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A DETAILS OF EXPERIMENTAL SETUP

In this section, we present the details on the experimental setup used for the plots depicted in the main
body of the paper. As mentioned, the exact width for FCNs have been reported. For WideResNet-16-k
we use two block layers, and the initial convolution in the network has a width of 16WF where WF is
the reported WF. For instance, WF = 16 means that the first block layer has a width of 256 and the
second block layer has a width of 512. For ResNet18, we also used the same approach, multiplying
WF by 16. Thus, when WF = 4, the constructed network will have the exact architecture as the
classical ResNet18 architecture reported. A WF of 16 means a ResNet18 with each layer being 4
times wider than the original width.

When training the neural networks using SGD, a constant batch size of 128 was used across all
different networks and different dataset sizes used for training. The learning rate for all networks
was also fixed to 0.1. However, not all networks were trainable with this fixed learning rate, as the
gradients would sometimes blow up and give NaN training loss, typically for the largest width of each
mentioned architecture. In those cases, we decreased the learning rate to 0.01 to train the networks.

Note that to be consistent with the literature on NTKs, techniques like data augmentation have been
turned off, but a weight decay of 0.0001 along with a momentum of 0.9 for SGD is used. Data
augmentation here plays an important role in the attained test accuracies of the fully trained networks.

B FURTHER RESULTS ON THE APPROXIMATION QUALITY

In this section we’ll lay out the proofs of the theorems provided in the main text, mainly Theorems 1, 4
and 5. Towards this, we first define some notation and show a simple recursive formula for computing
the tangent kernel that we take advantage of to prove the theorems. Consider a NN f : RD

! RO. We
assume the final read-out layer of the NN f is a dense layer with width w. Assuming the NN f has L
layers, we define ✓l to be the corresponding parameters of layer l 2 {1, 2, . . . , L}. Furthermore, let’s
define g : RO

! Rw as the output of the immediate last layer of the NN f , such that f(x) = ✓Lg(x)
for some ✓L 2 RO⇥w.

As shown by Lee et al. (2019); Yang (2020), the NTK can be reformulated as the layer-wise sum
of gradients (when the parameters of each layer ✓l are assumed to be vectorized) of the output with
respect to ✓l. Accordingly, we denote eNTK of a NN f as

⇥f (x1, x2) =
LX

l=1

r✓lf(x1)r✓lf(x2)
>
. (8)

Now, noting that as the final layer of f is a dense layer, we can use the chain rule to write r✓lf(x) as
@f

@g(x)
@g(x)
@✓l

where @f(x)
@g(x) = ✓L. Thus, we can rewrite (8) as

⇥f (x1, x2) =
L�1X

l=1

✓Lr✓lg(x1)r✓lg(x2)
>
✓L

> +r✓Lf(x1)r✓Lf(x2)
>

= ✓L

 
LX

l=1

r✓lg(x1)r✓lg(x2)
>

!
✓L

> + g(x1)
>
g(x2) IO

= ✓L ⇥g(x1, x2) ✓L
> + g(x1)

>
g(x2) IO.

(9)

Applying Equation (9), we can already see that the pNTK of a network f simply calculates a weighted
summation of all elements of eNTK into a scalar, since it can be seen as adding a new final dense
layer to the network f with the fixed weight vector 1p

O
1O where 1O is the O-dimensional vector

consisting of all 1s.

Before moving on with the approximation proofs, we would like to mention that the proofs in this
section rely heavily on concentration inequalities of sub-exponential random variables. Thus, we start
by providing some background about sub-exponential random variables and the related concentration
inequalities that we will use later on.
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B.1 BACKGROUND ON SUB-EXPONENTIAL RANDOM VARIABLES

A random variable X with mean µ is called sub-exponential (Wainwright, 2019) if there are non-
negative parameters (⌫,↵) such that

E[e�(X�µ)]  e
⌫2�2

2 for all |�| <
1

↵
.

