
Published as a conference paper at ICLR 2025

EFFICIENT ONLINE REINFORCEMENT LEARNING
FINE-TUNING NEED NOT RETAIN OFFLINE DATA

Zhiyuan Zhou∗1, Andy Peng∗1, Qiyang Li1, Sergey Levine1, Aviral Kumar2
1UC Berkeley, 2Carnegie Mellon University (∗Equal Contribution)

ABSTRACT

The modern paradigm in machine learning involves pre-training on diverse data,
followed by task-specific fine-tuning. In reinforcement learning (RL), this trans-
lates to learning via offline RL on a diverse historical dataset, followed by rapid
online RL fine-tuning using interaction data. Most RL fine-tuning methods require
continued training on offline data for stability and performance. However, this is
undesirable because training on diverse offline data is slow and expensive for large
datasets, and should, in principle, also limit the performance improvement possi-
ble because of constraints or pessimism on offline data. In this paper, we show that
retaining offline data is unnecessary as long as we use a properly-designed online
RL approach for fine-tuning offline RL initializations. To build this approach, we
start by analyzing the role of retaining offline data in online fine-tuning. We find
that continued training on offline data is mostly useful for preventing a sudden
divergence in the value function at the onset of fine-tuning, caused by a distri-
bution mismatch between the offline data and online rollouts. This divergence
typically results in unlearning and forgetting the benefits of offline pre-training.
Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of
pre-trained initializations using a very simple idea. WSRL employs a warmup
phase that seeds the online RL run with a very small number of rollouts from
the pre-trained policy to do fast online RL. The data collected during warmup
bridges the distribution mismatch, and helps “recalibrate” the offline Q-function
to the online distribution, allowing us to completely discard offline data without
destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune
without retaining any offline data, and is able to learn faster and attains higher per-
formance than existing algorithms irrespective of whether they do or do not retain
offline data.

1 INTRODUCTION

The predominant paradigm for learning at scale today involves pre-training models on diverse prior
data, and then fine-tuning them on narrower domain-specific data to specialize them to particular
downstream tasks (Devlin et al., 2018; Brown et al., 2020; Driess et al., 2023; Radford et al., 2021;
Zhai et al., 2023; Touvron et al., 2023; Zhou et al., 2024). In the context of learning decision-
making policies, this paradigm translates to pre-training on a large amount of previously collected
static experience via offline reinforcement learning (RL), followed by fine-tuning these initializa-
tions via online RL efficiently. Generally, this fine-tuning is done by continuing training with the
very same offline RL algorithm, e.g., pessimistic (Kumar et al., 2020; Cheng et al., 2022) algorithms
or algorithms that apply behavioral constraints (Fujimoto and Gu, 2021; Kostrikov et al., 2021), on
a mixture of offline data and autonomous online data, with minor modifications to the offline RL
algorithm itself (Nakamoto et al., 2024).

While this paradigm has led to promising results (Kostrikov et al., 2021; Nakamoto et al., 2024),
RL fine-tuning requires continued training on offline data for stability and performance ((Zhang
et al., 2023; 2024); Section 3), as opposed to the standard practice in machine learning. Retaining
offline data is problematic for several reasons. First, as offline datasets grow in size and diversity,
continued online training on offline data becomes inefficient and expensive, and such computa-
tion requirements may even deter practitioners from using online RL for fine-tuning. Second, the
need for retaining offline data perhaps defeats the point of offline RL pre-training altogether: recent
results (Song et al., 2023), corroborated by our experiments in Section 3, indicate that current fine-

1

Published as a conference paper at ICLR 2025

Doffline

Offline
Pre-training

Initialize
w/ Pre-trained(Qpre, πpre)

No Data Retention
Fine-Tuning Paradigm

Interact

No Data Retention

Quick
Adaptation

Offline

WSRL
(Ours)

Hybrid RL

Offline RL +
Finetuning

Return

With Data Retention

Forgetting

Online Fine-Tuning

Step

Figure 1: No data retention fine-tuning focuses on RL fine-tuning without using the offline dataset during
online updates, mirroring the common paradigm in machine learning at scale today. The offline dataset is
only used to pre-train a policy and Q-function via offline RL to initialize fine-tuning, after which the dataset is
discarded and the agent only fine-tunes with online experience. Current methods struggle in this “no-retention”
setting and forget knowledge learned from pre-training. Our goal is to develop a fine-tuning method that
quickly adapts online even if we do not retain offline data.

tuning approaches are not able to make good use of several strong offline RL value and/or policy
initializations, as shown by the superior performance of running online RL from scratch with of-
fline data put in the replay buffer (Ball et al., 2023). These problems put the efficacy of current RL
fine-tuning approaches into question.

In this paper, we aim to understand and address the aforementioned shortcomings of current online
fine-tuning methods and build an online RL approach that does not retain offline data. To develop
our approach, we first empirically analyze the importance of retaining offline data in current online
RL fine-tuning algorithms. We find that for both pessimistic (e.g., CQL (Kumar et al., 2020)) and be-
havioral constraint (e.g., IQL (Kostrikov et al., 2021)) algorithms, the offline Q-function undergoes
a “recalibration” phase at the onset of online fine-tuning where its values change substantially. This
recalibration phase can lead to unlearning and even complete forgetting of the offline initialization.
This manifests in the form of divergent value functions when no offline data is present for training.
Even methods specifically designed for fine-tuning (e.g. CalQL (Nakamoto et al., 2024)) still suffer
from this problem with limited or no offline data. This extends the observation of Nakamoto et al.
(2024) about unlearning in the standard offline-to-online fine-tuning setting in that it demonstrates
that forgetting and unlearning pose a more severe challenge in no data retention fine-tuning.

Is it possible to fine-tune from offline RL value and policy initializations, but without retaining
offline data and not forget the pre-training? Our key insight is that seeding online fine-tuning
with even a small amount of appropriately collected data that “simulates” offline data retention, but
more in distribution to the online fine-tuning task, can greatly facilitate recalibration, mitigating the
distribution mismatch between pre-training and fine-tuning and preventing forgetting. Once this
recalibration is over, we can run the most effective online RL approach (without pessimism or be-
havioral constraints) for most sample-efficient online learning. Our approach, WSRL (Warm Start
Reinforcement Learning), instantiates this idea by incorporating a warmup phase to initialize the
online replay buffer with a small number of online rollouts from the pre-trained policy, and then
running the best online RL method with various offline RL initializations to fine-tune. WSRL is
able to learn faster and attains higher asymptotic performance than existing algorithms irrespective
of whether they retain offline data or not. This approach is not a particularly novel or clever algo-
rithm, but it perhaps is one of the more natural approaches to enable effective fine-tuning of offline
initializations.

Our main contribution in this paper is the study of RL online fine-tuning with no offline data re-
tention, a paradigm we call no-retention fine-tuning. We provide a detailed analysis of existing
offline-to-online RL methods and find that offline data is often needed during fine-tuning to mitigate
the Q-value divergence and the resulting forgetting due to distribution shift, but also slows down
fine-tuning asymptotically. We demonstrate that a simple method of incorporating a warmup phase
to initialize the replay buffer with a small number of transitions from the pre-trained offline RL pol-

2

Published as a conference paper at ICLR 2025

icy followed by running a simple online RL algorithm is effective at sample-efficient fine-tuning,
without forgetting the pre-trained initialization.

2 PROBLEM FORMULATION: FINE-TUNING WITHOUT OFFLINE DATA

We operate in an infinite-horizon Markov Decision Process (MDP),M = {S,A,P, r, γ, ρ}, con-
sisting of a state space S, an action space A, a transition dynamics function P(s′|s, a) : S × A 7→
P(A), a reward function r : S × A 7→ R, a discount factor γ ∈ [0, 1), and an initial state dis-
tribution ρ : P(S). We have access to an offline RL pre-trained policy πpre

ψ (a|s) : S 7→ P(A)
and pre-trained Q-function Qpre

θ (s, a) : S × A 7→ R. Our goal is to build an online fine-tuning
algorithm that only uses πpre

ψ (a|s) and Qpre
θ (s, a) and not Doff to maximize the discounted return:

η(π) = Est+1∼P(·|st,at),at∼π(·|st),s0∼ρ
∑∞
t=0 [γ

tr(st, at)].

