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ABSTRACT

Cross-modal retrieval using contrastive language-image pre-training (CLIP) has
achieved remarkable success, and also in medical applications. While effective,
current CLIP-based approaches for medical image-report retrieval overlook crit-
ical differences between medical and natural image-text pairs. Unlike concise
natural image captions, medical reports are long, multi-faceted descriptions of
their paired images. Furthermore, similar pathological patterns frequently recur
across different medical cases. These characteristics challenge CLIP’s image-
text alignment paradigm, which struggles with lengthy reports and ignores inter-
case similarities. To address these limitations, we propose two innovations: HIP-
InfoNCE, a contrastive loss that aligns holistic images with multiple stochastic
masked views of their corresponding reports, and text-aware label smoothing,
which incorporates inter-report semantic similarity into supervision. Extensive
experiments demonstrate that our approach outperforms existing methods by sig-
nificant margins and achieves state-of-the-art performance.

1 INTRODUCTION

Cross-modal retrieval of medical images and reports is increasingly important in clinical practice,
medical education, and research. This task enables efficient case search, facilitates second opin-
ions, and supports evidence-based decision-making. With the rapid growth of medical imaging, the
ability to retrieve relevant cases from large databases such as MIMIC-CXR (Johnson et al., 2019)
is becoming indispensable. MIMIC-CXR alone contains over 377,000 chest X-rays paired with
227,000 radiology reports, underscoring both the scale and complexity of the problem.

Recent advances in contrastive language-image pre-training (CLIP) (Radford et al., 2021) have
achieved remarkable success in natural image-text retrieval, inspiring numerous medical adapta-
tions (Liu et al., 2023a; Huang et al., 2024a; Chen et al., 2024; Liu et al., 2025). However, directly
transferring CLIP to the medical domain overlooks key domain-specific properties of image-report
pairs. As illustrated in Figure 1, our analysis identifies two fundamental challenges: ❶ Holistic
image versus multi-faceted report. Unlike concise captions in CLIP’s training on natural images
(typically 10-15 words), medical reports are comprehensive documents describing multiple aspects
of their linked images. MIMIC-CXR radiology reports average 30-40 words in findings sections
alone, with complete reports often exceeding 70-80 words. These reports systematically address
anatomical structures, pathological findings, clinical observations, and comparative assessments,
forming a rich yet complex relationship between image and text modalities. For example, a sin-
gle chest X-ray may be described through cardiac silhouette assessment, pulmonary parenchyma
evaluation, pleural space analysis, and skeletal structure observations. This one-to-many semantic
alignment fundamentally differs from CLIP’s atomic image-text pairing paradigm, causing its coarse
alignment strategy to miss critical granular relationships. ❷ Overlapping semantics across cases.
Medical images and reports also exhibit frequent partial similarity. For instance, in MIMIC-CXR,
over 43.5% of reports contain the phrase “no pleural effusion”, and many mention recurring obser-
vations like “enlarged heart” or “atelectasis” (Tanno et al., 2025; Zhu et al., 2025). Thus, different
image-report pairs may share non-trivial semantic overlap. Yet CLIP assumes a strict one-to-one
correspondence between images and texts through binary supervision with an identity matrix, ignor-
ing nuanced inter-case similarities and constraining representation learning.
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Report:

Heart size is normal. The mediastinal and hilar contours 
are unremarkable. Ill-defined patchy opacities are noted in 
both lung bases, left more so than on the right, concerning 
for infection or aspiration. No pleural effusion or 
pneumothorax is visualized. The pulmonary vascularity is
not engorged. No acute osseous abnormality is identified. 
Patchy ill-defined opacities in both lung bases, left more so
than right concerning for infection or aspiration.

Figure 1: Characteristics of medical image-report pairs. Left: Reports are semantically rich and
multi-faceted; each text view aligns with the image. Right: Cases often overlap semantically. Pair-
wise BERTScore on 200k randomly sampled MIMIC-CXR reports confirms this.

