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A THE PROPOSED AUTOLABEL ALGORITHM

In Algorithm 1 we describe how AutoLabel works.

Algorithm 1 Pseudocode of AutoLabel

1: Input: A training dataset D = {(xi, yi)}i=1,··· ,m, a validation dataset DV drawn i.i.d. from
the same distribution, an augmentation method Aug. Number of classes K, number of training
epochs T , number of distance buckets N and the hyperparameter α.

2: We perform Aug to obtain the augmented training data Aug(x, s), where the transformation
distance s is determined by the hyperparameters in the Aug. We discretize the transformation
distance s into N buckets {S1, · · · , SN}, where each Sn is a range.

3: For each distance bucket Sn, we initialize ỹ0(Sn) as the one-hot label.
4: for t = 0 to T − 1 do
5: Minimize cross-entropy loss over the augmented training data with smoothed labels ỹt(Sn).
6: for n = 1 to N do
7: Generate an augmented validation set:

Q(Sn) = {(Aug(xi, s), yi)|(xi, yi) ∈ DV , s ∼ U(Sn)}.
8: Update the label for the true class ỹt+1

k=y(Sn): . according to Eqn (1)
ỹt+1
k=y(Sn) = ỹtk=y(Sn)− α · ECEt(Q(Sn)) · sign(Conft(Q(Sn))− Acct(Q(Sn)))

9: Clip ỹt+1
k=y(Sn) to be within [Acct(Q(Sn)), 1]

10: Update the label for other classes ỹt+1
k 6=y(Sn): . according to Eqn (2)

ỹt+1
k 6=y(Sn) = (1− ỹt+1

k=y(Sn)) · 1
K−1 . according to Eqn (2)

11: end for
12: end for

B ABLATION STUDY

In this section, we compare AutoLabel with:

• Label Smoothing (LS) (Szegedy et al., 2016): which softs labels by sweeping a hyperparameter ε
which controls the smoothing degree in a range to find the best hyperparameter ρ,

• Temperature Scaling (TS) (Guo et al., 2017): a post-hoc calibration method which divides the
predicted logits by a temperature,

• multiple ε for adversarial training: which constructs adversarial examples that are bounded by
randomly samples ε ∼ U(0, εmax) as AutoLabel but assigning one-labels to the adversarial
examples as standard adversarial training (Madry et al., 2017).

We apply these methods to the three data augmentation technique: AugMix (Hendrycks et al., 2020),
mixup (Zhang et al., 2018) and adversarial training (Madry et al., 2017). For adversarial training based
methods, we use ε = 0.01 for “Adv. Train” and “Adv. Train + LS”, and εmax = 0.01 for “multiple ε”
as well as AutoLabel. The accuracy and calibration performance on clean and corrupted datasets:
CIFAR10 and CIFAR100 are presented in Table 1 and Table 2.
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Table 1: Ablation study of AutoLabel on improving model’s calibration performance. We report
Accuracy and ECE on the CIFAR100 dataset and cAcc and cECE on the CIFAR100-C dataset. All
numbers are in % and the best result are highlighed in bold.

Method Acc cAcc Method Acc cAcc Method Acc cAcc

AugMix 80.6 63.9 mixup 80.8 55.6 Adv. Train 71.5 58.1

+ LS 80.7 64.7 + LS - - + LS 71.9 58.1
+ TS 80.6 63.9 + TS 80.8 55.6 + multiple ε 74.6 12.9

+ AutoLabel 81.6 65.0 + AutoLabel 81.2 56.9 + AutoLabel 75.3 60.2

Method ECE cECE Method ECE cECE Method ECE cECE

AugMix 5.1 11.8 mixup 1.8 11.2 Adv. Train 8.0 13.5

+ LS 2.5 6.8 + LS - - + LS 6.4 6.5
+ TS 2.5 7.1 + TS 3.1 13.9 + multiple ε 7.0 12.9

+ AutoLabel 1.8 4.3 + AutoLabel 1.2 10.0 + AutoLabel 4.2 6.9

Table 2: Ablation study of AutoLabel on improving model’s calibration performance. We report
Accuracy and ECE on the CIFAR10 dataset and cAcc and cECE on the CIFAR10-C dataset. All
numbers are in % and the best result are highlighed in bold.