Problem setup. Note that the RL fine-tuning problem we study in this paper does not allow retaining
Doff . We will refer to this problem setting as no retention online fine-tuning. Conceptually, our
problem setting is close to the offline-to-online fine-tuning problem (Nair et al., 2020; Kostrikov
et al., 2021; Nakamoto et al., 2024), but we do not allow data retention.

3 UNDERSTANDING THE ROLE OF OFFLINE DATA IN ONLINE FINE-TUNING

Figure 2: In no-retention fine-tuning, IQL, CQL, and CalQL all fail to fine-tune on kitchen-partial.
In contrast, when continually training on offline data during fine-tuning, these algorithms work as intended.
Vertical dotted line indicates the separation between pre-training and fine-tuning.

We first attempt to understand why current offline-to-online RL methods require retaining the offline
dataset. In particular, we hope to understand the pros and cons of retaining offline data and gain
insights into developing new methods that serve a similar role, but do not require retaining offline
data. We center our study along two axes: (1) we analyze the role of retaining offline data at the
beginning of fine-tuning, and (2) we analyze the effect of retaining offline data on asymptotic fine-
tuning performance.

3.1 THE ROLE OF OFFLINE DATA AT THE BEGINNING OF FINE-TUNING

Extending observations from prior work (Nakamoto et al., 2024), we find that fine-tuning offline
RL initializations fails severely if no offline data is retained. Specifically, observe in Figure 2 that
offline RL algorithms IQL (Kostrikov et al., 2021) and CQL (Kumar et al., 2020) unlearn right at
the beginning of fine-tuning, with performance dropping down to nearly a 0% success rate on the
kitchen-partial task from D4RL (Fu et al., 2020b). More importantly, they are not able to
recover over the course of fine-tuning. CalQL (Nakamoto et al., 2024), an offline RL approach
specifically designed for subsequent fine-tuning by learning calibrated Q-functions, initially drops
in performance, but improves with further online training. That said, it still struggles to improve
beyond its pre-trained performance.

To better understand the above results, we introduce some terminology. We define “unlearning”
as the performance drop at the start of fine-tuning, with possible recovery later, and “forgetting”
as the destruction of pre-trained initialization at the beginning of fine-tuning such that recovery
becomes nearly impossible with online RL training. In general, unlearning may be unavoidable due
to the distribution shift over state-action pairs between offline and online (e.g. consider a sparse
reward problem where minor change in the policy action results in huge change in return) (Xie
et al., 2021). On the other hand, forgetting the pre-trained initialization altogether is problematic
since it defeats the benefits of offline RL pre-training. Our goals is for the agent to quicky recover
after unlearning, which relies on the effective use of pre-trained knowledge. Observe in Figure 2
that while all algorithms unlearn, CQL and IQL forget. While CalQL does not forget, it does not

3

Published as a conference paper at ICLR 2025

Figure 3: When offline data is removed (to different extents) during fine-tuning, performance
drops (subfigure a) because Q-function fit on offline dataset distribution diverges (subfigure b, c), even
though the Q-function can fit the online distribution (subfigure d). This plot shows fine-tuning CalQL on
kitchen-partial with 0/5/10/25% offline data in each update batch. We have similar findings with IQL
and CQL.

improve further. This indicates a bottleneck in fine-tuning with online RL without offline data, and
different offline RL initializations suffer from this challenge to different extents.

Why does not retaining offline data hurt? To build intuition of what can go wrong, we observe
in Figure 3 what happens when retaining different amounts of offline data. Figure 3(b) shows that
the average Q-value under the offline distribution begins to diverge as the amount of retained offline
data decreases. This Q-value divergence, in turn, corresponds to a divergence in the TD-error (Fig-
ure 3(c)), perhaps highlighting forgetting. We will show in Section 5 how such divergence can be
prevented by our method.

Diving deeper, we find that this divergence only appears under the distribution of the offline data (on
which we evaluate metrics but do not train): TD-error on online distribution remain small regard-
less of the amount of offline data retained (Figure 3(d)); on the other hand, the TD error under the
offline data distribution grows substantially with a decrease in offline data (Figure3(c)). This trend
is consistent across CQL, IQL, and CalQL, though the divergence for CalQL is the least severe per-
haps thanks to its calibrated Q-function, which correlates with the stability and best performance of
CalQL in this problem setting in Figure 2. This suggests that the problem with no data retention
in current offline-to-online fine-tuning algorithms likely stems from a form of distribution shift be-
tween the online and offline data distribution. Fine-tuning on more on-policy data destroys how well
we fit offline data. As we see in Figure 2, this can lead to forgetting of the pre-trained initialization.

Takeaway 1: Distribution shift between offline and online data destroys Q-function fit

Training only on online experience without offline data retention can destroy how well the
model fits offline data: despite attaining comparable TD-errors on the online data to the
setting when offline data is retained, TD-errors under the offline distribution grow larger.

Figure 4: A downward spiral effect in CQL (left), CalQL (middle), and IQL (right) Q-functions in no-
retention fine-tuning on kitchen-mixed, kitchen-complete, and kitchen-partial: When fine-
tuning starts at 500k steps, Q function goes on a downward spiral. When it eventually recovers, the policy has
already unlearned (Figure 2).
Why are Q-values underestimated? Not only do the Q-values under the offline data distribution
diverge, Q-values on the online distribution also go through underestimation at the onset of fine-
tuning (see Figure 4). This Q-value divergence is a manifestation of the “recalibration” process
at the boundary between offline RL and online fine-tuning, previously identified in Figure 3 of
Nakamoto et al. (2024). However, unlike Nakamoto et al. (2024), the recalibration process in no
retention fine-tuning must operate entirely on limited on-policy data. Thus, we see that despite

4

Published as a conference paper at ICLR 2025

Figure 6: Retaining offline data is not efficient, and is outperformed by online RL methods like RLPD on three
different environments. RLPD starts from scratch, and CalQL starts from pre-trained initialization at step 0.

CalQL explicitly modifies the scale of the offline Q-function initialization, it still cannot prevent
forgetting when offline data is not retained.Intuition: Why Are Q values Underestimated?

No-retention
Online Update

Pre-trained Q-function Online Fine-tuned Q-function

Dataset
(S, A) (S, A)

Learned Offline Q-function
Ground Truth Q-function

OOD Dataset

Learned Online Q-function

Online
Dist.

Replay
Buffer

Conservative regularizer acts
on (S, A) outside replay buffer

Pessimistic TD target makes
Q-values more underestimated

Pessimism on OOD (S,A)
offline makes TD target

pessimistic online

Figure 5: Illustration to demonstrate why Q-values are under-estimated in
no-retention fine-tuning and may lead to a “downward spiral”.

Next, we wish to understand
why recalibration leads to
divergent Q-values. Fig-
ure 5 provides an intu-
ition for such Q-value un-
derestimation. Consider the
very first batch of online
rollouts collected from the
environment. The target
value computation for esti-
mating TD-error on online
state-action pairs will query
the offline Q-function, Qpre

θ ,
on out-of-distribution state-
action pairs. Due to conservative offline RL pre-training (e.g. CQL or CalQL), learned Q-values at
these out-of-distribution state-action pairs are expected to be small. Using such pessimistic values
for TD targets in the Bellman backup will, in turn, propagate these underestimation errors onto the
new online state-action Figure 3(d) corroborates effective propagation of these TD targets. In ad-
dition, if one continues to run pessimistic RL algorithms during fine-tuning (e.g., CQL or CalQL),
the conservative regularizer continues to minimize out-of-distribution Q-values: with few on-policy
rollouts, Q-values for unseen actions keep getting smaller.

This mechanistic understanding hints at a “downward spiral” in the learned Q-function at the begin-
ning of fine-tuning. By this point the Q-function recovers, the policy has forgotten its pre-training
and is no longer able to recover to its offline performance (Figure 2). We find that this phenomenon
becomes more detrimental as the amount of offline data in fine-tuning is reduced, as shown in Fig-
ure 3. The most adverse effects arise when no offline data can be retained. Even calibrated algo-
rithms, such as CalQL, though more robust, still suffer from this issue (Figure 4 middle).

Takeaway 2: Re-calibration of Q-values leads to excessive underestimation

We find that Q-value recalibration at the beginning of fine-tuning leads to excessive under-
estimation due to backups with over-pessimistic TD-targets. We call this the “downward
spiral”.