To address these challenges, we propose a novel framework for medical image-report pairs with
two methodological innovations: ❶ HIP-InfoNCE (holistic image, partial-text InfoNCE). We
introduce a contrastive loss that aligns an image with multiple masked text views of its paired report.
Rather than explicit sentence-level decomposition (Xu et al., 2024; Barrow et al., 2020), we employ
stochastic masking to generate diverse, semantically partial views without requiring report parsing or
domain expertise. This strategy avoids brittle text segmentation, encourages robustness, and yields
stronger empirical performance. ❷ Text-aware label smoothing. We replace CLIP’s rigid identity
matrix with soft labels reflecting varying degrees of semantic similarity across cases. This smoothing
is dynamically informed in a batch-wise manner, enabling the model to learn more nuanced image-
text relationships.

Our main contributions are:

• We analyze domain-specific challenges of medical cross-modal retrieval, explaining why
direct use of CLIP’s architecture is insufficient.

• We propose HIP-InfoNCE, a loss that models the holistic-to-partial nature of image-report
alignment through stochastic masked text views.

• We introduce text-aware label smoothing, which incorporates inter-report similarities for
improved contrastive learning.

• Our approach achieves state-of-the-art performance, outperforming existing methods
across multiple evaluation metrics.

2 METHOD

2.1 PRELIMINARY

The CLIP framework (Radford et al., 2021) consists of an image encoder and a text encoder, both
projecting inputs into a shared embedding space. Given a dataset D of image-report pairs, we
sample batches of images {Ii} and reports {Ti}. The image encoder embeds each image Ii into
the shared space, producing a feature vector vi. Similarly, the text encoder processes each report
Ti and generates a corresponding feature vector ti in the same space. CLIP optimizes a symmetric
InfoNCE loss (Oord et al., 2018), treating paired image-report samples as positives and unpaired
ones as negatives.

2.2 HIP-INFONCE: HOLISTIC IMAGE, PARTIAL-TEXT CONTRASTIVE LEARNING

Medical reports typically describe multiple findings per image. Instead of treating a report as indi-
visible, we generate multiple masked text views to represent partial descriptions.

For each report Ti, we apply a stochastic masking operation:

Ti,k = MASKunif
r (Ti) , (1)

2
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Figure 2: Overview of our CLIP-based framework for medical image-report pairs, featuring the
proposed HIP-InfoNCE loss and text-aware label smoothing regularization.

where tokens are masked uniformly with ratio r, producing K different masked text views. Let ti,k
be the embedding of Ti,k. The HIP-InfoNCE loss is then:

Lv2t
HIP = −

N∑
i=1

log

∑K
k=1 exp(v

⊤
i ti,k/τ)∑N

j=1

∑K
k=1 exp(v

⊤
i tj,k/τ)

,

Lt2v
HIP = −

N∑
i=1

log

∑K
k=1 exp(v

⊤
i ti,k/τ)∑N

j=1

∑K
k=1 exp(v

⊤
j ti,k/τ)

,

LHIP = 1
2 (L

v2t
HIP + Lt2v

HIP) ,

(2)

where τ is a learnable temperature parameter.

Relation to Prior Work Recent natural image-text alignment approaches employ multimodal
large language models, such as ChatGPT, to augment captions, either rewriting captions for diverse
views while still applying InfoNCE objectives (Fan et al., 2023; Liu et al., 2023b) or expanding
short captions and applying sentence-level losses (Zheng et al., 2024). Our approach differs by: (1)
operating on inherently long medical reports, using stochastic masking instead of sentence segmen-
tation to avoid natural language processing (NLP) heuristics and domain expertise requirements; (2)
capturing latent textual variations without being constrained to sentence boundaries, improving gen-
eralization. Empirically, HIP-InfoNCE outperforms sentence-based baselines, validating our design
(cf. Section 4.5.2).

2.3 TEXT-AWARE LABEL SMOOTHING

As noted in Section 1, multiple images within a batch may share similar medical findings, mak-
ing CLIP’s strict one-to-one correspondence potentially suboptimal. To address this, we propose
replacing hard labels with text-aware soft labels, extending the concept of label smoothing.

Traditional label smoothing (Szegedy et al., 2016) was introduced as a regularization technique to
mitigate overfitting in classification networks. For a sample belonging to class c, the one-hot label

3
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is replaced with a softened target y ∈ RC defined as:

y[i] =

{
1− ϵ if i = c ,

ϵ/(C − 1) otherwise ,
(3)

where ϵ is a small constant (e.g., 0.2) and C the number of classes.