We denote X ⇠ SE(⌫,↵) to show that X is a sub-exponential random variable with parameters
(⌫,↵).

A famous sub-exponential random variable is the product of two standard normal distributions such
that the two factors are independent (X1 = |z1||z2| ⇠ SE(⌫p,↵p) with mean 2/⇡) or the same
(X2 = z

2
⇠ SE(2, 4) with mean 1.) where z ⇠ N (0, 1). We now present a few lemmas regarding

sub-exponential random variables that will come in handy in the later subsections of the appendix.
Lemma 6. If a random variable X is sub-exponential with parameters (⌫,↵), then the random

variable sX where s 2 R+
is also sub-exponential with parameters (s⌫, s↵).

Proof. Consider X ⇠ SE(⌫,↵) and X
0 = sX with E[X 0] = sE[X], then according to the definition

of a sub-exponential random variable

E [exp (�(X � µ))]  exp(
⌫
2
�
2

2
) for all |�| <

1

↵

=) E

exp

✓
�

s
(sX � sµ)

◆�
 exp(

⌫
2
s
2 �

2

s2
2

2
) for all |

�

s
| <

1

s↵

�
0=�

s====) E [exp (�0(X 0
� µ

0))]  exp(
⌫
2
s
2
�
02

2
) for all |�0

| <
1

s↵

(10)

Defining ↵
0 = s↵ and ⌫

0 = s⌫ we recover that X 0
⇠ SE(s⌫, s↵).

Proposition 7. If the random variables Xi for i 2 [1 � N ] for N 2 N+
are all sub-exponential

with parameters (⌫i,↵i) and independent, then
P

N

i=1 Xi is sub-exponential with parameters

(
qP

N

i=1 ⌫
2
i
,maxi ↵i).

Proof. The proof is a simplification of the discussion prior to equation 2.18 in Wainwright (2019).

Proposition 8. For a random variable X ⇠ SE(⌫,↵), the following concentration inequality holds:

Pr (|X � µ| � t)  2 exp

✓
�min

✓
t
2

2⌫2
,
t

2↵

◆◆

Proof. The proof directly follows from applying a scalar multiplication to the result derived in
Equation 2.18 in Wainwright (2019).

Corollary 9. For a random variable X ⇠ SE(⌫,↵) the following inequality holds with probability

at least 1� �:

|X � µ| < max

 
⌫

r
2 log

2

�
, 2↵ log

2

�

!
.

B.2 PSEUDO-NTK RELATIVELY CONVERGES TO ENTK AS WIDTH GROWS

Let’s denote a neural network with L dense hidden layers whose width is n as:

f
0(x) = x

f
l+1(x) = �(W (l+1)

f
l(x))

f(x) = f
L(x) = W

(L)
f
L�1(x)

(11)

such that � is a differentiable coordinate-wise activation function.
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Setting A (ReLU-MLP). We assume the following assumptions hold in our setting:

• We assume W
l for l 2 1, . . . , L is initialized according to the NTK parameterization,

meaning that each scalar parameter is distributed according to N (0, 1/n).

• We assume the width of all hidden layers are identical (and equal to n). The proof extends
naturally to the case of non-equal widths as long as n0

/n 2 (0,1) for each consecutive pair
of layers.

• We assume � is a ReLU-like (GeLU, PReLU, or any other similar function) activation
function that is at most 1-Lipschitz.

• We assume the training data X is finite and contained in a compact set and there are no
overlapping datapoints.