3.2 THE ADVERSE IMPACT OF OFFLINE DATA ON ASYMPTOTIC PERFORMANCE

As shown above, offline data plays an important role in current offline-to-online algorithms by help-
ing with recalibration and preventing Q-value divergence. But how does it affect performance in
the long term, once recalibration is over? We find that continued training on offline data hurts final
performance and efficiency. Specifically, we find in Figure 6 that offline RL fine-tuning tends to
be substantially slower than online RL algorithms from scratch that initialize the replay buffer with
offline data (Ball et al., 2023; Song et al., 2023). This is quite concerning because it indicates that
either offline RL pre-training provides no benefits for fine-tuning (unlike other fields of machine
learning where pre-training helps substantially) or that existing RL fine-tuning approaches from var-
ious offline RL initializations are not effective enough to make use of offline initializations. We will
show that a simple modification to online RL methods in the high updates-to-data (UTD) regime is
able to make good use of initializations from several offline RL methods, without offline data.

5

Published as a conference paper at ICLR 2025

Takeaway 3: Retaining offline data hurts asymptotic performance

While retaining offline data appears to be crucial for preventing forgetting at the beginning
of fine-tuning for current fine-tuning methods, continuing to make updates on this offline
data with an (pessimistic) offline RL algorithm negatively impacts asymptotic performance
and efficiency.

4 WSRL: FAST FINE-TUNING WITHOUT OFFLINE DATA RETENTION

So far we saw that retaining offline data in offline RL algorithms can slow down online fine-tuning
but we also cannot remove offline data due to forgetting. How can we tackle both the forgetting of
offline initialization and attain asymptotic sample efficiency online?

Key idea. Perhaps one straightforward approach to address asymptotic efficiency issues is to uti-
lize a standard online RL approach, with no pessimism or constraints for fine-tuning, unlike cur-
rent offline-to-online fine-tuning approaches that still retain offline RL specific techniques in fine-
tuning. We can further accelerate online learning by operating in the high updates-to-data (UTD)
regime (Ball et al., 2023; Chen et al., 2021). The remaining question is: how do we tackle catas-
trophic forgetting at the onset of fine-tuning that prevents further improvements online, without
offline data? Our insight is that we can “simulate” continued training on offline data by collect-
ing a small number of warmup transitions with a frozen offline RL policy at the onset of online
fine-tuning. Training on these transitions via an aggressive, high updates-to-data (UTD) online RL
approach, without retaining offline data can mitigate the challenges of catastrophic forgetting. Our
approach, WSRL (Warm Start Reinforcement Learning) instantiates these insights into an extremely
simple and practical method that enables us to obtain strong fine-tuning results without offline data.

WSRL algorithm. WSRL is an off-policy actor-critic algorithm (Algorithm 1). It initializes the
value function and policy with the pre-trained Q-function Qpre

θ and policy πpre
ψ could come from

any offline RL algorithm. Then, WSRL uses the first K online steps to collect a few rollouts using
the frozen offline RL policy to simulate the retention of offline data. We refer to this phase as
the “warmup” phase. After warmup data collection, WSRL uses standard temporal-difference
(TD) updates and policy gradient. For fine-tuning, we fine-tune with a high updates-to-data (UTD)
ratio (Fu et al., 2019; Chen et al., 2021) and follow other best practices. To combat issues such as
overestimation (Hasselt, 2010)in the high UTD regime, we use an ensemble of Q functions (Chen
et al., 2021) and layer normalization (Hiraoka et al., 2022) in both the actor and the critic.

Implementation details. Most of the results in this paper use CalQL to initialize WSRL, even
though in principle other initializations could be used. See Appendix H for running WSRL with
different initializations. We choose Soft Actor-Critic (Haarnoja et al., 2018a), with an ensemble of
10 Q-networks and layer normalization, as our online fine-tuning algorithm. We use a UTD of 4.
This design is inspired by the work of Ball et al. (2023). We use K = 5000 warmup steps at the
start of fine-tuning. Further implementation details are in Appendix I.

5 EXPERIMENTAL EVALUATION
The goal of our experiments is to study how well WSRL is able to fine-tune online without offline
data retention. We also ablate the design decisions in WSRL to understand the efficacy of WSRL.
Concretely, we study the following research questions: (1) Can WSRL enable efficient fine-tuning
in the no-retention setting?; (2) How does WSRL compare with methods that do retain offline data?;
(3) How critical is the warmup phase in WSRL?; (4) How important is it to use online RL algorithm
for online fine-tuning?, and (5) How important is it to pre-train the policy, value function, or both?
5.1 BASELINES AND EXPERIMENTAL SETUP

While most prior RL fine-tuning methods are not designed explicitly for the no-retention fine-tuning
setting, they can definitely be applied or repurposed to our setting. JSRL (Uchendu et al., 2023)
uses a pre-trained policy to roll in for some number of steps during each episode and then rolls out
with the current policy. The online policy is trained from scratch with both the roll-in and rollout
experience. To improve JSRL’s competitiveness, we also initialize the online policy with the pre-
trained policy and run it with high UTD. Offline RL methods have also been shown to fine-tune
online. We consider three offline methods, CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021),
and CalQL (Nakamoto et al., 2024), an extension to CQL that calibrates the Q-values for efficient
fine-tuning. Another method, SO2 (Zhang et al., 2024) attempts to balance reward maximization

6

Published as a conference paper at ICLR 2025

Figure 7: In no-retention fine-tuning, WSRL fine-tunes efficiently and greatly outperforms all previous
algorithms, which often fail to recover from an initial dip in performance. JSRL, the closest baseline, uses a
data-collection technique similar to warmup.

Figure 8: KL divergence of the pre-trained policy and Q-function with fine-tuned ones show that WSRL
did not forget its pre-training. The four plots show DKL(π

pre
ψ ||πψ) and DKL(softmax(Qpre

θ)||softmax(πψ))
on online and offline state distributions. This plot aggregates the KL divergence of six different environments
shown separately in Figure 19 and 20, along with a more detailed discussion in Appendix E.

and pessimistic pre-training via high UTD and perturbed value updates during fine-tuning. Finally,
RLPD (Ball et al., 2023) is an efficient online RL algorithm that learns from scratch by performing
50/50 sampling of the offline dataset and online buffer for each update batch. While the typical fine-
tuning recipe involves sampling each update batch from both the offline dataset and online replay
buffer (CQL, CalQL, RLPD), or initializing the replay buffer with the offline dataset (IQL, SO2),
we evaluate them in the no-retention setting by only sampling from the online buffer. Since RLPD
without 50/50 sampling is equivalent to a rapidly-updating Soft Actor Critic (Haarnoja et al., 2018a)
agent, we refer to it as SAC (fast).

Experimental setup. We study a number of challenging benchmarks tasks and pre-training dataset
compositions following protocol used by prior works (Nakamoto et al., 2024; Kostrikov et al., 2021;
Kumar et al., 2020). We experiment on Antmaze, Kitchen, and Adroit tasks from D4RL (Fu et al.,
2020a) and the Gym MuJoCo locomotion tasks1. More discussion is in Appendix C.

5.2 CAN WSRL ENABLE EFFICIENT FINE-TUNING IN NO-RETENTION FINE-TUNING?
Figure 7 compares WSRL with the aforementioned methods applied to no-retention fine-tuning.
In seven different tasks, WSRL significantly outperforms baselines, fine-tuning faster to a higher
asymptotic performance. CQL, IQL, and CalQL completely fail in this setting, as noted before in
Section 3. SAC (fast) completely fails in exploration-heavy environments, but can improve slowly
in some environments. The most competitive baseline is JSRL. While JSRL achieves the same
performance on Adroit as WSRL, it is significantly worse on Antmaze and Kitchen. We
hypothesize that this performance gap stems from the ability of WSRL to benefit from the pre-trained
value initialization, especially on datasets where the pre-trained Q-function is good (e.g. Antmaze).
Note that while WSRL does suffer from an initial unlearning in performance (see Figure 18) it
recovers quickly and outperforms other methods which often do not recover at all. As we noted

1Results in Appendix B.