We extend this idea. While vanilla label smoothing uniformly distributes ϵ across negative terms,
our text-aware label smoothing incorporates semantic information from medical reports. For a batch
of N image-report pairs, we define a soft label matrix Y ∈ RN×N as:

Y [i, j] =

{
1 if i = j ,

sim(Ti,Tj) otherwise ,
(4)

where sim(·, ·) measures report similarity. We adopt BLEU-4 (Papineni et al., 2002) as our default
metric, as it effectively captures n-gram overlaps in medical reports while balancing precision and
recall. The resulting matrix undergoes row-wise normalization.

Thus, the modified InfoNCE loss becomes:

Lv2t
TLS = −

N∑
i=1

N∑
j=1

Y [i, j] log
exp(v⊤

i tj/τ)∑N
l=1 exp(v

⊤
i tl/τ)

,

Lt2v
TLS = −

N∑
i=1

N∑
j=1

Y [i, j] log
exp(v⊤

j ti/τ)∑N
l=1 exp(v

⊤
l ti/τ)

,

LTLS =
1

2
(Lv2t

TLS + Lt2v
TLS) .

(5)

Choice of Similarity Metric While BLEU-4 serves as our primary similarity function, we inves-
tigate alternatives such as BLEU-2/6 and embedding-based metrics (e.g., BERTScore (Zhang et al.,
2020)) in Section 4.5.3. BLEU-4 consistently yields the strongest retrieval performance, validating
our choice.

2.4 OVERALL LOSS

By integrating HIP-InfoNCE and text-aware label smoothing, we arrive at our final loss function for
contrastive learning with medical image-report pairs:

Lv2t
HIP-TLS = −

N∑
i=1

N∑
j=1

Y [i, j] log

∑K
k=1 exp(v

⊤
i tj,k/τ)∑N

l=1

∑K
k=1 exp(v

⊤
i tl,k/τ)

,

Lt2v
HIP-TLS = −

N∑
i=1

N∑
j=1

Y [i, j] log

∑K
k=1 exp(v

⊤
j ti,k/τ)∑N

l=1

∑K
k=1 exp(v

⊤
l ti,k/τ)

,

LHIP-TLS =
1

2
(Lv2t

HIP-TLS + Lt2v
HIP-TLS) .

(6)

Figure 2 provides an overview of the proposed framework.

3 RELATED WORK

3.1 CROSS-MODAL RETRIEVAL

Early cross-modal retrieval methods align image and text representations by learning a shared em-
bedding space. These approaches typically optimize ranking losses to match global image and text
features (Faghri et al., 2017). With the remarkable success of CLIP (Radford et al., 2021) in open-
domain image-text alignment, it becomes the dominant paradigm for cross-modal retrieval, inspir-
ing numerous extensions. Architectural advances (Li et al., 2021; 2022; Jiang & Ye, 2023) explore
strategies such as align-before-fusion (Li et al., 2021). On the data side, some methods like Fan et al.
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(2023); Liu et al. (2023b); Zheng et al. (2024); Wang et al. (2025) improve model performance by
augmenting image captions.

In the medical domain, CheXzero (Tiu et al., 2022) and ConVIRT (Zhang et al., 2022) align global
image and text features, while GLoRIA (Huang et al., 2021), MGCA (Wang et al., 2022a), and
LIMITR (Dawidowicz et al., 2023) leverage local visual features for more fine-grained alignment.
CXR-CLIP (You et al., 2023) introduces consistency constraints through image and text augmenta-
tions. In addition, BioViL (Boecking et al., 2022), MaCo (Huang et al., 2024b), and MMCLIP (Wu
et al., 2024) employ masked modeling strategies to learn cross-modal correspondence by predicting
masked elements in images and texts. BioViL-T (Bannur et al., 2023) and Med-ST (Yang et al.,
2024) further incorporate temporal context, modeling longitudinal dependencies across sequential
chest X-rays and reports. MLIP (Li et al., 2024) and MedTrim (Ozturk et al., 2025) integrate clinical
prior knowledge to enhance model performance. Despite these advances, the holistic image versus
multi-faceted report property remains insufficiently explored and modeled.

