
A Additional derivations

A.1 Derivation of the MSE decomposition

Definition A.1 (Mean Squared Error (MSE)). The mean squared error of an estimator is

MSE(f) := E[(f(x)− y)2]. (11)

Proposition A.2. MSE(f) ≥ CE2(f)
2

Proof.

MSE(f) :=E[(f(x)− y))2] = E[((f(x)− E[y | f(x)]) + (E[y | f(x)]− y))2] (12)

=E[(f(x)− E[y | f(x)])2]︸ ︷︷ ︸
=CE2

2

+E[(E[y | f(x)]− y)2] (13)

+ 2E[(f(x)− E[y | f(x)])(E[y | f(x)]− y)]

which implies

MSE(f)− CE2(f)
2 =E[(E[y | f(x)]− y)2] (14)

+ 2E[(f(x)− E[y | f(x)])(E[y | f(x)]− y)]

=E[(E[y | f(x)]− y)2] + 2E[(f(x)E[y | f(x)]] (15)

− 2E[f(x)y]− 2E[E[y | f(x)]2] + 2E[E[y | f(x)]y]]
=E[E[y | f(x)]2] + E[y2]− 2E[E[y | f(x)]y] (16)
+ 2E[(f(x)E[y | f(x)]]− 2E[f(x)y]
− 2E[E[y | f(x)]2] + 2E[E[y | f(x)]y]]

=E[y2] + 2E[(f(x)E[y | f(x)]]− 2E[f(x)y] (17)

− E[E[y | f(x)]2]
=E[(2f(x)− y − E[y | f(x)])(E[y | f(x)])− y] (18)
=E[(f(x)− y)(E[y | f(x)]− y)] (19)

+ E[(f(x)− E[y | f(x)])(E[y | f(x)]− y)].

By the law of total expectation, we will write the above as

MSE(f)− CE2(f)
2 = E[E[(f(x)− y)(E[y | f(x)]− y) (20)

+ (f(x)− E[y | f(x)])(E[y | f(x)]− y) | f(x)]].

Focusing on the inner conditional expectation, we have that

E[(f(x)− y)(E[y | f(x)]− y) + (f(x)− E[y | f(x)])(E[y | f(x)]− y) | f(x)]
=E[y | f(x)](f(x)− 1)(E[y | f(x)]− 1) + (1− E[y | f(x)])f(x)E[y | f(x)]
+ E[y | f(x)](f(x)− E[y | f(x)])(E[y | f(x)]− 1)

+ (1− E[y | f(x)])(f(x)− E[y | f(x)])E[y | f(x)] (21)
=(1− E[y | f(x)])E[y | f(x)] ≥ 0 ∀f(x) (22)

and therefore

MSE(f)− CE2(f)
2 = E[(1− E[y | f(x)])E[y | f(x)]] ≥ 0. (23)

The expectation in Equation (23) is over variances of Bernoulli random variables with probabilities
E[y | f(x)].
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A.2 Derivation of Equation (3)

By considering y ∈ {0, 1}, we have the following:

E[y | f(x)] =
∑
yk∈Y

yk py|f(x)(yk) =

∑
yk∈Y yk pf(x),y(f(x), yk)

pf(x)(f(x))
(24)

=
pf(x),y(f(x), yk = 1)

pf(x)(f(x))
=

pf(x)|y(f(x)|yk = 1)py(yk = 1)

pf(x)(f(x))
(25)

≈
1∑n

i=1 yi

∑n
i=1 k(f(x); f(xi))yi

∑n
i=1 yi

n

1
n

∑n
i=1 k(f(x); f(xi))

(26)

≈
∑n

i=1 k(f(x); f(xi))yi∑n
i=1 k(f(x); f(xi))

=: ̂E[y | f(x)] (27)

A.3 Derivation of Equation (6)

We consider the optimization problem for some λ > 0:

f = argmin
f∈F

(
MSE(f) + λCE2(f)

2
)
. (28)

Using Equation (23) we rewrite:

MSE(f) + λCE2(f)
2 = (1 + λ)MSE(f)− λ

(
MSE(f)− CE2(f)

2
)

= (1 + λ)MSE(f)− λE
[(

1− E[y | f(x)]
)
E[y | f(x)]

]
. (29)

Rescaling Equation (29) by a factor of (1 + λ)−1 and a variable substitution γ = λ
1+λ ∈ [0, 1), we

have that:

f =argmin
f∈F

(
MSE(f) + λCE2(f)

2
)

=argmin
f∈F

(
MSE(f)− γE

[(
1− E[y | f(x)]

)
E[y | f(x)]

])
=argmin

f∈F

(
MSE(f) + γE

[
E[y | f(x)]2

])
. (30)

B Bias of ratio of U-statistics

The unbiased estimator for the square of a mean µ2
X is given by:

µ̂2
X =

1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

XiXj =
1

n(n− 1)

( n∑
i=1

Xi

)2

−
n∑

i=1

X2
i

 . (31)

This is a second order U-statistics with kernel h(x1, x2) = x1x2. The bias of the ratio of two of these
estimators converges as O

(
1
n

)
, as the following lemma proves.

Lemma B.1. Let θ1 and θ2 be two estimable parameters and let U1 and U2 be the two corresponding
U-statistics of order m1 and m2, respectively, based on a sample of n i.i.d. RVs. The bias of the ratio
U1/U2 of these two U-statistics will converge as O

(
1
n

)
.