Method Acc cAcc Method Acc cAcc Method Acc cAcc

AugMix 96.9 87.7 mixup 96.2 81.1 Adv. Train 93.6 83.9

+ LS 96.8 88.2 + LS - - + LS 93.1 83.6
+ TS 96.9 87.7 + TS 96.2 81.1 + multiple ε 94.3 84.5

+ AutoLabel 96.9 88.2 + AutoLabel 96.7 81.3 + AutoLabel 94.6 83.6

Method ECE cECE Method ECE cECE Method ECE cECE

AugMix 1.0 4.1 mixup 0.8 8.8 Adv. Train 3.7 10.5

+ LS 0.9 3.1 + LS - - + LS 6.5 7.0
+ TS 0.6 2.9 + TS 0.5 9.4 + multiple ε 3.4 10.0

+ AutoLabel 0.9 2.7 + AutoLabel 0.6 8.5 + AutoLabel 2.0 6.5

C IMPLEMENTATION DETAILS

We train the vanilla models on CIFAR10, CIFAR100 and ImageNet using the open-sourced code
for uncertainty baselines at https://github.com/google/uncertainty-baselines/
tree/master/baselines.

C.1 AUGMIX

For AugMix (Hendrycks et al., 2020), the max depth of the augmentation chain is dmax = 3 for three
datasets following the original work.

When applying label smoothing to AugMix, we sweep the hyperparameter ρ which decides the
smoothing degree in a range [0, 0.1] with a step size 0.01 and find the best ρ = 0.01 for CIFAR100
ρ = 0.02 for CIFAR100 and ρ = 0.01 for ImageNet.

When applying AutoLabel to AugMix, we set the number of distance buckets to be dmax ·N =
3 · 5 = 15 for three datasets. The hyperparameter α in Eqn (1) is sweep in a set and we choose the
best α = 0.01 for CIFAR10 and α = 0.02 for CIFAR100 and ImageNet.

C.2 MIXUP

When applying AutoLabel to mixup, we set the number of distance buckets to be N = 5 for three
datasets. The hyperparameter α in Eqn (1) is sweep in a set and we choose the best α = 0.005 for
CIFAR10 and α = 0.008 for CIFAR100.

2

https://github.com/google/uncertainty-baselines/tree/master/baselines
https://github.com/google/uncertainty-baselines/tree/master/baselines


Under review as a conference paper at ICLR 2021

C.3 ADVERSARIAL TRAINING

To improve adversarial training to be beneficial to calibration, we train all the models with `∞ norm
based PGD attacks bounded by εmax = 0.01. We construct PGD attacks with 10 iterations and
the step size is set to be ε/4. When we apply label smoothing to adversarial training, we sweep
the hyperparameter ρ ∈ {0.1, 0.2, 0.3} and use the best ρ = 0.1 for both CIFAR10 and CIFAR100.
When applying AutoLabel to adversarial training, we set the number of distance buckets to be
N = 10 and the hyperparameter α = 0.5 for CIFAR10 and α = 0.01 for CIFAR100.

To show the adversarial robustness of all the models involving adversarial training, we train each
model with εmax ∈ {0.01, 0.02, 0.03, 0.05, 0.1} and then report the best model with the strongest
adversarial robustness. In Figure 3 of the main text, we report the best performance of each model,
where εmax = 0.03 for AT on both CIFAR10 and CIFAR100, εmax = 0.1 for CCAT on both
CIFAR10 and CIFAR100. For AutoLabel, we set the number of distance buckets to be N = 10
and the hyperparameter α = 0.05, εmax = 0.01 for CIFAR10 and α = 1, εmax = 0.1 for CIFAR100.
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