7

Published as a conference paper at ICLR 2025

Figure 9: Compared to methods that do retain offline data online, WSRL, perhaps surprisingly, is still able
to fine-tune faster or competitively despite not retaining any offline data. This highlights benefits of warmup.

before, some unlearning might be unavoidable in some environments, but it is important to prevent
forgetting of the pre-trained initialization. To evaluate how much the policy and Q-function forget,
we measure in Figure 8 the KL divergence between the pre-trained and fine-tuned Q-functions and
separately between pre-trained and fine-tuned policies during the unlearning period. While CQL and
CalQL suffer from divergence in the Q-function, WSRL’s Q-function remains stable and relatively
close to its pre-trained initialization. The KL divergence of the policy shows that πψ does not forget
its pre-training on states relevant in fine-tuning, while unlearning potentially irrelevant information.
This shows that while WSRL unlearns initially, it does not forget. See Appendix E for details.

5.3 HOW DOES WSRL COMPARE TO METHODS THAT RETAIN OFFLINE DATA?
In Figure 9, we compare WSRL to prior methods that still retain and utilize offline data during online
fine-tuning. For example, the method labeled as CalQL in this figure would sample transitions from
both the offline data and online data to construct an update batch. To make comparisons fair, we
also compare to a version of all methods that trains with high UTD of 4 and an ensemble of 10
Q-functions. Observe that WSRL also outperforms these methods despite the fact that these prior
methods retain the entire offline dataset during fine-tuning. Specifically, WSRL usually achieves
higher asymptotic performance than CalQL and fine-tunes faster, indicating retaining offline data
may not be the best compromise for asymptotic performance, as we have also shown in Section 3.
WSRL also outperforms RLPD, indicating that WSRL can effectively utilize the pre-trained value
function and policy initializations for rapid online learning.

5.4 HOW CRITICAL IS THE WARMUP PHASE?
We find that the warmup phase is crucial for fine-tuning with online RL. As shown in Figure 10,
WSRL without warmup performs significantly worse in three different environments. Moreover, we
find that using such simple warmup scheme is better than WSRL initializing with the same number
of transitions from the offline dataset or retaining the offline dataset all together (See Appendix J and
K). We hypothesize that warmup helps because it helps mitigate the distribution shift and prevents
divergence and the “downward spiral” at the beginning of fine-tuning. As shown in Figure 11 shows,
learned Q-values do not diverge to overly pessimistic values when warmup is employed and the TD
losses remain small on the offline data as well, avoiding the “downward spiral” in Section 3. See
more detailed discussion in Appendix G.

Figure 10: Warmup is critical to fast fine-tuning: When WSRL does not use the initial 5000 steps of
warmup, it performs worse or has much higher variance.

8

Published as a conference paper at ICLR 2025

Figure 11: Warmup phase helps prevent downward spiral: (left) Q-values during fine-tuning, and warmup
mitigates over-pessimistic values; (middle, right) Q-value and TD error evaluated on the offline distribution,
where warmup prevents divergence. Data from WSRL on Antmaze-large-play.

Figure 12: Ablation studies: the importance of using Q-function initialization (left) and a non pessimistic
online RL algorithm (right). Left: Q-function initialization is especially helpful when the pre-training dataset
has high coverage (e.g. Antmazes). Each plot averages across different dataset types on a domain; Right:
Importance of fine-tuning with a standard online RL algorithm: SAC learns faster than CalQL.

5.5 HOW IMPORTANT IS USING A STANDARD (NON-PESSIMISTIC) ONLINE RL ALGORITHM
FOR FINE-TUNING?

In addition to a warmup phase, using a standard online RL algorithm for fine-tuning is also a critical
design choice in WSRL. We ablate this decision by attempting to use an offline RL algorithm during
fine-tuning. Here we choose to use CalQL, because it is less likely to experience Q-divergence
(Section 3) by design, compared to CQL and IQL, but is still a pessimistic algorithm. We also
initialize CalQL with the pre-trained policy and Q-function, and use an identical number of warmup
steps online. As shown in Figure 12 (right), using an offline algorithm is significantly worse than
using a standard online RL algorithm, SAC.

5.6 HOW IMPORTANT IS IT TO INITIALIZE THE POLICY, VALUE FUNCTION, AND BOTH?

Importance of policy initialization. At the start of fine-tuning, WSRL initializes the policy to
the pre-trained policy. Since the pre-trained policy is already capable of meaningful actions, it
speeds up online learning. In Figure 13, we compare WSRL’s performance with and without “policy
initialization”, and find that initializing with the pre-trained policy is crucial for fast fine-tuning.

Figure 13: Importance of policy initialization in WSRL: with
policy initialization, WSRL performs much better in Kitchen.

Benefits of Q-value initialization.
In Figure 12 (left), we observe that
while initializing the value function
did not bring additional benefits in
some domains, it made fine-tuning
faster in others. For e.g., initializ-
ing with the Q-function is especially
helpful in the Antmaze domains.
We hypothesize that this is because
the pre-training datasets in Antmazes
exhibit much broader coverage compared to those in Adroit and Kitchen, resulting in a bet-
ter offline Q-function. Consequently, initializing with a more informative Q-function in Antmazes
accelerates online fine-tuning.

6 RELATED WORK
Offline-to-online RL. Offline-to-online RL focuses on leveraging an offline dataset to run online
RL as sample-efficient as possible (Lee et al., 2022; Nair et al., 2020). Many methods developed
for this setting utilize offline pre-training followed by a dedicated fine-tuning phase (Nair et al.,
2020; Kostrikov et al., 2021; Agarwal et al., 2022; Hu et al., 2023; Rafailov et al., 2023; Nakamoto
et al., 2024) on a mix of offline and online data. Offline RL methods can also be directly used for
fine-tuning by continuing training when adding new online data to the offline data buffer (Kumar

9

Published as a conference paper at ICLR 2025

et al., 2020; Kostrikov et al., 2021; Tarasov et al., 2024). Most similar to the goal in our paper
is Agarwal et al. (2022), which attempts to use previous RL computations as a better initialization
for downstream tasks. However, this work, along with all the methods above, still require retaining
all of the pre-training data in the data buffer. As we also show, these methods completely fail without
the offline data in the buffer. Our work does not retain offline data. Uchendu et al. (2023) utilizes a
pre-trained policy to guide online fine-tuning without the need of offline data retention, but discard
the value function, which typically drives learning in most actor-critic RL algorithms. Ji et al. (2023)
and Luo et al. (2024) run offline RL and online RL concurrently on a shared replay buffer, following
the idea of tandem learning (Ostrovski et al., 2021). Although the high-level motivating principle
behind this line of work is also to use offline RL to boost online RL efficiency, there’s no pre-training.

Bottlenecks in online RL fine-tuning of offline RL policies. In this work, we show that offline
data retention greatly stabilizes the recalibration of the Q-function at the onset of fine-tuning, which
otherwise can lead to catastrophic forgetting due to state-action distribution shift. Luo et al. (2023)
observe that putting offline data into the offline RL replay buffer stabilizes fine-tuning, but also slows
down learning. However, it still remains unclear as to why offline data hurts fine-tuning, which our
analysis aims to answer. Lee et al. (2022) identify the existence of state-action distribution shift
between offline data and online rollout data, but do not explicitly analyze the negative effects of
this shift in online fine-tuning. Nakamoto et al. (2024) show the poor scale calibration of offline
pre-trained Q-function to be a key cause for instability of pessimistic algorithms during online fine-
tuning with offline data retention. Our analysis extends this analysis to the setting which does not
retain offline data and uncovers a distinct reason (state-action distribution shift) that also plagues the
method of Nakamoto et al. (2024) in this regime.

Online RL with prior data but no pre-training. Another line of work bypasses offline RL pre-
training altogether, directly using a purely online RL agent to learn on data samples from both
offline data and online interaction data from scratch (Song et al., 2022; Zhou et al., 2023; Ball et al.,
2023). Despite not employing pre-training, evidence shows that this recipe can work pretty well,
often outperforming online RL fine-tuning methods that utilize a separate offline pre-training phase.
If the most effective way to utilize prior data is to include it in the replay buffer without any pre-
training at all–no matter which pre-training algorithm is used–then it perhaps indicates that we are
missing some important ingredients for a truly scalable RL formula for pre-training and fine-tuning.
In this paper, we show that at least a big part of the problem lies in online fine-tuning of offline RL
initializations, and build an extremely simple approach to fix the problem.