Note that we can recursively define the eNTK of f l+1 using the eNTK of f l as

⇥(l+1)(x1, x2) =
lX

i=1

@f
l+1(x1)

@W i

@f
l+1(x2)

@W i

>

+

K
l+1
D (x1,x2)z }| {

@f
l+1(x1)

@W l+1

@f
l+1(x2)

@W l+1

>

=
lX

i=1

@�(W (l+1)
f
l(x1))

@W i

@�(W (l+1)
f
l(x2))

@W i

>

+K
l+1
D

(x1, x2)

=
lX

i=1

@�(W (l+1)
f
l(x1))

@f l(x1)

@f
l(x1)

@W i

@f
l(x2)

@W i

>
@�(W (l+1)

f
l(x2))

@f l(x2)

>

+K
l+1
D

(x1, x2)

=
@�(W (l+1)

f
l(x1))

@f l(x1)

"
lX

i=1

@f
l(x1)

@W i

@f
l(x2)

@W i

>#
@�(W (l+1)

f
l(x2))

@f l(x2)

>

+K
l+1
D

(x1, x2)

=
@�(W (l+1)

f
l(x1))

@f l(x1)
⇥(l)(x1, x2)

@�(W (l+1)
f
l(x2))

@f l(x2)

>

+K
l+1
D

(x1, x2)

(12)

where

@�(W (l+1)
f
l(x))

@f l(x)
= W

(l+1)
�

h
�̇(W (l+1)

f
l(x))

i

1⇥n

(13)

and K
l+1
D

(x1, x2) = f
l(x1)>f l(x2)In is a diagonal matrix. We can think of the last layer as

following the same equations with � the identity function, so that �0(x) = 1. Furthermore, note that
using the same approach we can show that pNTK of the layer l can be derived as

⇥̂(l+1)(x1, x2) =
1n
p
n
⇥(l+1)(x1, x2)

1>
n

p
n

(14)

where 1n is the vector of 1s with size n.

We now sketch the proof idea first and then move onto rigorously proving each part of the sketch.
First, note that using Equation (12) we can recursively calculate the eNTK of a general MLP. We
take advantage of this recursive definition and derive bounds for the magnitude of the elements of the
eNTK on a layer-to-layer basis recursively. To do so, we first show that the eNTK of the first layer
of the NN, ⇥(1)(x1, x2), is in general a diagonal matrix. Then, we present a series of lemmas that
bound the elements of the eNTK of layer l + 1 based on the magnitude (bounds) of the eNTK of
layer l. Finally, based on the derived bounds on the magnitude of elements of the eNTK of a NN with
l layers and Equation (14), we prove that the Frobenius norm of the pNTK relatively converges to the
Frobenius norm of the corresponding eNTK with high probability over random initialization.

Before moving on, it’s useful to first show a simple inequality on the elements of a tangent kernel
based on the Lipschitz-ness of the activation function; this will help us further in deriving the
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aforementioned bounds. Define V
(l)(x) = W

(l)
�

h
�̇(W (l)

f
l�1(x))

i

1⇥n

. We can write each entry

of ⇥(l+1)(x1, x2) as

⇥(l+1)(x1, x2)ij =
nX

a=1

nX

b=1

V
(l+1)(x1)iaV

(l+1)(x2)jb⇥
(l)(x1, x2)ab + f

l(x1)
>
f
l(x2)I(i = j)

in abs

nX

a=1

nX

b=1

|W
(l)

ia||W
(l)

jb||⇥
(l)(x1, x2)ab|+ f

l(x1)
>
f
l(x2)I(i = j) (15)

where I denotes the 0-1 indicator function, and the inequality follows from the activation function �

being 1-Lipschitz.

Lemma 10 (Diagonality of the first layer’s tangent kernel). For a NN under Setting A the corre-

sponding eNTK of the first layer ⇥(1)(x1, x2) is diagonal. Moreover, for any � > 0, there is a

corresponding constant C
(1)

> 0 such that for each diagonal element ⇥(1)(x1, x2)ii we have that

|⇥(1)(x1, x2)ii| < C
(1)

with probability at least 1� �.

Proof. Consider the one layer NN f
1(x) = �(W (1)

x). For this case, we have:

⇥(1)(x1, x2)ij =

8
><

>:

DX

a=1

x1a�̇(Wix1)x2a�̇(Wix2) if i = j

0 if i 6= j

(16)

and thus, based on the fact that the activation function � is 1-Lipschitz we can conclude that

|⇥(1)(x1, x2)ij | 

⇢
|x

>
1 x2| if i = j

0 if i 6= j
. (17)

Thus, the tangent kernel of the first layer is a diagonal matrix whose entries are independent of the
width of the first layer (n), and can be bounded by a positive constant with high probability.

