var(X)?
+ n?(n —1)2 <an+n(n—1) Wy >>

L (=20 —3)(n—4)(n—5) <1ana - 30 Cov(X, Y)2)>

)

where R, = % and Ry = V‘jﬁgx) and where we have used 101J[11
X

terms (a)-(f).

and for
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Therefore, an estimator unbiased up to order two is given by:

r) Y V2
Teorr = Bty 12 COY(\X/’\Y) + 347“2
12 nin—1) 12 12 n
12 Var(X)2 24,
- — + 77“17
n(n —1) ph n
B (32(n _9) (covﬁ(? v) . 2Cov(X, Y)(Var(X) + u/QX\))
n(n =12\ 3y ity
An—2)(n—3) (8 , 12 Cov(X,Y)?
1) Gt hmsy 2o
n(n Hx Ky
(32@ ~9) (COV(/X?,X) .\ 2Var(X)(Var(X) + u?X))
n(n —1)2 13 ph
An—2)(n—3) (8 , 12 Var(X)?
-1 Wt am-n a1
" Hx
N 24(n —2)(n — 3)(n —4) (COV(XQ, Y) N 4Cov(X,Y)(Var(X) + u%))
n2(n —1)3 ﬂ;ﬁ%\( ﬁ?/@
(n—2)(n—3)(n—4)(n—>5) /12 , 30 Cov(X,Y)?
n?(n —1)2 et n(n—1) 22
Hx Ky
(24 -2 -3)(n—4) (cov&?,X) . AVar(X)(Var(X) + ;@())
n2(n —1)3 @ Eg\(
(n—2)(n—3)(n—4)(n—>5) (12 , 30 Var(X)?2
n?(n —1)2 Fa nn—1) 4 ’
Hx
(89)
where we used equations (96), (I00):
e Coxy) (1 (@0&\ Y) +ixCov(Y2, X) 4>
C XAy (n—1) Cov(X,Y)fix fiv
—Tu (90)
ey () oo
(=DA% 1y pacpy
Jar(X 1Cov(X2, X Jar(X
pp = YalX) (4 (QCOV(/; ) _ 1) o4 VX)) 1)
p2 (n =D\ 3 Var(X) (=1 .2
——
=7}
D.1 Term (a)

6 Cov(X>,Y- - . -
LZ?Z). Using the expression for the covariance between two

Let us first look at the first term: .
Px Py

second order U-statistics we get:
6(30VL2§,§3) 6 (4 2 9
= —pxpy Cov(X,Y)+——— Cov(X,Y) (92)
Bl B \n T VR
24 Cov(X,Y 12 Cov(X,Y)?
_ UCXY) X ©3)
noopxpy o on(n—1)  pkpy
€O0(n~1) cO(n-2)
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Since we know that for every recursion (i.e., geometric series expansion) we will get at least another
factor of %L, we don’t have to further recurse on term that is of order O(n~2). Consequently, we only
expand the following term via a geometric series,

Cov(X,Y
R, = CVLY) 94)
Bx Ky
since the ratio of the respective unbiased estimators,
Cov(X,Y
r = SXY) (95)
bx Py
is biased.
Using the same machinery as before, we obtain a corrected version of 7,:
. _ Cov(XY) ! <fyc<? Y) + jix Cov(Y2, X) 4>
T = — — —
“ [ix fry (n—1) Cov(X,Y)jix iy
=" (96)
1 [ Var(X) Var(Y) _Cov(X,Y
b (B ) eafn)
15% ny Hx Yy
The complete correction of term (a), %ﬁ%’m, looks therefore as follows:
Xy
6Cov(Xs,¥a) 12 Cov(X,Y)?
WA K3 nn =1 33
L 24 Cov(X.Y) ! (@CovTX\Q,YH@Co@X) _4>
nojxpy (n—1) Cov(X, Y)ix ity
1 far(X)  Var(Y V(XY
- _1)<Va/r§ )+Va£§ )+200\//£/,\ ))
n Hx Hy px iy
o7
D.2 Term (b)
The correction of term (b), 6\/?;74()?2) is analogous to that of term (a). Define
X
Var(X
Ry = YX) (98)
Hx
Var(X
ry = &) (99)
nk
Then using the geometric series expansion, a corrected version of 7 is given by
Jar(X 4 (lCov(X? X 4 Var(X
= YarX) (,, (2 ov(X, - )—1>— Varl) ) - 100y
5% (n—1) fox Var(X) (n—1) I
=r
The full correction of term (b) is
6Var(Xo) 12 Var(X)? s 24 Var(X) (1 L4 (;CO@F,X) X VQTX)))
ik n(n —1) i p% (n—1) iix Var(X) 1