Fine-tuning RL policies with no data retention. Finally, many continual and lifelong RL methods
also fine-tune policies without retaining prior experiences due to the non-stationarity assumption in
the environment dynamics and task specification (Ring, 1994; Kirkpatrick et al., 2017; Huang et al.,
2021; Wołczyk et al., 2021; Powers et al., 2022). Meta-RL methods (Duan et al., 2016; Rothfuss
et al., 2018; Stadie et al., 2018; Rakelly et al., 2019; Arndt et al., 2020; Dorfman et al., 2021; Grigsby
et al., 2023) assume access to a task/environment distribution to optimize for fast fine-tuning online.
In contrast, we only consider the single-environment, single-task setting where the pretraining and
fine-tuning are in the same environment for the same task. In the same single-environment, single
task setting, many prior works study on-policy RL methods (e.g., PPO (Schulman et al., 2017))
to fine-tune pre-trained policies (Schaal, 1996; Kober and Peters, 2008; Rajeswaran et al., 2017;
Gupta et al., 2019; Wołczyk et al., 2024; Ren et al., 2024). Among these, Wołczyk et al. (2024)
also observe unlearning at the beginning of fine-tuning and find that explicitly mitigating unlearning
with techniques from continual learning improves the efficiency of fine-tuning. In contrast to these
works, we focus on off-policy actor-critic RL methods, that provide an elevated sample efficiency,
and require different solution strategies to address this unlearning problem.

7 CONCLUSION

In this paper, we explore the possibility of fine-tuning RL agents online without retaining and co-
training on any offline datasets. Such setting is important for truly scalable RL, where offline RL is
used to pre-train on a diverse dataset, followed by online RL fine-tuning where keeping the offline
data is expensive or impossible. We find that previous offline-to-online RL algorithms fail com-
pletely in this setting because of Q-value divergence due to distribution shift. However, if we simply
use online RL algorithm for fine-tuning and allow the Q-values to stabilize through a warmup phase,
we can prevent the Q-divergence. We hope that WSRL sheds light on the challenges in no-retention
fine-tuning, and inspire future research on the important paradigm of no-retention RL fine-tuning.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank Seohong Park, Mitsuhiko Nakamoto, Kyle Stachowicz, and anonymous reviewers for
informative discussions and feedback on an earlier version of this work. This research was supported
by the AI Institute and Office of Naval Research under grants N00014-24-1-2206 and N00014-20-
1-2383. We thank TPU Research Cloud (TRC) and Google Cloud for generous compute donations
that made this work possible.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in neural information processing systems, 35:28955–28971, 2022.

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for
sim-to-real domain adaptation. In 2020 IEEE international conference on robotics and automa-
tion (ICRA), pages 2725–2731. IEEE, 2020.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. arXiv preprint arXiv:2302.02948, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0tDd.

C. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially Trained Actor Critic for Offline RL.
ICML, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RlΘ2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven rein-
forcement learning. In arXiv, 2020a. URL https://arxiv.org/pdf/2004.07219.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In Proceedings of the 36th International Conference on Machine Learning.
PMLR, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020b.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. arXiv preprint arXiv:2310.09971, 2023.

11

https://openreview.net/forum?id=AY8zfZm0tDd
https://arxiv.org/pdf/2004.07219

Published as a conference paper at ICLR 2025

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In arXiv, 2018a. URL https://arxiv.org/
pdf/1801.01290.pdf.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Hado van Hasselt. Double q-learning. In Proceedings of the 23rd International Conference on
Neural Information Processing Systems - Volume 2, 2010.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsu-
ruoka. Dropout q-functions for doubly efficient reinforcement learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xCVJMsPv3RT.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing. arXiv preprint arXiv:2311.02198, 2023.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 799–805. IEEE, 2021.

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing
serendipity: Exploiting the value of past success in off-policy actor-critic. arXiv preprint
arXiv:2306.02865, 2023.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural
information processing systems, 21, 2008.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pages 1702–1712. PMLR, 2022.

Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth. Finetuning from
offline reinforcement learning: Challenges, trade-offs and practical solutions. arXiv preprint
arXiv:2303.17396, 2023.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. arXiv preprint
arXiv:2405.18520, 2024.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

12

https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=xCVJMsPv3RT

Published as a conference paper at ICLR 2025

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pages 16828–16847. PMLR, 2022.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents, pages 705–743. PMLR, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. Moto: Offline pre-training to online fine-tuning for model-based robot learning. In Confer-
ence on Robot Learning, pages 3654–3671. PMLR, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pages 5331–5340. PMLR, 2019.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Mark Bishop Ring. Continual learning in reinforcement environments. The University of Texas at
Austin, 1994.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid RL: Using both offline and online data can make RL efficient. arXiv preprint
arXiv:2210.06718, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=yyBis80iUuU.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

13

https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU

Published as a conference paper at ICLR 2025

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pages 34556–34583. PMLR, 2023.

Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496–28510, 2021.

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zając, Raz-
van Pascanu, Łukasz Kuciński, and Piotr Miłoś. Fine-tuning reinforcement learning models is
secretly a forgetting mitigation problem. arXiv preprint arXiv:2402.02868, 2024.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 11975–11986, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of q-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pages 16908–16916, 2024.

Yifei Zhou, Ayush Sekhari, Yuda Song, and Wen Sun. Offline data enhanced on-policy policy
gradient with provable guarantees. arXiv preprint arXiv:2311.08384, 2023.

Zhiyuan Zhou, Pranav Atreya, Abraham Lee, Homer Walke, Oier Mees, and Sergey Levine. Au-
tonomous improvement of instruction following skills via foundation models. arXiv preprint
arXiv:2407.20635, 2024.

14

Published as a conference paper at ICLR 2025

Appendices
A ADDITIONAL RESULTS ON ANTMAZE ENVIRONMENTS

In the main paper, we presented results on three of the most challenging antmaze environments.
Here, in addition to the set of three antmaze environments shown in Figures 7 and 9, we provide the
results of WSRL on all eight D4RL antmaze environments, together with strong baseline methods.
The results show that WSRL is significantly better than baselines.

Figure 14: WSRL on all eight D4RL antmaze environments, along with RLPD and CalQL baselines. Step 0
shows the start of fine-tuning for WSRL and CalQL, and start of RLPD. Solid lines do not retain offline data,
while dotted lines do.

B RESULTS ON MUJOCO LOCOMOTION ENVIRONMENTS

Additionally, we also apply WSRL on nine different Mujoco locomotion domains in the no-
retention fine-tuning setting. Specifically, we experiment with three different robot embodiments
(Halfcheetah, Hopper, and Walker), each with three different types of datasets. The random
datasets are collected with a random policy; the expert datasets are collected with a policy trained
to completion with SAC; and the medium-replay datasets are collected with the replay buffer of
a policy trained to the performance approximately 1/3 of the expert. As Figure 15 shows, WSRL
outperforms or is similar to the best baseline methods.

For WSRL, the hyperparameters were exactly as those in Section 5 and listed in Appendix I with
one exception: its pre-trained policy and value function are done with CQL offline training instead
of CalQL. This is because these offline datasets have dense rewards and do not end in a terminal
state, and therefore do not have ground-truth return-to-go to support the CalQL regularizer. For the
same reason we did not include a CalQL baseline in Figure 15. Both the IQL and CQL baseline
in Figure 15 do not retain offline data, and use an ensemble of 10 Q functions, along with layer
normalization in the Q functions. RLPD does retain offline data.

C EXPERIMENTAL SETUP

(1) The Antmaze tasks from D4RL (Fu et al., 2020a) are a class of long-horizon navigation tasks
that require controlling an 8-DOF Ant robot to reach a goal with a sparse reward. The agent has to

15

Published as a conference paper at ICLR 2025

Figure 15: WSRL on nine Mujoco locomotion environments with dense rewards, along baselines. Step 0
shows the start of fine-tuning for WSRL and CalQL, and start of RLPD. Solid lines do not retain offline data,
while dotted lines do.

learn to “stitch” experiences together from a suboptimal dataset. In addition to the original mazes
from D4RL, we include Antmaze-Ultra (Jiang et al., 2022), a larger and more challenging maze.
We only include three of the hardest Antmaze environments in Section 5, and provide results on all
eight Antmazes in Appendix A. (2) The Kitchen environment is a long-horizon manipulation task
to control a 9-DoF Franka robot arm to perfrom 4 sequential subtasks in a simulated kitchen. (3)
The Adroit environments are a suite of dexterous manipulation tasks to control a 28-DoF five-
fingered hand to manipulate a pen to desired position, open a door, and relocating a ball to desired
position. The agent observes a binary reward when it succeeds. Each data has an offline dataset that
provides a narrow offline dataset of 25 human demonstrations and additional trajectories collected
by a behavior cloning policy. (4) The Mujoco Locomotion environments in D4RL are dense
reward settings where agents learn to control robotic joints to perform various locomotion tasks.