Next, we present a series of lemmas that will help us derive the bounds on the elements of the tangent
kernel of layer l + 1 based on the bounds of the tangent kernel of layer l.

Lemma 11. Consider a NN under Setting A with depth � l + 1. Assume there is a constant

C
(l)

> 0 such that |⇥(l)(x1, x2)ii| < C
(l)

with probability at least 1� �in and every non-diagonal

element of ⇥(l)(x1, x2) is zero. Then for any small � > 0 there are corresponding constants

C
(l+1)
1 , C

(l+1)
2 , n

l+1
> 0 such that for any n > n

l+1

|⇥(l+1)(x1, x2)ij | 

(
C

(l+1)
1 n if i = j

C
(l+1)
2 /

p
n if i 6= j

(18)

with probability at least 1� �.

Proof. Based on Equation (15) we can expand the elements of ⇥(l+1)(x1, x2) as

|⇥(l+1)(x1, x2)ij | 

8
>>>><

>>>>:

nX

a=1

nX

b=1

|W
(l+1)

ia||W
(l+1)

ib||⇥
(l)(x1, x2)ab|+ f

l(x1)
>
f
l(x2) if i = j

nX

a=1

nX

b=1

|W
(2)

ia||W
(l+1)

jb||⇥
(l)(x1, x2)ab| if i 6= j

=

8
>>>><

>>>>:

nX

a=1

|W
(l+1)

ia||W
(l+1)

ia||⇥
(l)(x1, x2)aa|+ f

l(x1)
>
f
l(x2) if i = j

nX

a=1

|W
(l+1)

ia||W
(l+1)

ja||⇥
(l)(x1, x2)aa| if i 6= j

(19)
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Using the bound provided for the elements of ⇥(l)(x1, x2), replacing each element of the weight
matrix as 1

n
z where z ⇠ N (0, 1) and and applying Lemma 18 we can further show that for the

diagonal elements of ⇥(l+1)(x1, x2) we have that

|⇥(l+1)(x1, x2)ii| 
C

(l)

n

nX

a=1

z
2
ia
+G

(l)
⇠

C
(l)

n

nX

a=1

SE(2, 4) +G
(l)
n

=
C

(l)

p
n
SE

✓
2,

4
p
n

n

◆
+G

(l)
n

(20)

with probability at least (1� �in)(1� �g). Note that in the above equation we have utilized the fact
that the product of the same standard normal distribution with itself is a sub-exponential random
variable with SE(2, 4) parameters in conjunction with Proposition 7. Applying Corollary 9 we can
see that

|⇥(l+1)(x1, x2)ii| 
C

(l)

p
n

 r
4 log

2

�
+ 1

!
+G

(l)
n (21)

with probability at least (1 � �)(1 � �g) where � depends on �in. As we see, the right hand side
term is dominating this inequality and thus, we can claim that there is a n

l+1
> 0 such that for all

n > n
l+1; |⇥(l+1)(x1, x2)ii| < G

(l)
n as desired.

For the non-diagonal case we can show that

|⇥(l+1)(x1, x2)ij | 
C

(l)

n

nX

a=1

|zia||zja| ⇠
C

(l)

n

nX

a=1

SE (⌫p,↵p)

=
C

(l)

p
n
SE

✓
⌫p,

↵p

p
n

n

◆ (22)

with probability at least 1� �in. Again, applying Corollary 9 shows us that

|⇥(l+1)(x1, x2)ij | 
C

(l)

p
n

 r
2⌫p log

2

�
+

2

⇡

!
(23)

with probability at least (1� �)(1� �in) as desired.