Proof. Let R = θ1/θ2 be the ratio of two estimable parameters and r = U1/U2 the ratio of the
corresponding U-statistics. Note, that Ui is an unbiased estimator of θi, E[Ui] = θi, i = 1, 2, however,
the ratio is usually biased. To investigate the bias of that ratio we rewrite

r = R

(
1 +

U1 − θ1
θ1

)(
1 +

U2 − θ2
θ2

)−1

. (32)
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If
∣∣∣U2−θ2

θ2

∣∣∣ < 1, we can expand
(
1 + U2−θ2

θ2

)−1

in a geometric series:

r = R

(
1 +

(U1 − θ1)

θ1

)(
1− (U2 − θ2)

θ2
+

(U2 − θ2)
2

θ22
− (U2 − θ2)

3

θ32
+

(U2 − θ2)
4

θ42
− ...

)
(33)

= R

(
1 +

(U1 − θ1)

θ1
− (U2 − θ2)

θ2
− (U2 − θ2)(U1 − θ1)

θ2θ1

+
(U2 − θ2)

2

θ22
+

(U2 − θ2)
2(U1 − θ1)

θ22θ1
− (U2 − θ2)

3

θ32
− (U2 − θ2)

3(U1 − θ1)

θ32θ1

+
(U2 − θ2)

4

θ42
+

(U2 − θ2)
4(U1 − θ1)

θ42θ1
− ...

)
. (34)

If ζ1 > 0, a U-statistic U of order m obtained from a sample of n observations converges in
distribution [Shao, 2003]:

√
n (U − E[U ])

d−→ N(0,m2ζ1). (35)

Keeping the terms up to Θ
(
1
n

)
:

r = R

(
1 +

(U1 − θ1)

θ1
− (U2 − θ2)

θ2
− (U2 − θ2)(U1 − θ1)

θ2θ1
+

(U2 − θ2)
2

θ22
+ o

(
1

n

))
(36)

To examine the bias, we take the expectation value of this expression:

E[r] = R

(
1 +

E
[
(U1 − θ1)

]
θ1

−
E
[
(U2 − θ2)

]
θ2

−
E
[
(U2 − θ2)(U1 − θ1)

]
θ2θ1

+
E
[
(U2 − θ2)

2
]

θ22
+ o

(
1

n

))
(37)

We now make use of the following expressions:

E
[
(U1 − θ1)

]
= E

[
(U2 − θ2)

]
= 0 (38)

E
[
(U2 − θ2)(U1 − θ1)

]
= Cov(U2, U1) (39)

E
[
(U2 − θ2)

2
]
= Var(U2) (40)

(41)

Using these expressions the expectation of r becomes:

E[r] = R

(
1− Cov(U2, U1)

θ2θ1
+

Var(U2)

θ22
+ o

(
1

n

))
(42)

Using Equation (35), the linearity of covariance and with Var(aX) = a2 Var(X) we obtain:

Cov(U2, U1),Var(U2) ∈ O
(
1

n

)
=⇒ E[r] = R

(
1 +O

(
1

n

))
. (43)

C De-biasing of ratios of straight averages

Let X and Y be random variables and let µX and µY be the means of their distributions, respectively.
Consider the problem of finding an unbiased estimator for the ratio of means:

R =
µY

µX
. (44)
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A first approach to estimate this ratio R is to compute the ratio of the sample means: Let
(X1, Y1), ..., (Xn, Yn) be pairs of i.i.d. random variables that are jointly distributed:

r = R̂ =
µ̂Y

µ̂X
=

1
n

∑n
i=1 Yi

1
n

∑n
i=1 Xi

=
Ȳ

X̄
. (45)

This, however, is a biased estimator, which can be seen as follows (we follow [Tin, 1965, Ogliore
et al., 2011] here):

r =
Ȳ

X̄
=

µY

µX

(
Ȳ

µY

)(
X̄

µX

)−1

= R

(
1 +

Ȳ − µY

µY

)(
1 +

X̄ − µX

µX

)−1

. (46)

This has now the form of a converging geometric series. Thus, if∣∣∣∣X̄ − µX

µX

∣∣∣∣ < 1, (47)

we can expand
(
1 + X̄−µX

µX

)−1

in a geometric series, which is defined as:

∞∑
k=0

a bk = a+ ab+ ab2 + ... =
a

1− b
. (48)

In our case we can identify a = R

(
1 + Ȳ−µY

µY

)
and b = − X̄−µX

µX
.

Thus, using the geometric series expansion, we can write:

r = R

(
1 +

Ȳ − µY

µY

)(
1− (X̄ − µX)

µX
+

(X̄ − µX)2

µ2
X

− (X̄ − µX)3

µ3
X

+
(X̄ − µX)4

µ4
X

− ...

)

(49)

= R

(
1 +

(Ȳ − µY )

µY
− (X̄ − µX)

µX
− (X̄ − µX)(Ȳ − µY )

µY µX
+

(X̄ − µX)2

µ2
X

+
(X̄ − µX)2(Ȳ − µY )

µ2
XµY

− (X̄ − µX)3

µ3
X

− (X̄ − µX)3(Ȳ − µY )

µ3
XµY

+
(X̄ − µX)4

µ4
X

+ ...