D ABLATION STUDIES ON WARMUP PHASE

Impact of different warmup types. One natural question arises: why does the simple approach of
warming up the replay buffer significantly boost performance during fine-tuning? One hypothesis
is that seeding the replay buffer with some data helps prevent early overfitting, as much work has
found in online RL (Nikishin et al., 2022). To test this hypothesis, we plot in Figure 16 in the
fine-tuning performance of initializing with random actions, and compare it to initializing with pre-
trained policy actions as well as not initializing the buffer at all. It is clear that seeding the buffer
with random actions significantly underperform the warmup approach, and in fact does not even
provide much benefit as compared to not seeding the buffer at all. This suggests that the reason
warmup phase helps is not because of preventing overfitting.

Impact of different length warmups. Since warmup phase seems to be critical to efficient online
fine-tuning, we study whether the length of this warmup phase impacts fine-tuning performance.
Figure 17 shows warmup phase of lengths 1k, 5k, and 20k on three different environments. It is
clear that short warmup phase (1k) sometimes lead to worse asymptotic performance or instability
during fine-tuning. On the other hand, longer warmup phases could also hurt (e.g. on Kitchen-
mixed) because it adds too much offline-like data into the replay buffer and slows down online

16

Published as a conference paper at ICLR 2025

Figure 16: Comparing seeding the buffer with random actions to actions from the pre-trained policy:
initializing with the pre-trained policy action works significantly better on kitchen-mixed (left)
and kitchen-partial (right).

Figure 17: Impact of warmup phase of length 1k, 5k, 20k on Kitchen-mixed (left),
Antmaze-large-diverse (middle), and Door-binary (right).

improvement. In WSRL, we did not tune the lengths of the warmup phase beyond what is shown in
Figure 17, and we use 5000 warmup steps for all environments.

E UNLEARNING AND RECOVERY AT THE START OF FINE-TUNING: AN
ANALYSIS

To further illustrate the behavior of offline-to-online RL agents at the start of online fine-tuning, we
show in Figure 18 the performance of WSRL, along with two other algorithms, evaluated at much
smaller intervals than Figure 7. We fine-tune all agents for 50, 000 steps online across six different
environments, and evaluate every 2, 000 environment steps.

Figure 18 shows that WSRL experiences an initial dip in policy performance after 5, 000 steps of
warmup, but recovers much faster than CQL and CalQL. We hypothesize that such a dip might be
inevitable at the start of online fine-tuning in the no offline data retention setting because the policy
is experiencing different states than what it was trained on and potentially states it has never seen
(We analyze this with much more detail below). Moreover in some environments (e.g., binary re-
ward environments), one might expect small fluctuations in the policy to manifest as large changes
in the actual policy performance. However, such brief performance dip does not mean the policy/Q
function has been catastrophically destroyed, which is evidenced by the fact that WSRL recovers
faster than its peer algorithms and learns faster than online RL algorithms such as RLPD (See Fig-
ure 9). If this initial dip would have destroyed all pre-training knowledge from the policy, then we
would not expect quick recovery.

In fact, in general, it is impossible to build a no data retention fine-tuning algorithm whose perfor-
mance does not initially degrade as we move from offline data to online training on all environments
and offline data compositions (Xie et al., 2021). Intuitively, this is because it violates a sort of “no
free lunch” result: for example, consider a sparse reward problem where the reward function is an
arbitrary non-smooth function over actions, here even a minor change in policy action results in a
catastrophic change in return. Therefore just deducing whether an algorithm has lost is prior or not
based on performance may not be the most informative. Instead, a more meaningful metric to mea-

17

Published as a conference paper at ICLR 2025

Figure 18: First 50, 000 steps of fine-tuning with denser evaluation intervals. Step 0 in the plot show the start
of online fine-tuning. WSRL starts being evaluated after K = 5000 steps of warmup. All agents are evaluated
in the no-retention fine-tuning setting.

sure catastrophic forgetting is to evaluate how much a fine-tuning algorithm with no data retention
deviates from its pre-training, and how fast it can adjust to the online state-action distribution.

Therefore, to investigate how much the policy and Q-function have deviated from its offline-
pretraining during the initial “performance dip”, we plot the KL divergence between the pre-trained
policy/Q-function and the fine-tuned ones. Figure 19 shows the KL divergence between the policies
DKL(π

pre
ψ ||πψ) evaluated on both the online distribution and the offline distribution. In Figure 19

(Top), we can see that DKL(π
pre
ψ ||πψ) on the offline distribution generally increases during fine-

tuning for all three agents. This increase indicates that the fine-tuned policy has deviated from the
pre-trained policy on at least some parts of the dataset distribution. This is actually expected in
the no-retention fine-tuning setting because of the distribution shift from offline to online. To be
more specific, for example, in Antmaze environments, the offline dataset exhibits a very diverse
state-action distribution, covering almost all the locations in the entire maze, while fine-tuning is
a single-goal navigation task. In no-retention fine-tuning, the agent is incentivized to forget about
parts of the offline dataset that is irrelevant to the fine-tuning task and specialize to the online task.
Compared to CQL and CalQL, WSRL generally has the same asymptotic value for DKL but reaches
convergence much faster. This suggests that WSRL actively adapts to the online distribution much
quicker compared to its no-retention counterparts, perhaps thanks to its non-conservative objective
optimized solely on online data and its high update-to-data ratio during online RL.

On the other hand, Figure 19 (Bottom) shows DKL on the online distribution for WSRL increases
slightly, but is much smaller compared to CQL and CalQL (without data retention). This indicates
that WSRL’s policy remains almost the same on the online distribution. This is desirable because
the pre-trained policy already has decent performance, and a capable fine-tuning algorithm should
not forget that capability while adjusting slightly to unseen (but not out-of-distribution) states. In
summary, due to the distribution shift from offline pre-training to no-retention fine-tuning, WSRL
is forgetting experience in the offline dataset that was learned during offline pre-training but is in
reality irrelevant for specializing to the online task. In contrast, it is instead specializing to the online
task.

In addition to the above analysis on the policy, in Figure 20, we plot the KL divergence of pre-trained
Q-function Qpre

θ and fine-tuned Q-function Qθ. We normalize the Q-values into a distribution with
softmax and plot DKL(softmax(Qpre

θ)||softmax(Qθ)). We evaluate the DKL on states sampled
from both the offline dataset distribution (Figure 20 Top) and the online replay buffer distribution
(Figure 20 Bottom), and on actions sampled from a equal-weighted mix of πpre

ψ (s) and πψ(s).
The results show that CQL and CalQL Q-functions usually diverge significantly from pre-training,
probably due to the downward spiral phenomenon described in Section 3. In comparison, WSRL’s

18

Published as a conference paper at ICLR 2025

Figure 19: Policy KL divergence DKL(π
pre
ψ ||πψ) between the pre-trained offline policy and the fine-tuned

online policy at the first 50k steps of fine-tuning. The top plot shows the KL divergence evaluated on the
offline dataset distribution; the bottom plot shows the KL divergence on the online state-and-action distribution,
sampled from the replay buffer. WSRL is not plotted during the first 5, 000 steps of warmup. CQL and CalQL
do not retain offline data.

Q-function remains stable on both the online and offline distributions, suggesting WSRL did not
forget its pre-trained Q-function.

In summary, the above analysis on the KL divergence suggests that WSRL remains stable and
quickly adapts during fine-tuning and does not forget priors learned from offline pre-training.

F DOES FREEZING THE POLICY AT THE START OF FINE-TUNING HELP?