Lemma 12. Consider a NN under Setting A with depth � l + 1. Assume there are constants

C
(l)
1 , C

(l)
2 > 0 such that |⇥(l)(x1, x2)ii| < C

(l)
1 n and |⇥(l)(x1, x2)ij | < C

(l)
2 /

p
n with probability

at least 1 � �in. Then for any arbitrary small � > 0 there are constants C
(l+1)
1 , C

(l+1)
2 , n

l+1
> 0

such that for any n > n
l+1

|⇥(l+1)(x1, x2)ij | 

(
C

(l+1)
1 n if i = j

C
(l+1)
2

p
n if i 6= j

(24)

with probability at least 1� �.

Proof. Using the same expansion that we utilized in the proof for the previous lemma, for the diagonal
elements of ⇥(l+1)(x1, x2) we have:

|⇥(l+1)(x1, x2)ii| 
nX

a=1

nX

b=1

|W
(l+1)

ia||W
(l+1)

ib||⇥
(l)(x1, x2)ab|+G

(l)
n

=
1

n

nX

a=1

z
2
ia
|⇥(l)(x1, x2)aa|

| {z }
⇥(l+1)

1 (x1,x2)ii

+
1

n

nX

a=1

nX

b=1,b 6=a

|zia||zib||⇥
(l)(x1, x2)ab|

| {z }
⇥(l+1)

2 (x1,x2)ii

+G
(l)
n

(25)
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where

|⇥(l+1)
1 (x1, x2)ii| 

C
(l)
1 n

n

nX

a=1

z
2
ia

⇠ C
(l)
1

p
nSE

✓
2,

4
p
n

n

◆
(26)

and

|⇥(l+1)
2 (x1, x2)ii| 

C
(l)
2

n
p
n

nX

a=1

nX

b=1,b 6=a

|zia||zib|

⇠
C

(l)
2

n
p
n

n
2X

a=1

SE (⌫p,↵p) =
C

(l)
2

p
n
SE

⇣
⌫p,

↵p

n

⌘
(27)

each with probability at least 1� �in. As shown before, both of these terms are dominated by the
G

(l)
n term in the inequality for diagonal elements and thus, we can claim that there is a n

l+1
1 > 0

such that for all n > n
l+1
1 ; |⇥(l+1)(x1, x2)ii| < G

(l)
n as desired.

Next, for the non-diagonal elements of ⇥(l+1)(x1, x2) we have:

|⇥(l+1)(x1, x2)ij | =
nX

a=1

nX

b=1

|W
(l+1)

ia||W
(l+1)

jb||⇥
(l)(x1, x2)ab|

=
1

n

nX

a=1

|zia||zja||⇥
(l)(x1, x2)aa|

| {z }
⇥(l+1)

1 (x1,x2)ij

+
1

n

nX

a=1

nX

b=1,b 6=a

|zia||zjb||⇥
(l)(x1, x2)ab|

| {z }
⇥(l+1)

2 (x1,x2)ij

(28)

where

|⇥(l+1)
1 (x1, x2)ij | 

C
(l)
1 n

n

nX

a=1

|zia||zja| ⇠ C
(l)
1

p
nSE

✓
⌫p,

↵
p
n

n

◆
(29)

and

|⇥(l+1)
2 (x1, x2)ij | 

C
(l)
2

n
p
n

nX

a=1

nX

b=1,b 6=a

|zia||zjb|

⇠
C

(l)
2

n
p
n

n
2X

a=1

SE (⌫p,↵p) =
C

(l)
2

p
n
SE

⇣
⌫p,

↵p

n

⌘
(30)

each with probability at least 1� �in. As |⇥(l+1)
2 (x1, x2)ij | is dominated by |⇥(l+1)

1 (x1, x2)ij | we
can claim that according to Corollary 9, there exists nl+1

2 > 0 such that for n > n
l+1
2 we have that

|⇥(l+1)(x1, x2)ij |  C
(l)p

n

 r
2⌫p log

2

�
+

2

⇡

!
(31)

with probability at least (1� �)(1� �in). Thus, the lemma’s claim holds with probability at least
(1� �)(1� �in)(1� �g) and n > max(nl+1

1 , n
l+1
2 ) as desired.