)
(50)

Neglecting higher order terms Since X̄ and Ȳ are U-statistics, we make use of the asymptotic
behaviour of U-statistics. If ζ1 > 0, a U-statistics Un of order m obtained from a sample of n
observations behaves as n → ∞ like ([Shao, 2003]):

√
n (Un − E[Un])

d−→ N(0,m2ζ1). (51)

As we seek an estimator that is unbiased up until order n−2 and since E[X̄] = µX , we can neglect
all terms of order 5 or higher since for n → ∞:

(X̄ − µX)5 ∈ O(n−2.5) (52)

(X̄ − µX)4(Ȳ − µY ) ∈ O(n−2.5) (53)

Therefore, we obtain:

r ≈ R

(
1 +

(Ȳ − µY )

µY
− (X̄ − µX)

µX
− (X̄ − µX)(Ȳ − µY )

µY µX
+

(X̄ − µX)2

µ2
X

+
(X̄ − µX)2(Ȳ − µY )

µ2
XµY

− (X̄ − µX)3

µ3
X

− (X̄ − µX)3(Ȳ − µY )

µ3
XµY

+
(X̄ − µX)4

µ4
X

) (54)
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Identities to compute the terms of the series expansion of r
E[X̄ − µX ] = E[Ȳ − µY ] = 0 (55)

E[(X̄ − µX)2] = Var(X̄) =
1

n
Var(X) (56)

E
[(

X̄ − µX

)(
Ȳ − µY

)]
= Cov(X̄, Ȳ ) =

1

n
Cov(X,Y ) (57)

E
[(

X̄ − µX

)2(
Ȳ − µY

)]
= Cov(X̄2, Ȳ )− 2µX Cov(X̄, Ȳ ) (58)

=
1

n2

(
Cov(X2, Y )− 2µX Cov(X,Y )

)
(59)

E
[(

X̄ − µX

)3]
= Cov(X̄2, X̄)− 2µX Var(X̄) (60)

=
1

n2
Cov(X2, X)− 2

n2
µX Var(X) (61)

E
[(

X̄ − µX

)3(
Ȳ − µY

)]
= Cov(X̄3, Ȳ )− 3µX Cov(X̄2, Ȳ ) + 3µ2

X Cov(X̄, Ȳ ) (62)

=
3

n2
Var(X)Cov(X,Y ) +O(n−3) (63)

E
[(

X̄ − µX

)4]
= Cov(X̄3, X̄)− 3µX Cov(X̄2, X̄) + 3µ2

X Var(X̄) (64)

=
3

n2
Var(X)2 +O(n−3) (65)

Bias Using these expressions we can compute the expectation value of r = R̂:

E[r] ≈ R

(
1 +

1

n

(
Var(X)

µ2
X

− Cov(X,Y )

µXµY

)
+

1

n2

(
(Cov(X2, Y )− 2µX Cov(X,Y ))

µ2
XµY

− (Cov(X2, X)− 2µX Var(X))

µ3
X

− 3Var(X) Cov(X,Y )

µ3
XµY

+
3Var(X)2

µ4
X

)) (66)

The bias or r = R̂ is defined as:
Bias(r) = E[r]−R (67)

= R

(
1

n

(
Var(X)

µ2
X

− Cov(X,Y )

µXµY

)
+

1

n2

(
(Cov(X2, Y )− 2µX Cov(X,Y ))

µ2
XµY

(68)

− (Cov(X2, X)− 2µX Var(X))

µ3
X

− 3Var(X) Cov(X,Y )

µ3
XµY

+
3Var(X)2

µ4
X

))
(69)

Therefore an unbiased version of r is:

runbiased = r −R

(
1

n

(
Var(X)

µ2
X

− Cov(X,Y )

µXµY

)
+

1

n2

(
(Cov(X2, Y )− 2µX Cov(X,Y ))

µ2
XµY

(70)

− (Cov(X2, X)− 2µX Var(X))

µ3
X

− 3Var(X) Cov(X,Y )

µ3
XµY

+
3Var(X)2

µ4
X

))
(71)

A corrected version of the estimator r = R̂ is consequently given by:

rcorr := r

(
1− 1

n

(
V̂ar(X)

µ̂2
X

−
̂Cov(X,Y )

µ̂XµY

)
− 1

n2

( ̂(Cov(X2, Y )− 2µ̂X
̂Cov(X,Y ))

µ̂2
X µ̂Y

− ( ̂Cov(X2, X)− 2µ̂XV̂ar(X))

µ̂3
X

− 3V̂ar(X) ̂Cov(X,Y )

µ̂3
X µ̂Y

+
3V̂ar(X)

2

µ̂4
X

)) (72)
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In the above equation we again encounter rations of estimators which again might be biased. Since
we want to achieve a second order de-biasing we have to again recurse on the terms that have a O

(
1
n

)
dependency. However, we do not have to recurse on the terms that have a O

(
1
n2

)
dependency, since

any recursion would increase the power of the n-dependency. Therefore a debiased estimator up to
order O(n2) is:

rcorr := r

(
1− 1

n

(
r∗b − r∗a

)
− 1

n2

( ̂(Cov(X2, Y )− 2µ̂X
̂Cov(X,Y ))

µ̂2
X µ̂Y

− ( ̂Cov(X2, X)− 2µ̂XV̂ar(X))

µ̂3
X

− 3V̂ar(X) ̂Cov(X,Y )

µ̂3
X µ̂Y

+
3V̂ar(X)

2

µ̂4
X

)) (73)

where

r∗a =
̂Cov(X,Y )

µ̂XµY︸ ︷︷ ︸
=ra

(
1 +

1

(n− 1)

(
µ̂Y

̂Cov(X2, Y ) + µ̂X
̂Cov(Y 2, X)

̂Cov(X,Y )µ̂X µ̂Y

− 4

)

− 1

(n− 1)

(
V̂ar(X)