Since Appendix E shows a brief period at the start of fine-tuning where policy performance take a
dip, one natural question is whether such a dip is avoidable. The most straight forward way to avoid
such a drop in policy performance is to freeze the policy during initial fine-tuning. In other words,
for N steps at the on set of fine-tuning, we only pass the gradients through the Q function and train
the Q function, but freeze the policy. After N online steps, we start training both the policy and the
Q function.

Figure 21 shows the performance of WSRL after freezing the policy for N = {10k, 30k} steps. It’s
obvious that even when we freeze the policy for some number of steps to let the Q-function adjust
online, the policy still suffers a dip after it is unfrozen. In fact, this is somewhat an expected result
because the policy needs to adjust to the OOD online state-action distribution, as well as the new
online Q-function, and such adjustment process is expected to make the policy performance worse.

19

Published as a conference paper at ICLR 2025

Figure 20: Q-function KL divergence DKL(softmax(Qpre
θ)||softmax(Qθ)) between the pre-trained Q-

function and the fine-tuned Q-function at the first 50k steps of fine-tuning. We evaluate the Q-functions by
sampling states from the offline dataset distribution (Top) and the online buffer distribution (Bottom), and we
sample actions by running πpre

ψ and πψ on the sampled states. WSRL is not plotted during the first 5, 000 steps
of warmup. CQL and CalQL do not retain offline data.

G WHY WARM-UP PREVENTS Q-VALUES DIVERGENCE

In WSRL, the policy and value function is pre-trained offline with CalQL (Nakamoto et al., 2024),
and the online fine-tuning process is done with SAC (Haarnoja et al., 2018a). This change of RL
algorithm could lead to miscalibration issues, where the pre-trained values are more pessimistic than
ground truth values. As we have shown in Section 3, this hurts fine-tuning when it backs up a pes-
simistic target Q-value through the Bellman update. This particularly hurts when the Bellman target
is computed on an OOD state-action pair, because OOD state-action pair have more pessimistic val-
ues than state-action paris seen in the offline dataset, by the nature of pessimistic pre-training. If
there were no warm-up phase, the agent will collect OOD data into the buffer, leading to Bellman
backups with pessimistic target Q values, which in turn leads to Q-divergence. This is the “down-
ward spiral” phenomenon in Section 3. However, warmup solves this problem by putting more
offline-like data into the replay buffer where Q-values are not as pessimistic, thereby preventing
the downward spiral in the online Bellman backups and uses high UTD in online RL to quickly
re-calibrate the Q-values.

20

Published as a conference paper at ICLR 2025

Figure 21: Freezing the policy for N ∈ {10k, 30k} steps at the onset of fine-tuning doesn’t prevent the
performance dip. In the plot, we show policy performance of WSRL vs. WSRL with initial policy freeze
across six environments. Step 0 is the start of online fine-tuning.

H ABLATION STUDIES ON DIFFERENT TYPES OF VALUE INITIALIZATION

WSRL is agnostic to the offline RL pre-training algorithm. Furthermore, we find that it is not
crucial which specific offline RL algorithm we use to obtain the pre-trained Q values. In Figure 22,
we show that the Q-values from IQL, CQL, and CalQL work just as well on three different envi-
ronments, even though CQL optimizes for conservative Q-values, CalQL is less conservative, and
IQL is not conservative at all. In particular, we observe that Calibrated Q-values as an initializa-
tion provides some small performance benefits on Kitchen-mixed. Therefore, we use calibrated
Q-values from CalQL offline pre-training for our main experiments.

Figure 22: The offline RL algorithm used to pre-train the Q-values does not affect performance: for
Kitchen-mixed (left), Kitchen-partial (middle), and Kitchen-complete, WSRL is able to
achieve similar performances by initializing with pre-trained values from CQL, IQL, and CalQL, though CalQL
initializations have small benefits on Kitchen-partial.

I IMPLEMENTATION DETAILS

Code for WSRL is released at https://github.com/zhouzypaul/wsrl.

Pseudocode. See Algorithm 1. During online RL updates, the critic is updated with standard tem-
poral difference loss and the actor is updated with policy gradient (in this case, a reparameterization
based policy gradient estimator) with entropy regularization as in Soft Actor Critic (Haarnoja et al.,
2018a).

WSRL Hyperparameters. We use 5K warmup steps (K = 5, 000). For the online RL algorithm in
WSRL, we use the online SAC (Haarnoja et al., 2018b) implementation in RLPD (Ball et al., 2023)
with a UTD of 4 and actor delay of 4 (update the actor once for every four critic steps), batch size

21

https://github.com/zhouzypaul/wsrl

Published as a conference paper at ICLR 2025

Algorithm 1 WSRL: Warm Start Reinforcement Learning

Require: Offline RL algorithm Aoff , Pre-training dataset Doff .
Qpre
θ , πpre

ψ ← TrainOffline(Aoff ,Doff) ▷ Offline RL pre-training
Require: Qpre

θ , πpre
ψ , Online RL algorithm Aon with UTD M , Replay bufferR ← ∅, warmup step

K.
Qθ ← Qpre

θ , πψ ← πpre
ψ ,R ← ∅ ▷ Initialization

while step ≤ max steps do
if step ≤K then

(s, a, s′, r)← interact(πpre
ψ , environment) ▷ Warmup Phase

else
(s, a, s′, r)← interact(πψ , environment)

end if
R ← R∪ {(s, a, s′, r)}
if step > K then

Batch1,Batch2, ...,BatchM ∼ R
Qθ ← TemporalDifferenceUpdate(Qθ,Batchi) for M times ▷ High UTD Critic

Update
πψ ← PolicyGradient(πψ,Batch1 ∪ · · · ∪BatchM) ▷ Actor Update with Actor Delay

of M
end if

end while

of 256, actor learning rate of 1e− 4, critic learning rate of 3e− 4, and temperature learning rate of
1e− 4. We use and ensemble of 10 Q functions, and predict the Q value by randomly sub-sampling
2 and taking the min over the 2 Q-functions (Chen et al., 2021). When we initialize the policy
network and the Q-function network from offline RL pre-training, we keep the optimizer state of
these networks.

In antmaze environments, we find it important to calculate the TD-target by taking the maximum
of the TD-target over the ensemble of 10 Q-functions as done by Kumar et al. (2020). This design
does not affect performance on the other environments. We hypothesize that this is because antmaze
environments require more optimism online, cooperating the design decisions by Ball et al. (2023)
as described below.

Environment Details. All environments use a discount factor of 0.99. We set the reward scale
in the benchmark tasks following previous work (Nakamoto et al., 2024; Kostrikov et al., 2021;
Kumar et al., 2020). In Antmaze and Adroit environments, we use sparse reward of 5 at the goal
and −5 at each step. In Kitchen, we use 0 at the goal, and −1 for each subtask that is not completed
at the current timestep, giving possible reward values −4,−3,−2,−1, 0 2. In Mujoco locomotion
environment, we use the original environment dense rewards. We pre-train 1M steps on Antmaze,
20k steps on Adroit, 250k steps on Kitchen and Mujoco locomotion.

Baseline Hyperparameters. All SAC-based methods use the same learning rate as WSRL above,
and IQL-based methods use actor and critic learning rate of 3e − 4. All methods that have high
update-to-data ratio or an ensemble of Q-functions use layer normalization as a regularization. The
method-specific details are listed below, with hyperparameters gotten from the original papers with
no further tuning.

IQL. Antmaze environments use expectile 0.9, and all other environments use expectile 0.7. For
the inverse temperature in the actor, we use 10 in Antmaze, 3 in Mujoco locomotion, and 0.5 for
Kitchen and Adroit. Unless otherwise specified, IQL uses two Q functions and takes the minimum
over them to estimate the Q value.

CQL / CalQL. In Antmazes, we use the dual version of the CQL objective and set gap to
0.8. In Mujoco locomotion and Kitchen environments, we set CQL regularizer weight α = 5.

2In the main performance comparison results in Figures 7 and 9, kitchen environments use a maximum
episode length of 280 as the default from D4RL, while other ablation and analysis experiments may use a
version of kitchen by Nakamoto et al. (2024) that has maximum episode length of 1000 but no other changes.
All comparisons plotted are on the same kitchen version.