(101)
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D.3 Term (c¢)

In this section we want to find an expression for term (c):
4 Cov(X2,Ys)
MRy
To this end, we first need a convenient representation of X2 in terms of other U-statistics:

2
oo 1 & | = 2 4(n —2) (n—2)(n—-3) -
o <n<n ) ZZX%XJ) Y T TR VR

(102)

i=1 j=1
i
(103)
with the U-statistics:
1 n n n
Us = I X7 X; Xy, (104)
P nin—1)(n—2) ;;; J
i kK#J
el
1 n n
Up= X2x? (105)
n(n—1) ; 32:31 J
J#i

X4:n(n—1)(n—2 ZZZZXXXle (106)

zljlkrlll

l;éz
Hence, term (c) becomes:
4Cov(X3,Y2) 8  Cov(Uy,Y2) 16(n —2) Cov(Ug,Ya) = 4(n—2)(n—3) Cov(Xy, Ya)
Py n(n—=1)  pspd n(n—1)  pyuy n(n —1) 1
First term Second term Third term

(107)

All all the covariances in the above equation are covariances between U-statistics which are O ( L )
Therefore, the first term, which already has an explicit O ( ) dependence, can be neglected entirely.
The second term has an explicit O ( ) combined with the O ( ) from the covariance this is in total

a0 ( ) dependency. Hence, we have to find an estimator for that term but do not have to recurse
on it. On the last term, we do have to recurse, however, we have derived the recursion already in
equation (96). We can rewrite the above equation using the symmetrized U-statistics

1
= X X; X XX X X X; X? 108
i ksé
J# ;éﬂ
4 Cov(X2,Ys) _32(n—2) ( Cov(X?Y) 2Cov(X Y)(Var( )+ p%)
[ 1 nin—1)2\  pipy 15y
Second term (109)
4(n—2)(n —3) <8 Cov(X,Y) n 12 Cov(X, Y)2>
n(n —1) nopxpy n(n—1) pipusy
Third term

Taking the recursion of the third term into account, the total correction of term (c) is:

4C0v(X2,Va) _ 32(n—2) (cov/(}(? Y)  2Cov(X, Y)(Var( ) + ,73?))

T 2 ~ —1)2 >~
Wi nn =12\ i iy (110
4(n —2)(n —3) <8r* n 12 Cov(X, Y)2>
n(n —1) n n(n —1) 1212
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D.4 Term (d)

4Cov(X2,X5)

i , is similar to that of term (c). Hence, we
X

The computation of the correction of term (d),
only present the resulting correction:

4Cov(X3, X5) _ 32(n—2) (covﬁ(?, X) 2Var(X )(Var( )+ @))

T 5 nln-_1)? =
Hx My Hx e - (111)
4n—2)(n—3) ( 8 12 Var(X)?
REUER ><r§+ _Varl >
n(n—1) n n(n —1) ke
D.5 Term (e)
Term (e) is:
X3,V
Cov(Xy, ¥) (112)
Hx Ky
To be able to compute that term, we reexpress the numerator in terms of several U-statistics:
= 4 24(n —2) 8(n—2) 8(n—2)(n—3)
X3 = U U U ——————U
2T 212 I+n2(n e 7+ n2(n— 1) 17+ W2 (n—1)2 Ia%s
30(n —2)(n —3) 12(n —2)(n — 3)(n — 4) (n—2)(n—2)(n—4)(n—"5) 5
U U X
+ n2(n — 1)2 v n2(n —1)2 vt n2(n —1)2 o
(113)
where
1 n n
U= —— X3X3 (114)
n(n—1) ;; J
i
1 n n n
U= ——mmM —— X3X2X,, (115)
T 2) 2524 2
i b
e
e D 3) D) DR R 1 a6
n(n i=1 j= 1@7&1
i

U[V =

n(n — 1)(n—2 ZZZX XXX, (117)

Uy = nn—1)(n—2)(n—3) ZZZZXEXJZXth (118)

ZZZZX X; Xp X X, (119)
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q#i
Hence term (e) can be written as:
Cov(X3,Y2) 4 Cov(Ur,Ys)  24(n—2) Cov(Urz,Ys) 8(n—2) Cov(Urs,Ys)
1y n?(n—1)2  pSpy n?(n—1)2  p§nud n2(n—1)2  @Spy
~—_——— ~—_——— ~—_——
€o(:n) €o(5) €o(5)
8(n —2)(n — 3) Cov(Ury,Y2) 30(n—2)(n—3) Cov(Uy,Ys)
n?(n —1)2 1S 13 n?(n —1)? 113
—_—————
€o(52) €o(52)
12(n —2)(n —3)(n —4) Cov(Uyr,Y2) (n—2)(n—3)(n—4)(n—5) Cov(Xs, Yz)
+ 2 2 6 2 + 2 2 6,2 -
n*(n—1) Hx My n*(n—1) Hx Hy
co(L) €o(1)