Lemma 13. Consider a NN under Setting A with depth � l + 1. Assume there are constants

C
(l)
1 , C

(l)
2 > 0 such that |⇥(l)(x1, x2)ii| < C

(l)
1 n and |⇥(l)(x1, x2)ij | < C

(l)
2

p
n with probability at
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least 1� �in. Then for any arbitrary small � > 0 there are constants C
(l+1)
1 , C

(l+1)
2 , n

l+1
> 0 such

that for any n > n
l+1

|⇥(l+1)(x1, x2)ij | 

(
C

(l+1)
1 n if i = j

C
(l+1)
2

p
n if i 6= j

(32)

with probability at least 1� �. In other words, the magnitude of elements of the tangent kernel in the

recursive definition will not grow.

Proof. The proof for the bound on diagonal elements is available in the proof of the previous lemma
and follows the exact same structure and obtains the same bounds. Thus, we avoid repeating it here.
The bound for non-diagonal elements however slightly changes due to the change in the input tangent
kernel and thus needs to be proven. For the non-diagonal elements of ⇥(l+1)(x1, x2) we have:

|⇥(l+1)(x1, x2)ij | =
nX

a=1

nX

b=1

|W
(l+1)

ia||W
(l+1)

jb||⇥
(l)(x1, x2)ab|

=
1

n

nX

a=1

|zia||zja|⇥
(l)(x1, x2)aa

| {z }
⇥(l+1)

1 (x1,x2)ij

+
1

n

nX

a=1

nX

b=1,b 6=a

|zia||zjb||⇥
(l)(x1, x2)ab|

| {z }
⇥(l+1)

2 (x1,x2)ij

(33)

where

|⇥(l+1)
1 (x1, x2)ij | 

C
(l)
1 n

n

nX

a=1

|zia||zja| ⇠ C
(l)
1

p
nSE

✓
⌫p,

↵p

p
n

n

◆
(34)

and

|⇥(l+1)
2 (x1, x2)ij | 

C
(l)
2

p
n

n

nX

a=1

nX

b=1,b 6=a

|zia||zjb|

⇠
C

(l)
2

p
n

n

n
2X

a=1

SE (⌫p,↵p) = C
(l)
2

p
nSE

⇣
⌫p,

↵p

n

⌘
(35)

each with probability at least 1� �in. Thus, we can claim that according to Corollary 9 that there
exists nl+1

> 0 such that for n > n
l+1 we have that

|⇥(l+1)(x1, x2)ij |  C
(l)p

n

 r
2⌫p log

2

�
+

2
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(36)

with probability at least (1� �)(1� �in)2. Thus, the lemma’s claim holds with probability at least
(1� �)(1� �in)2(1� �g) and n > n

l+1) as desired.

An alert reader already can notice that connecting the previous four lemmas would result in an upper
bound for the diagonal and non-diagonal elements of the eNTK of the NN f at initialization.

Lemma 14. Consider a NN f under Setting A. For every arbitrary small � > 0, the corresponding

eNTK of f on the arbitrary datapoints x1 and x2 satisfies

|⇥(x1, x2)ij | 

(
C1n if i = j

C2
p
n if i 6= j

(37)

with probability at least 1� � over random initialization for some C1, C2, n0 > 0 where n > n0.
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Proof. The proof is straightforward, starting with Lemma 10 and applying Lemma 11, Lemma 12
and Lemma 13 consecutively one can show derive the mentioned bound.

Lemma 15. Consider a NN f under Setting A. For every arbitrary small � > 0 and the arbitrary

datapoints x1 and x2, it holds that

k⇥(x1, x2)� ⇥̂(x1, x2)kF  O(
p
n) (38)

with probability at least 1� � over random initialization. In other words, the Frobenius norm of the

difference between eNTK and pNTK evaluated on two datapoints are bounded by O(
p
n).