22

Published as a conference paper at ICLR 2025

In Adroit environments, we set α = 1. CQL and CalQL use the same CQL regularizer for both
pre-trainign and fine-tuning. In experiments that do retain offline data, each update batch samples
50% from the offline data on Antmaze, Adroit, and Mujoco locomotion environments, and 25% on
Kitchen environments (Nakamoto et al., 2024). Unless otherwise specified, CQL/CalQL uses two
Q functions and takes the minimum over them to estimate the Q-value.

RLPD / SAC(fast). We use an ensemble of 10 Q-functions and a UTD of 4 with batch size 256.
Following (Ball et al., 2023), in antmaze environments, we predict the Q-value from the ensemble
by randomly subsampling 1 Q-function. This is needed for more optimism online in antmaze envi-
ronments. In all other environments, we subsample 2 Q-functions and take the minimum over them
to estimate the Q-value.

JSRL. Same hyperparameters as RLPD, where we improve JSRL’s competitiveness with a Q-
ensemble and UTD. For each online interaction episode, JSRL decides whether to roll in the pre-
trained frozen policy or roll out the fine-tuned policy with probability 0.5. This probability decreases
linearly to 0 over the first 100k fine-tuning steps. In episode where the JSRL decides the roll in
the pre-trained frozen policy, the number of step it rolls in follows a geometric distribution with
γ = 0.99, after which the fine-tuned policy is rolled out until the end of the episode.

SO2. Same hyperparameters as RLPD. Different from the original paper, we use 10 Q-
ensembles to make a fair comparison with WSRL and other baselines which have the same number
of Q-ensembles. For the action noise, we use a standard normal with variance 0.3, and we clip the
action noise to be between (−0.6, 0.6).

J WARMUP WITH TRANSITIONS FROM THE OFFLINE DATASET

We have shown in Section 5 that the warmup period is essential for efficient fine-tuning with WSRL.
One interesting question is whether such warmup data can be collected by sampling the offline
dataset, instead of online interactions with the frozen pre-trained policy as in WSRL. Therefore, we
run an ablation experiment in Figure 23 where we replace the 5, 000 steps of warmup period by
initializing the online replay buffer with 5, 000 random transitions sampled from the offline dataset,
which we will refer to as “Dataset Warmup”. As Figure 23 shows, while the two methods are similar
on Adroit environments, WSRL is slightly better in Kitchen and much better on Antmaze.
This is perhaps because the 5000 randomly sampled transitions might not be relevant to the online
fine-tuning task, especially in Antmaze where the dataset has diverse state-action coverage (See
Appendix E for a more detailed discussion). When the replay buffer is initialized with less relevant
data, it is less effective at preventing Q-value divergence (Section 3) and recalibrating the online
Q-function and policy. This perhaps highlights the utility of our approach: despite not having access
to any offline data, WSRL is able to achieve similar or better performance than using transitions
from the offline dataset in the no-retention fine-tuning setting.

K WSRL WITH OFFLINE DATA RETENTION

In the main paper, we have shown that WSRL can efficiently fine-tune without retaining the offline
pre-training dataset. One natural question arises: can WSRL do even better if we allow offline
data retention? To answer this question, we run WSRL with the online replay buffer initialized
with the whole offline dataset. Figure 24 shows that on average, retaining the offline data does not
give WSRL any advantages, probably because it already has the necessary knowledge in the offline
policy and Q-function; WSRL is actually a bit faster later on in fine-tuning, perhaps due to the fact
that it is updating the policy on more online data.

L ABLATING THE EFFECTS OF Q-ENSEMBLE AND LAYER NORMALIZATION

In WSRL, we choose to use the most effective online RL algorithm fine-tune with high update-to-
data (UTD) ratio. Following the design choices by Ball et al. (2023), we also use an ensemble of 10
Q-functions and layer normalization as regularization to stabilize online training in the high UTD
regime. In Figure 7, SAC (fast) and JSRL also has high UTD and therefore we also apply both
regularizations. However, we implement IQL, CQL, CalQL without these regularizations, as in the

23

Published as a conference paper at ICLR 2025

Figure 23: Warming up with transitions from the offline dataset is less effective than warming up with
online interactions (WSRL).

Figure 24: Initializing the replay buffer with the offline dataset does not give WSRL any advantage during
fine-tuning, and may make it a bit slower.

original papers. To ablate the effects of layer normalization and Q-ensemble in no-retention fine-
tuning, we apply both to each of IQL, CQL, and CalQL. In Figure 25, we apply layer normalization
after each dense layer in the actor and the critic MLP, and find that it minimally affect performance.
In Figure 26, we apply layer normalization as well as a Q-ensemble, and refer to the combination as
REDQ (Chen et al., 2021). We find that REDQ helps significantly on Antmaze tasks, but not huge
gains in other environments. Overall, WSRL still significantly outperforms IQL, CQL, and CalQL
with extra regularizations.

M WSRL WITH DIFFERENT UPDATE-TO-DATA RATIOS

In Section 5, we mainly experiment with UTD=4 for all methods. One interesting question is
whether WSRL can benefit from an even higher UTD, and how it compares with other fast on-
line RL methods with higher UTDs. In Figure 27, we compare WSRL against RLPD under UTD
20, and find that while UTD 20 improves performance slightly, the difference is not huge.

24

Published as a conference paper at ICLR 2025

Figure 25: Layer normalization does not impact the performance of IQL, CQL, CalQL in no-retention fine-
tuning.

Figure 26: Impact of layer normalization and Q-ensemble on IQL, CQL, CalQL in no-retention fine-tuning:
it benefits Antmaze environments greatly, but not so much on other environments.

N WSRL WITH VARYING LEVELS OF OFFLINE POLICY

We investigate how WSRL performs with varying levels of expertise of the offline pre-trained pol-
icy. Specifically, we consider Kitchen-complete-v0 and Relocate-binary-v0, two es-
pecially hard tasks for offline RL where pre-training with CalQL leads to poor performance. In
Recolate-binary-v0, CalQL completely fails and has pre-trained performance near 0; CQL
and IQL also has pre-training performance 0, indicating that this task is inherently hard for of-
fline RL agents. In Kitchen-complete-v0, CalQL (15.47%) significantly underperforms IQL
(70.83%) despite our tunning efforts, which suggests there is some inherent limitation in CalQL
learning a good Q-funciton in this domain. Not surprisingly, Figure 28 shows that WSRL also per-
forms poorly: while WSRL can learn somewhat in Kitchen-complete-v0 with a non-zero
initialization, it completely fails to learn in Adroit-binary-v0. This is expected because when
pre-training fails, initializing with the pre-trained network may not bring any useful information
gain, and may actually hurt fine-tuning by reducing the network’s plasticity (Nikishin et al., 2022),
a known issue in online RL. In such situations, one may wish to resort to different methods (e.g.
online RL) rather than fine-tuning from a bad initialization.

25

Published as a conference paper at ICLR 2025

Figure 27: UTD 20 vs. UTD 4: For both WSRL and RLPD, UTD 20 performs only slightly better than UTD
4.

Figure 28: On environments where the pre-training completely fails, WSRL does not work well.

26

	Introduction
	Problem Formulation: Fine-Tuning without Offline Data
	Understanding the Role of Offline Data in Online Fine-Tuning
	The Role of Offline Data at the Beginning of Fine-Tuning
	The Adverse Impact of Offline Data on Asymptotic Performance

	WSRL: Fast Fine-Tuning Without Offline Data Retention
	Experimental Evaluation
	Baselines and Experimental Setup
	Can WSRL enable efficient fine-tuning in no-retention fine-tuning?
	How does WSRL compare to methods that retain offline data?
	How critical is the warmup phase?
	How important is using a standard (non-pessimistic) online RL algorithm for fine-tuning?
	How important is it to initialize the policy, value function, and both?

	Related Work
	Conclusion
	Additional Results on Antmaze Environments
	Results on Mujoco Locomotion Environments
	Experimental Setup
	Ablation Studies on Warmup Phase
	Unlearning and Recovery at the Start of Fine-tuning: An Analysis
	Does Freezing the Policy at the Start of Fine-Tuning Help?
	Why Warm-up Prevents Q-Values Divergence
	Ablation Studies on Different Types of Value Initialization
	Implementation Details
	Warmup with Transitions from the Offline Dataset
	WSRL with Offline Data Retention
	Ablating the Effects of Q-ensemble and Layer Normalization
	WSRL with Different Update-to-Data Ratios
	WSRL with Varying Levels of Offline Policy