(121)

At this point, we can immediately discard the first three terms as they are at least O (%) and so can

directly be neglected for a second order correction. In addition, as we are dealing with covariances

between U-statistics they add another O (+). Therefore, the fourth and fifth term are actually

O (L) O (77) = O (), so they can be neglected as well. Only the last and the second to last term

remain:

Cov(X3,Y3) 12(n—2)(n —3)(n — 4) Cov(Uyy,Y2) N (n—2)(n —3)(n—4)(n —5) Cov(Xg, Ya)
it 1) 5o w21 B

Sixth term Seventh term

(122)

Re-expressing the covariances between U-statistics as covariances between random variables X and
Y (and using the symmetrized version of Uy ), we obtain:

Cov(X3,Ys) _ 24(n—2)(n—3)(n—4) <COV(X2, Y) N 4Cov(X,Y)(Var(X) + ug())

T n?(n— 1) 1y 1% 1y i
Sixth term
(n—2)(n—3)(n—4)(n—"5) (12 Cov(X,Y) 30 Cov(X,Y)?
+ 2(n — 1)2 " + 1 2 2
2(n—1) n uxpy | on(n—1)  jZud
Seventh term
(123)
Since the term % % isin O (%) we have to recurse on it. However, we already have derived
its correction in equation @ Therefore, the total correction of term (e) comes down to:
Cov(X3,Ya) _ 24(n—2)(n—3)(n - 4) (CTX\ Y) , 4Cov(X.Y)(Var(X) + /E))
pS 1y n*(n—1) iy 1 iy 1
N (n—2)(n—3)(n—4)(n—5)(12 - 30 COV(X,Y)2>
—r ——
20 — 1)2 a _
n%(n—1) n n(n —1) 12 12
(124)
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D.6 Term (f)
Term (f) is:
Cov (X3, Xo)
8
Hx

The procedure to obtain its correction is analogous to that of term (e), hence we only present the
result:

(125)

Cov(X3, Xa) _ 24(n —2)(n—3)(n— 4) (covﬁ(? X) 4Var(X)(Var(X) + ;7%?))
“x n*(n —1)° 1% i (126)
(n=2)(n—3)(n—4)(n=5 (12 , 30 Var(X)?
" n?(n—1)? (n”m 0 a )

E Top-label calibration

Following standard practice in related work on calibration, we report the L; ECE®" for top-label
(also called confidence) calibration on CIFAR-10/100. EC E*™ was calculated using 15 bins and an
adaptive width binning scheme, which determines the bin sizes so that an equal number of samples
fall into each bin [Nguyen and O’Connor} 2015} Mukhoti et al.,2020]]. The 95% confidence intervals
for EC EY™ are obtained using 100 bootstrap samples, as in [Kumar et al.[[2019]. In all experiments
with calibration regularized training, the biased version of EC E*P* was used.

Table [5] summarizes our evaluation of the efficacy of KDE-XE in lowering the calibration error over
the baseline XE on CIFAR-10 and CIFAR-100. The best performing A coefficient for KDE-XE is
shown in the brackets. The results show that KDE-XE consistently reduces the calibration error,
without dropping the accuracy. Figuredepicts the Ly EC E®™ for several choices of the \ parameter
for KDE-XE, using ResNet-110 (SD) on CIFAR-10/100. Figure 6] shows reliability diagrams with 10
bins for top-label calibration on CIFAR-100 using ResNet and Wide-ResNet. Comapared to XE, we
notice that KDE-XE lowers the overconfident predictions, and obtains better calibration than MMCE
(A = 2) and FL-53 on average, as summarized by the ECE value in the gray box.

Table 5: Top-label L; adaptive-width ECE”™ and accuracy for XE and KDE-XE for various
architectures on CIFAR-10/100. Best ECE values are marked in bold. The value in the brackets
represent the value of the A\ parameter.