µ̂2
X

+
V̂ar(Y )

µ̂2
Y

+ 2
̂Cov(X,Y )

µ̂X µ̂Y

)) (74)

r∗b =
V̂ar(X)

µ̂2
X︸ ︷︷ ︸

=rb

(
1 +

4

(n− 1)

( 1
2

̂Cov(X2, X)

µ̂XV̂ar(X)
− 1

)
− 4

(n− 1)

V̂ar(X)

µ̂2
X

)
. (75)

D De-biasing of ratios of squared means

Now consider the problem of finding an unbiased estimator for the ratio of the squared means of x
and Y :

R =
µ2
Y

µ2
X

. (76)

Both the numerator and denominator of R can separately be estimated by a second order U-statistics,
respectively:

r = R̂ =
µ̂2
Y

µ̂2
X

=

1
n(n−1)

∑n
i=1

∑n
j=1∧j ̸=i YiYj

1
n(n−1)

∑n
i=1

∑n
j=1∧j ̸=i XiXj

=:
Ȳ2

X̄2
. (77)

The subscript 2 in X̄2 should emphasize that we are dealing with a second order U-statistics here.
Again, the ratio Ȳ2

X̄2
,is a biased estimator. Using the approach with the converging geometric series

and neglecting the higher order terms, we obtain:

r ≈ R

(
1 +

(Ȳ2 − µ2
Y )

µ2
Y

− (X̄2 − µ2
X)

µ2
X

− (X̄2 − µ2
X)(Ȳ2 − µ2

Y )

µ2
Y µ

2
X

+
(X̄2 − µ2

X)2

µ4
X

+
(X̄2 − µ2

X)2(Ȳ2 − µ2
Y )

µ4
Xµ2

Y

− (X̄2 − µ2
X)3

µ6
X

− (X̄2 − µ2
X)3(Ȳ2 − µ2

Y )

µ6
Xµ2

Y

+
(X̄2 − µ2

X)4

µ8
X

)
(78)
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Identities to compute the terms of the series expansion of r

E[X̄2 − µ2
X ] = E[Ȳ2 − µ2

Y ] = 0 (79)

E[(X̄2 − µ2
X)2] = Var(X̄2) (80)

E
[(

X̄2 − µ2
X

)(
Ȳ2 − µ2

Y

)]
= Cov(X̄2, Ȳ2) (81)

E
[(

X̄2 − µ2
X

)2(
Ȳ2 − µ2

Y

)]
= Cov(X̄2

2 , Ȳ2)− 2µ2
X Cov(X̄2, Ȳ2) (82)

E
[(

X̄2 − µ2
X

)3]
= Cov(X̄2

2 , X̄2)− 2µ2
X Var(X̄2) (83)

E
[(

X̄2 − µ2
X

)3(
Ȳ2 − µ2

Y

)]
= Cov(X̄3

2 , Ȳ2)− 3µ2
X Cov(X̄2

2 , Ȳ2) + 3µ4
X Cov(X̄2, Ȳ2) (84)

E
[(

X̄2 − µ2
X

)4]
= Cov(X̄3

2 , X̄2)− 3µ2
X Cov(X̄2

2 , X̄2) + 3µ4
X Var(X̄2) (85)

Bias Computing E[r] using the above identities:

E[r] ≈ R

(
1− Cov(X̄2, Ȳ2)

µ2
Xµ2

Y

+
Var(X̄2)

µ4
X

+

(
Cov(X̄2

2 , Ȳ2)− 2µ2
X Cov(X̄2, Ȳ2)

µ4
Xµ2

Y

)
−
(
Cov(X̄2

2 , X̄2)− 2µ2
X Var(X̄2)

µ6
X

)
−
(
Cov(X̄3

2 , Ȳ2)− 3µ2
X Cov(X̄2

2 , Ȳ2) + 3µ4
X Cov(X̄2, Ȳ2)

µ6
Xµ2

Y

)
+

(
Cov(X̄3

2 , X̄2)− 3µ2
X Cov(X̄2

2 , X̄2) + 3µ4
X Var(X̄2)

µ8
X

))
(86)

= R

(
1−

Term (a)︷ ︸︸ ︷
6Cov(X̄2, Ȳ2)

µ2
Xµ2

Y

+

Term (b)︷ ︸︸ ︷
6Var(X̄2)

µ4
X

+

Term (c)︷ ︸︸ ︷
4Cov(X̄2

2 , Ȳ2)

µ4
Xµ2

Y

−

Term (d)︷ ︸︸ ︷
4Cov(X̄2

2 , X̄2)

µ6
X

− Cov(X̄3
2 , Ȳ2)

µ6
Xµ2

Y︸ ︷︷ ︸
Term (e)

+
Cov(X̄3

2 , X̄2)

µ8
X︸ ︷︷ ︸

Term (f)

) (87)
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= R

{
1−

(
12

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y

+
24

n
Ra

)

+

(
12

n(n− 1)

Var(X)2

µ4
X

+
24

n
Rb

)

+

(
32(n− 2)

n(n− 1)2

(
Cov(X2, Y )

µ2
XµY

+
2Cov(X,Y )(Var(X) + µ2

X)

µ3
XµY

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
Ra +

12

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y

))

−

(
32(n− 2)

n(n− 1)2

(
Cov(X2, X)

µ3
X

+
2Var(X)(Var(X) + µ2

X)

µ4
X

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
Rb +

12

n(n− 1)

Var(X)2

µ4
X

))

−

(
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

(
Cov(X2, Y )