Proof. We note by D(x1, x2) = ⇥(L)(x1, x2)� ⇥̂(L)(x1, x2)⌦ IO. Using the expansion provided
in Equation (14) we can write the
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Applying Lemma 14 we can assume there are constants C
(L�1)
1 , C
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2 > 0 such that
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n with probability at least

1� �. Thus we can write the diagonal elements of D(x1, x2) as
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We would like to bound each of Dk(x1, x2)ii for k 2 {1, 2, 3, 4} and then find a bound for the
diagonal elements using the combination of them. Starting with D1(x1, x2)ii:
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Thus, using Corollary 9, we can claim

|D1(x1, x2)ii| < C
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p
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(40)
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with probability at least 1� �/4.

For the other terms, we can simply the analysis through noting that they are all a form of weighted
summation of independent sub-exponential random variables of the same distribution. For such a
summation with a weight of a and b summation terms, we have

X = a

bX
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i
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Thus, applying Corollary 9, we get that
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with probability at least 1� �/4. Accordingly we can claim
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(45)

all independently and with probability at least 1 � �/4. Moreover, one can easily apply the same
technique and see that D(x1, x2)ij for i 6= j follows a similar bound to the one of Equation (44).

Thus, loosening the off-diagonal terms for simplicity, applying a union bound on the previous three
inequalities yields

|D(x1, x2)ij | < 8
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with probability at least 1� �.

Finally, as kD(x1, x2)kF =
qP

i,j
D(x1, x2)2ij , if each entry’s absolute value is less than t > 0

then the Frobenius norm is less than tO. Thus we can combine a bound on each of the O
2 entries to

see that

Pr
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as desired.

Lemma 16. Consider a NN f under Setting A. For every arbitrary small � > 0 and the arbitrary

datapoints x1 and x2, it holds that

k⇥(x1, x2)kF � ⌦(n) (48)
with probability at least 1� � over random initialization. In other words, the Frobenius norm of the

eNTK evaluated on two datapoints is lower bounded by ⌦(n).

Proof. Considering that the dot product of post-activations appear in the diagonal elements of the
eNTK in conjunction with Lemma 18, this is straightforward. Note that this bound also applies to the
maximum eigenvalue of the eNTK matrix since the maximum eigenvalue is bigger (or equal to) than
the sum of elements of the matrix divided by the number of columns.
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We are finally ready to present the proof of Theorem 1.

Theorem 17. Consider a NN f under Setting A. For every arbitrary small � > 0 and the arbitrary

datapoints x1 and x2, there exists n0 such that

k⇥(L)(x1, x2)� ⇥̂(L)(x1, x2)⌦ IOkF

k⇥(L)(x1, x2)kF
= O

✓
1
p
n

◆
(49)

with probability at least 1� � for n > n0.

Proof. The proof is straightforward from applying Lemma 15 and ??.

Lemma 18. Consider a NN under Setting A with L � 2 and ReLU activation function. The dot

product of two post-activations f
(l)(x1)

>
f
(l)(x2) grows linearly with the width of the network with

high probability over random initialization.

Proof. We already know that when the MLP is parameterized according to He et al. (2015) (or
also NTK-parameterization), the pre-activations of every layer will have bounded variance and be
distributed with mean zero. Thus, applying the Jensen’s inequality on each coordinate on post-
activations of layer l we have that
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where the right hand side of the above inequality is zero in the case of ReLU activation. Now note
that E

h
f
(l)
i

(x)
i

will be zero only and only if f (l�1)(x) = 0. Assuming this is not the case (as it is

only the case with zero probability under Setting A) we have that µ = E
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Thus, we have that
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with bounded variance. Accordingly, one can come up with constants G
(l)
1 , G

(l)
2 , n0 > 0 for

any arbitrary small � > 0 such that for n > n0 and L � 2 (depth of the network), G(l)
1 n <

f
(l)(x1)

>
f
(l)(x2) < G

(l)
2 n with probability at least 1� �.