Dataset Model ECEb™ Accuracy
XE KDE-XE XE KDE-XE
CIFAR-10 ResNet-110 3.890 £0.602  3.093 £ 0.604 (0.001)  0.925 +0.005 0.930 £ 0.005
ResNet-110 (SD) 3.555 £ 0.623 2.778 £ 0.468 (0.01)  0.926 £ 0.005  0.932 +£ 0.005
ResNet-110 12.769 £0.784  8.969 &+ 1.047 (0.2)  0.700 £ 0.009  0.696 + 0.009
CIFAR-100 ResNet-110 (SD) 11.175 £0.642  7.828 £ 0.814 (0.001) 0.728 +0.009  0.721 =+ 0.009

Wide-ResNet-28-10  7.279 + 0.876 3.703 £ 1.086 (0.5) 0.762 £ 0.008  0.770 £ 0.008
DenseNet-40 9.196 £ 0.881 8.016 = 1.079 (0.01)  0.756 4 0.008  0.756 =+ 0.008

F Relationship between EC E*™ and EC EXPF

In the following two sections, we investigate further the relationship between EC E"™, as the most
widely used metric, and our ECEXPF estimator. For the three types of calibration, EC E"™ is
calculated with equal-width binning scheme. The values for the bandwidth in EC EXP¥ and the
number of bins per class for EC E*" are chosen with leave-one-out maximum likelihood procedure
and Doane’s formula [Doanel [1976]], respectively.

Figure [7|shows an example of EC E”™ in a three-class setting on CIFAR-10. The points are mostly
concentrated at the edges of the histogram, as can be seen from Figure The surface of the
corresponding Dirichlet KDE is given in
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Figure 5: Lo ECEY"" for top-label calibration using ResNet (SD).
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Figure 6: Reliability diagrams for top-label calibration on CIFAR-100 using ResNet (top row) and
Wide-ResNet (bottom row) for each of the considered baselines.

Figure [8| shows the relationship between EC E*" and ECE®X PP, The points represent a trained
Resnet-56 model on a subset of three classes from CIFAR-10. In every row, a differnt number of
points was used to estimate the EC EXPE We notice the EC EXPF estimates of the three types of
calibration closely correspond to their histogram-based approximations.

0.00 005 0.10 015 020 025 030

(a) Splitting the simplex in 16 bins (b) Corresponding histogram (c) Corresponding Dirichlet KDE

Figure 7: An example of a simplex binned estimator and kernel-density estimator for CIFAR-10
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Figure 8: Relationship between EC E*™ and EC EXPF for the three types of calibration: canonical
(first column), marginal (second column) and top-label (third column). In every row top to bottom,
different number of points (100, 500, 1000 and all points, respectively) are used to approximate
ECEXPE_ Each point represents a ResNet-56 model trained on a subset of three classes from
CIFAR-10. The number of bins per class (13) is selected using Doane’s formula 11976].,
while the bandwidth is selected using a leave-one-out maximum likelihood procedure (typical chosen
values are 0.001 for 100 points and 0.0001 otherwise).

G Bias and convergence rates

Figure|§| shows a comparison of EC EXPE and EC EY™ estimated with a varying number of points.
The ground truth is computed from 3000 test points with EC EXPF_ The used model is a ResNet-56,
trained on a subset of three classes from CIFAR-10. The figure shows that the two estimates are
comparable and both are doing a reasonable job in a three-class setting.

Figure[10]shows the absolute difference between the ground truth and estimated ECE using EC EX PP
and a EC E”™ with varying number of points. The results are averaged over 120 ResNet-56 models
trained on a subset of three classes from CIFAR-10. Both estimators are biased and have some
variance, and the plot shows that the combination of the two is in the same order of magnitude. The
empirical convergence rates (slope of the log-log plot) is given in the legend and is shown to be
close to the theoretically expected value of -0.5. We observe that EC EXP¥ has similar statistical
properties in terms of bias and convergence as EC E*™,
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Figure 9: EC EXPE estimates and their corresponding binned approximations on the three types of
calibration for varying number of points used for the estimation. The ground truth is calculated using
3000 probability scores of the test set using EC EXPF Optimal number of bins and bandwidth are
chosen with Doane’s formula and LOO MLE, respectively. Typical chosen number of bins is 6-11,
and common values for the bandwidth are 0.0001 and 0.001.

610 um—— 2x10 . Ecew* L ECE
* clope=—0.38 slope = —0.30 slope = - 0.36
. ECEbIn . ECEPin 2x107° @ ECE®"
ax10” slope = — 0.48 slope = —0.52 slope = —0.49
-
g ax10? o g . : g .
3 =] = .
m W
4] O o s e o 10”
[ W gx10 . v .
. . [ ]
3 3
: 4x10 6x10 .
=
L] 3x10
107
10° 10° 10° 10° 10° 10°
Number of points Number of points Number of points
(a) Canonical (b) Marginal (c) Top-label

Figure 10: Absolute difference between ground truth and estimated ECE for varying number of points
used for the estimation. The ground truth is calculated using 3000 probability scores of the test set.
Note that the axes are on a log scale.
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