µY µ2
X

+
4Cov(X,Y )(Var(X) + µ2

X)

µY µ3
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
Ra +

30

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y

))

+

(
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

(
Cov(X2, X)

µ3
X

+
4Var(X)(Var(X) + µ2

X)

µ4
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
Rb +

30

n(n− 1)

Var(X)2

µ4
X

))

(88)

where Ra = Cov(X,Y)
µXµY

and Rb =
Var(X)

µ2
X

and where we have used 97, 101 110, 111, 124 and 126 for
terms (a)-(f).
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Therefore, an estimator unbiased up to order two is given by:

rcorr =
µ̂2
Y

µ̂2
X

{
1 +

(
12

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

+
24

n
r∗a

)

−

(
12

n(n− 1)

̂Var(X)2

µ̂4
X

+
24

n
r∗b

)

−

(
32(n− 2)

n(n− 1)2

( ̂Cov(X2, Y )

µ̂2
X µ̂Y

+
2 ̂Cov(X,Y )(V̂ar(X) + µ̂2

X)

µ̂3
X µ̂Y

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
r∗a +

12

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

))

+

(
32(n− 2)

n(n− 1)2

( ̂Cov(X2, X)

µ̂3
X

+
2V̂ar(X)(V̂ar(X) + µ̂2

X)

µ̂4
X

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
r∗b +

12

n(n− 1)

̂Var(X)2

µ̂4
X

))

+

(
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

( ̂Cov(X2, Y )

µ̂Y µ̂2
X

+
4 ̂Cov(X,Y )(V̂ar(X) + µ̂2

X)

µ̂Y µ̂3
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
r∗a +

30

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

))

−

(
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

( ̂Cov(X2, X)

µ̂3
X

+
4V̂ar(X)(V̂ar(X) + µ̂2

X)

µ̂4
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
r∗b +

30

n(n− 1)

̂Var(X)2

µ̂4
X

))
,

(89)
where we used equations (96), (100):

r∗a =
̂Cov(X,Y )

µ̂XµY︸ ︷︷ ︸
=ra

(
1 +

1

(n− 1)

(
µ̂Y

̂Cov(X2, Y ) + µ̂X
̂Cov(Y 2, X)

̂Cov(X,Y )µ̂X µ̂Y

− 4

)

− 1

(n− 1)

(
V̂ar(X)

µ̂2
X

+
V̂ar(Y )

µ̂2
Y

+ 2
̂Cov(X,Y )

µ̂X µ̂Y

)) (90)

r∗b =
V̂ar(X)

µ̂2
X︸ ︷︷ ︸

=rb

(
1 +

4

(n− 1)

( 1
2

̂Cov(X2, X)

µ̂XV̂ar(X)
− 1

)
− 4

(n− 1)

V̂ar(X)

µ̂2
X

)
. (91)

D.1 Term (a)

Let us first look at the first term: 6Cov(X̄2,Ȳ2)
µ2
Xµ2

Y
. Using the expression for the covariance between two

second order U-statistics we get:
6Cov(X̄2, Ȳ2)

µ2
Xµ2

Y

=
6

µ2
Xµ2

Y

(
4

n
µXµY Cov(X,Y)+

2

n(n− 1)
Cov(X,Y )2

)
(92)

=
24

n

Cov(X,Y)

µXµY︸ ︷︷ ︸
∈O(n−1)

+
12

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y︸ ︷︷ ︸
∈O(n−2)

(93)
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Since we know that for every recursion (i.e., geometric series expansion) we will get at least another
factor of 1

n , we don’t have to further recurse on term that is of order O(n−2). Consequently, we only
expand the following term via a geometric series,

Ra =
Cov(X,Y )

µXµY
, (94)

since the ratio of the respective unbiased estimators,

ra =
̂Cov(X,Y )

µ̂XµY
, (95)

is biased.
Using the same machinery as before, we obtain a corrected version of ra:

r∗a =
̂Cov(X,Y )

µ̂XµY︸ ︷︷ ︸
=ra

(
1 +

1

(n− 1)

(
µ̂Y

̂Cov(X2, Y ) + µ̂X
̂Cov(Y 2, X)

̂Cov(X,Y )µ̂X µ̂Y

− 4

)

− 1

(n− 1)

(
V̂ar(X)

µ̂2
X

+
V̂ar(Y )

µ̂2
Y

+ 2
̂Cov(X,Y )

µ̂X µ̂Y

)) (96)

The complete correction of term (a), 6Cov(X̄2,Ȳ2)
µ2
Xµ2

Y
, looks therefore as follows:

6 ̂Cov(X̄2, Ȳ2)

µ̂2
X µ̂2

Y

=
12

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

+
24

n

̂Cov(X,Y )

µ̂XµY

(
1 +

1

(n− 1)

(
µ̂Y

̂Cov(X2, Y ) + µ̂X
̂Cov(Y 2, X)

̂Cov(X,Y )µ̂X µ̂Y

− 4

)

− 1

(n− 1)

(
V̂ar(X)

µ̂2
X

+
V̂ar(Y )

µ̂2
Y

+ 2
̂Cov(X,Y )

µ̂X µ̂Y

))
(97)

D.2 Term (b)

The correction of term (b), 6Var(X̄2)
µ4
X

is analogous to that of term (a). Define

Rb =
Var(X)

µ2
X

(98)

rb =
V̂ar(X)

µ̂2
X

. (99)

Then using the geometric series expansion, a corrected version of rb is given by

r∗b =
V̂ar(X)