B.3 PSEUDO-NTK’S MAXIMUM EIGENVALUE CONVERGES TO ENTK’S MAXIMUM
EIGENVALUE AS WIDTH GROWS

In this subsection, we present a formal proof for Theorem 4.

Proof. Note that, as both pNTK and eNTK are symmetric PSD matrices, their maximum eigenvalues
are equal to their spectral norm. Furthermore, the spectral norm of a matrix is upper-bounded by its
Frobenius norm. Now, note that according to the triangle inequality, we have

k⇥(x1, x2)k = k⇥̂(x1, x2)⌦ IO +
⇣
⇥(x1, x2)� ⇥̂(x1, x2)⌦ IO
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Thus

k⇥(x1, x2)k � k⇥̂(x1, x2)⌦ IOk  k⇥(x1, x2)� ⇥̂(x1, x2)⌦ IOk. (53)
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which according to (47) together with the fact that for any matrix A, �max(A ⌦ I) = �max(A)
implies that with probability at least 1� �,

����max (⇥(x1, x2))� �max
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Moreover, as mentioned in the proof of Lemma 16, combining the previous inequality with the fact
that �max (⇥(x1, x2)) � ⌦(n) with high probability shows that there exists �0 and n0 such that

������
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with probability 1� �
0 over random initialization for n > n0 as desired.

B.4 KERNEL REGRESSION USING PNTK VS KERNEL REGRESSION USING ENTK

In this subsection we provide a formal proof for Theorem 5.

Proof. We start by proving a simpler version of a theorem, and then show a correspondence that
expands the result of the simpler proof to the original Theorem. Assuming |X | = |Y| = N (training
data), we define
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Note that as the result of kernel regression (without any regularization) does not change with scaling
the kernel with a fixed scalar, we can use a weighted version of the kernels mentioned in the previous
equation without loss of generality. Accordingly, we define
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Plugging into the formula for kernel regression, we get that
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Thus
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Figure 12: Evaluating the difference in test accuracy of kernel regression using pNTK as in (6) vs
the final model f throughout SGD training on the full CIFAR-10 dataset. How much worse would it
be to “give up” on SGD at this point and train f̂

lin with the current representation?
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Now, note that as for a block matrix A of Aij blocks we have that kAk 
P

i,j
kAijk it follows that

for any matrix valued kernel K
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Using this fact, we can rewrite the bound as
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for some particular x⇤
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3 2 X . Using (47), we can see with probability at least 1� � that
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To show the correspondence between ĥ(x) and f̂
lin(x), as in (6), note that
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(65)

where Yv = vec�1(Y) is the result of inverse of the vectorization operation, converting the NO ⇥ 1

vector to a O ⇥ N matrix. Thus, ĥ(x) = ⇥̂(x,X )⇥̂(X ,X )
�1

Y
0 where Y

0 is the N ⇥ O matrix
derived from reshaping the NO ⇥ 1 vector Y . The proof is complete.

C MORE DETAILS ON KERNEL REGRESSION USING PNTK ON FULL
CIFAR-10 DATASET

In this section we provide another figure comparing the accuracy of f̂ lin(x) with parameters derived
at epoch E 2 {0, 50, 100, 150, 200} of training the NN with SGD. On the y-axis, the reported
number is f

lin(x) � f
⇤(x) where f

⇤ denotes the final model obtained after training f for 200

24



Under review as a conference paper at ICLR 2023

epochs. As seen in Figure 12 the architecture of the model has a significant impact on how good the
linearization predicts the final accuracy of the fully-trained model. However, as proven in Theorem 1
in conjunction with the linearization approximations provided in Lee et al. (2019), as width grows,
this approximation becomes more accurate. One unexplored fact regarding this experiment is that
fact that lineraization with trained parameters significantly outperforms linearization at initialization,
which is intuitive but not rigorously investigated yet.
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