µ̂2
X︸ ︷︷ ︸

=rb

(
1 +

4

(n− 1)

( 1
2

̂Cov(X2, X)

µ̂XV̂ar(X)
− 1

)
− 4

(n− 1)

V̂ar(X)

µ̂2
X

)
. (100)

The full correction of term (b) is

6 ̂Var(X̄2)

µ̂4
X

=
12

n(n− 1)

̂Var(X)2

µ̂4
X

+
24

n

V̂ar(X)

µ̂2
X

(
1 +

4

(n− 1)

( 1
2

̂Cov(X2, X)

µ̂XV̂ar(X)
− 1− V̂ar(X)

µ̂2
X

))
(101)

24



D.3 Term (c)

In this section we want to find an expression for term (c):
4Cov(X̄2

2 , Ȳ2)

µ4
Xµ2

Y

. (102)

To this end, we first need a convenient representation of X̄2
2 in terms of other U-statistics:

X̄2
2 =

(
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

XiXj

)2

=
2

n(n− 1)
Uα +

4(n− 2)

n(n− 1)
Uβ +

(n− 2)(n− 3)

n(n− 1)
X̄4,

(103)
with the U-statistics:

Uβ =
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

X2
i XjXk (104)

Uα =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

X2
i X

2
j (105)

X̄4 =
1

n(n− 1)(n− 2)(n− 3)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

n∑
l=1
l ̸=k
l ̸=j
l ̸=i

XiXjXkXl. (106)

Hence, term (c) becomes:
4Cov(X̄2

2 , Ȳ2)

µ4
Xµ2

Y

=
8

n(n− 1)

Cov(Uα, Ȳ2)

µ4
Xµ2

Y︸ ︷︷ ︸
First term

+
16(n− 2)

n(n− 1)

Cov(Uβ , Ȳ2)

µ4
Xµ2

Y︸ ︷︷ ︸
Second term

+
4(n− 2)(n− 3)

n(n− 1)

Cov(X̄4, Ȳ2)

µ4
Xµ2

Y︸ ︷︷ ︸
Third term

(107)

All all the covariances in the above equation are covariances between U-statistics which are O
(
1
n

)
.

Therefore, the first term, which already has an explicit O
(

1
n2

)
dependence, can be neglected entirely.

The second term has an explicit O
(
1
n

)
, combined with the O

(
1
n

)
from the covariance this is in total

a O
(

1
n2

)
dependency. Hence, we have to find an estimator for that term but do not have to recurse

on it. On the last term, we do have to recurse, however, we have derived the recursion already in
equation (96). We can rewrite the above equation using the symmetrized U-statistics

Uβ =
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

1

3

(
X2

i XjXk +XiX
2
jXk +XiXjX

2
k). (108)

4Cov(X̄2
2 , Ȳ2)

µ4
Xµ2

Y

≈ 32(n− 2)

n(n− 1)2

(
Cov(X2, Y )

µ2
XµY

+
2Cov(X,Y )(Var(X) + µ2

X)

µ3
XµY

)
︸ ︷︷ ︸

Second term

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n

Cov(X,Y )

µXµY
+

12

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y

)
︸ ︷︷ ︸

Third term

(109)

Taking the recursion of the third term into account, the total correction of term (c) is:

4 ̂Cov(X̄2
2 , Ȳ2)

µ̂4
X µ̂2

Y

≈ 32(n− 2)

n(n− 1)2

(
̂Cov(X2, Y )

µ̂2
X µ̂Y

+
2 ̂Cov(X,Y )(V̂ar(X) + µ̂2

X)

µ̂3
X µ̂Y

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
r∗a +

12

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

) (110)
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D.4 Term (d)

The computation of the correction of term (d), 4Cov(X̄2
2 ,X̄2)

µ6
X

, is similar to that of term (c). Hence, we
only present the resulting correction:

4 ̂Cov(X̄2
2 , X̄2)

µ̂4
X µ̂2

Y

≈ 32(n− 2)

n(n− 1)2

(
̂Cov(X2, X)

µ̂3
X

+
2V̂ar(X)(V̂ar(X) + µ̂2

X)

µ̂4
X

)

+
4(n− 2)(n− 3)

n(n− 1)

(
8

n
r∗b +

12

n(n− 1)

̂Var(X)2

µ̂4
X

) (111)

D.5 Term (e)

Term (e) is:
Cov(X̄3

2 , Ȳ2)

µ6
Xµ2

Y

(112)

To be able to compute that term, we reexpress the numerator in terms of several U-statistics:

X̄3
2 =

4

n2(n− 1)2
UI +

24(n− 2)

n2(n− 1)2
UII +

8(n− 2)

n2(n− 1)2
UIII +

8(n− 2)(n− 3)

n2(n− 1)2
UIV

+
30(n− 2)(n− 3)

n2(n− 1)2
UV +

12(n− 2)(n− 3)(n− 4)

n2(n− 1)2
UV I +

(n− 2)(n− 2)(n− 4)(n− 5)

n2(n− 1)2
X̄6,

(113)
where

UI :=
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

X3
i X

3
j , (114)

UII :=
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

X3
i X

2
jXk, (115)

UIII =
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

X2
i , X

2
jX

2
k (116)

UIV :=
1

n(n− 1)(n− 2)(n− 3)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

n∑
l=1
l ̸=k
l ̸=j
l ̸=i

X3
i XjXkXl, (117)

UV :=
1

n(n− 1)(n− 2)(n− 3)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

n∑
l=1
l ̸=k
l ̸=j
l ̸=i

X2
i X

2
jXkXl, (118)

UV I :=
1

n(n− 1)(n− 2)(n− 3)(n− 4)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

n∑
l=1
l ̸=k
l ̸=j
l ̸=i

n∑
p=1
p ̸=l
p ̸=k
p ̸=j
p ̸=i

X2
i XjXkXlXp, (119)

26



X̄6 =
1

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=j
k ̸=i

n∑
l=1
l ̸=k
l ̸=j
l ̸=i

n∑
p=1
p ̸=l
p̸=k
p̸=j
p ̸=i

n∑
q=1
q ̸=p
q ̸=l
q ̸=k
q ̸=j
q ̸=i

XiXjXkXlXpXq, (120)

Hence term (e) can be written as:

Cov(X̄3
2 , Ȳ2)

µ6
Xµ2

Y

=
4

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n4 )

Cov(UI , Ȳ2)

µ6
Xµ2

Y

+
24(n− 2)

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n3 )

Cov(UII , Ȳ2)

µ6
Xµ2

Y

+
8(n− 2)

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n3 )

Cov(UIII , Ȳ2)

µ6
Xµ2

Y

+
8(n− 2)(n− 3)

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n2 )

Cov(UIV , Ȳ2)

µ6
Xµ2

Y

+
30(n− 2)(n− 3)

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n2 )

Cov(UV , Ȳ2)

µ6
Xµ2

Y

+
12(n− 2)(n− 3)(n− 4)

n2(n− 1)2︸ ︷︷ ︸
∈O( 1

n )

Cov(UV I , Ȳ2)

µ6
Xµ2

Y

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2︸ ︷︷ ︸
∈O(1)

Cov(X̄6, Ȳ2)

µ6
Xµ2

Y

.

(121)

At this point, we can immediately discard the first three terms as they are at least O
(

1
n3

)
and so can

directly be neglected for a second order correction. In addition, as we are dealing with covariances
between U-statistics they add another O

(
1
n

)
. Therefore, the fourth and fifth term are actually

O
(
1
n

)
O
(

1
n2

)
= O

(
1
n3

)
, so they can be neglected as well. Only the last and the second to last term

remain:

Cov(X̄3
2 , Ȳ2)

µ6
Xµ2

Y

≈ 12(n− 2)(n− 3)(n− 4)

n2(n− 1)2
Cov(UV I , Ȳ2)

µ6
Xµ2

Y︸ ︷︷ ︸
Sixth term

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2
Cov(X̄6, Ȳ2)

µ6
Xµ2

Y︸ ︷︷ ︸
Seventh term

.

(122)

Re-expressing the covariances between U-statistics as covariances between random variables X and
Y (and using the symmetrized version of UV I ), we obtain:

Cov(X̄3
2 , Ȳ2)

µ6
Xµ2

Y

≈ 24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

(
Cov(X2, Y )

µY µ2
X

+
4Cov(X,Y )(Var(X) + µ2

X)

µY µ3
X

)
︸ ︷︷ ︸

Sixth term

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n

Cov(X,Y )

µXµY
+

30

n(n− 1)

Cov(X,Y )2

µ2
Xµ2

Y

)
︸ ︷︷ ︸

Seventh term
(123)

Since the term 12
n

Cov(X,Y )
µXµY

is in O
(
1
n

)
we have to recurse on it. However, we already have derived

its correction in equation (96). Therefore, the total correction of term (e) comes down to:

̂Cov(X̄3
2 , Ȳ2)

µ̂6
X µ̂2

Y

=
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

( ̂Cov(X2, Y )

µ̂Y µ̂2
X

+
4 ̂Cov(X,Y )(V̂ar(X) + µ̂2

X)

µ̂Y µ̂3
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
r∗a +

30

n(n− 1)

̂Cov(X,Y )2

µ̂2
X µ̂2

Y

)
(124)
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D.6 Term (f)

Term (f) is:

Cov(X̄3
2 , X̄2)

µ8
X

(125)

The procedure to obtain its correction is analogous to that of term (e), hence we only present the
result:

̂Cov(X̄3
2 , X̄2)

µ̂8
X

=
24(n− 2)(n− 3)(n− 4)

n2(n− 1)3

( ̂Cov(X2, X)

µ̂3
X

+
4V̂ar(X)(V̂ar(X) + µ̂2

X)

µ̂4
X

)

+
(n− 2)(n− 3)(n− 4)(n− 5)

n2(n− 1)2

(
12

n
r∗b +

30

n(n− 1)

̂Var(X)2

µ̂4
X

) (126)

E Top-label calibration

Following standard practice in related work on calibration, we report the L1 ECEbin for top-label
(also called confidence) calibration on CIFAR-10/100. ECEbin was calculated using 15 bins and an
adaptive width binning scheme, which determines the bin sizes so that an equal number of samples
fall into each bin [Nguyen and O’Connor, 2015, Mukhoti et al., 2020]. The 95% confidence intervals
for ECEbin are obtained using 100 bootstrap samples, as in Kumar et al. [2019]. In all experiments
with calibration regularized training, the biased version of ECEKDE was used.

Table 5 summarizes our evaluation of the efficacy of KDE-XE in lowering the calibration error over
the baseline XE on CIFAR-10 and CIFAR-100. The best performing λ coefficient for KDE-XE is
shown in the brackets. The results show that KDE-XE consistently reduces the calibration error,
without dropping the accuracy. Figure 5 depicts the L2 ECEbin for several choices of the λ parameter
for KDE-XE, using ResNet-110 (SD) on CIFAR-10/100. Figure 6 shows reliability diagrams with 10
bins for top-label calibration on CIFAR-100 using ResNet and Wide-ResNet. Comapared to XE, we
notice that KDE-XE lowers the overconfident predictions, and obtains better calibration than MMCE
(λ = 2) and FL-53 on average, as summarized by the ECE value in the gray box.

Table 5: Top-label L1 adaptive-width ECEbin and accuracy for XE and KDE-XE for various
architectures on CIFAR-10/100. Best ECE values are marked in bold. The value in the brackets
represent the value of the λ parameter.

Dataset Model ECEbin Accuracy
XE KDE-XE XE KDE-XE

CIFAR-10 ResNet-110 3.890 ± 0.602 3.093 ± 0.604 (0.001) 0.925 ± 0.005 0.930 ± 0.005
ResNet-110 (SD) 3.555 ± 0.623 2.778 ± 0.468 (0.01) 0.926 ± 0.005 0.932 ± 0.005

CIFAR-100

ResNet-110 12.769 ± 0.784 8.969 ± 1.047 (0.2) 0.700 ± 0.009 0.696 ± 0.009
ResNet-110 (SD) 11.175 ± 0.642 7.828 ± 0.814 (0.001) 0.728 ± 0.009 0.721 ± 0.009

Wide-ResNet-28-10 7.279 ± 0.876 3.703 ± 1.086 (0.5) 0.762 ± 0.008 0.770 ± 0.008
DenseNet-40 9.196 ± 0.881 8.016 ± 1.079 (0.01) 0.756 ± 0.008 0.756 ± 0.008

F Relationship between ECEbin and ECEKDE

In the following two sections, we investigate further the relationship between ECEbin, as the most
widely used metric, and our ECEKDE estimator. For the three types of calibration, ECEbin is
calculated with equal-width binning scheme. The values for the bandwidth in ECEKDE and the
number of bins per class for ECEbin are chosen with leave-one-out maximum likelihood procedure
and Doane’s formula [Doane, 1976], respectively.

Figure 7 shows an example of ECEbin in a three-class setting on CIFAR-10. The points are mostly
concentrated at the edges of the histogram, as can be seen from Figure 7b. The surface of the
corresponding Dirichlet KDE is given in 7c.
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Figure 5: L2 ECEbin for top-label calibration using ResNet (SD).
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Figure 6: Reliability diagrams for top-label calibration on CIFAR-100 using ResNet (top row) and
Wide-ResNet (bottom row) for each of the considered baselines.

Figure 8 shows the relationship between ECEbin and ECEKDE . The points represent a trained
Resnet-56 model on a subset of three classes from CIFAR-10. In every row, a differnt number of
points was used to estimate the ECEKDE . We notice the ECEKDE estimates of the three types of
calibration closely correspond to their histogram-based approximations.
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Figure 7: An example of a simplex binned estimator and kernel-density estimator for CIFAR-10
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Figure 8: Relationship between ECEbin and ECEKDE for the three types of calibration: canonical
(first column), marginal (second column) and top-label (third column). In every row top to bottom,
different number of points (100, 500, 1000 and all points, respectively) are used to approximate
ECEKDE . Each point represents a ResNet-56 model trained on a subset of three classes from
CIFAR-10. The number of bins per class (13) is selected using Doane’s formula [Doane, 1976],
while the bandwidth is selected using a leave-one-out maximum likelihood procedure (typical chosen
values are 0.001 for 100 points and 0.0001 otherwise).

G Bias and convergence rates

Figure 9 shows a comparison of ECEKDE and ECEbin estimated with a varying number of points.
The ground truth is computed from 3000 test points with ECEKDE . The used model is a ResNet-56,
trained on a subset of three classes from CIFAR-10. The figure shows that the two estimates are
comparable and both are doing a reasonable job in a three-class setting.

Figure 10 shows the absolute difference between the ground truth and estimated ECE using ECEKDE

and a ECEbin with varying number of points. The results are averaged over 120 ResNet-56 models
trained on a subset of three classes from CIFAR-10. Both estimators are biased and have some
variance, and the plot shows that the combination of the two is in the same order of magnitude. The
empirical convergence rates (slope of the log-log plot) is given in the legend and is shown to be
close to the theoretically expected value of -0.5. We observe that ECEKDE has similar statistical
properties in terms of bias and convergence as ECEbin.

30



0 200 400 600 800 1000
Number of points

0.01

0.02

0.03

0.04

0.05

0.06

0.07

EC
E

Ground truth
ECEKDE

ECEbin

(a) Canonical

0 200 400 600 800 1000
Number of points

0.005

0.010

0.015

0.020

EC
E

Ground truth
ECEKDE

ECEbin

(b) Marginal

0 200 400 600 800 1000
Number of points

0.005

0.010

0.015

0.020

0.025

0.030

0.035

EC
E

Ground truth
ECEKDE

ECEbin

(c) Top-label

Figure 9: ECEKDE estimates and their corresponding binned approximations on the three types of
calibration for varying number of points used for the estimation. The ground truth is calculated using
3000 probability scores of the test set using ECEKDE . Optimal number of bins and bandwidth are
chosen with Doane’s formula and LOO MLE, respectively. Typical chosen number of bins is 6-11,
and common values for the bandwidth are 0.0001 and 0.001.
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Figure 10: Absolute difference between ground truth and estimated ECE for varying number of points
used for the estimation. The ground truth is calculated using 3000 probability scores of the test set.
Note that the axes are on a log scale.
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