3.2 LABEL SMOOTHING

Label smoothing replaces one-hot targets with softened distributions, assigning small non-zero prob-
abilities to non-target classes (Szegedy et al., 2016). It mitigates overfitting in image classification
tasks, and has been tailored to object detection through rotation angle label smoothing (ARS-DETR
(Zeng et al., 2023)) and circular smoothing for arbitrary-oriented object detection (Yang & Yan,
2020). Similar extensions also benefit dense prediction tasks such as semantic segmentation (Park
et al., 2023).

In the context of CLIP, SoftCLIP (Gao et al., 2024) constructs soft labels by leveraging similari-
ties between local image regions and texts, requiring additional object detection models to extract
region-of-interest (ROI) features and labels. Other works (Ko & Park, 2025) use cosine similar-
ities between text embeddings as soft labels. MedCLIP (Wang et al., 2022b) employs additional
diagnosis labels (in multi-hot encoding form), obtaining soft labels through dot products between
encoded vectors. However, such labels have limited expressiveness and struggle to capture complex
and nuanced semantics in medical reports, resulting in constrained effectiveness on downstream
cross-modal retrieval tasks. In contrast, our method derives soft labels using semantic similarities
of complete reports, more accurately reflecting semantic differences between cases and providing
richer supervision signals.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate our approach on three datasets to assess both performance and generalization.

MIMIC-CXR (Johnson et al., 2019) is a large-scale chest X-ray dataset containing 377,110 images
from 227,835 radiographic studies. Each study comprises a radiology report and at least one frontal
image, with some including additional lateral views. We randomly sample 1,000 studies each for
validation and test sets, with the remaining studies used as training data.

CheXpert5x200 (Irvin et al., 2019) is a subset of CheXpert-v1.0 consisting of 1,000 chest X-rays (5
pathologies × 200 studies) with expert-annotated reports. This dataset provides a focused evaluation
benchmark for cross-modal retrieval.

IU X-ray (Demner-Fushman et al., 2015) contains 7,470 chest X-rays from 3,955 radiology re-
ports collected from Indiana University. Each report contains both findings and impression sections.
Compared with MIMIC-CXR, its reports are shorter and often less detailed.

Since CheXpert5x200 and IU X-ray contain insufficient training samples for effective contrastive
learning, we adopt a unified training strategy: all models are trained on the MIMIC-CXR training
set, then evaluated on (1) the MIMIC-CXR test set for in-domain performance assessment and (2)
CheXpert5x200 and IU X-ray for cross-domain generalization analysis.

We adopt standard retrieval metrics following You et al. (2023): Recall@K (R@K) and RSUM.
R@K measures the percentage of queries where the correct match appears within the top-K retrieved
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Table 1: Quantitative comparison of different retrieval methods on the MIMIC-CXR dataset. Results
are shown for two backbone architectures.

Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10
MGCA (Wang et al., 2022a)

RNet-50

26.9 50.6 62.4 23.3 49.1 62.2 274.5
Med-ST (Yang et al., 2024) 24.2 51.8 65.5 24.6 53.1 64.5 283.7
ConVIRT (Zhang et al., 2022) 28.4 53.4 63.3 28.6 52.1 64.1 289.9
GLoRIA (Huang et al., 2021) 27.5 52.6 62.6 29.0 54.6 65.1 291.4
CLIP (Radford et al., 2021) 28.0 53.7 65.2 28.4 53.2 64.6 293.1
IRRA (Jiang & Ye, 2023) 32.1 54.7 66.2 33.3 55.5 66.5 308.3
LIMITR (Dawidowicz et al., 2023) 30.2 57.4 66.9 31.2 57.4 65.9 309.0
MedTrim (Ozturk et al., 2025) 34.2 58.6 68.7 35.2 59.3 67.8 323.8
CXR-CLIP (You et al., 2023) 36.2 60.5 69.5 37.6 61.3 69.4 334.5
Ours 36.7 63.0 71.4 39.7 61.9 72.1 344.8
CLIP-Adaptor (Qin et al., 2024)

ViT

24.8 50.5 60.4 23.7 49.6 61.8 270.8
MGCA (Wang et al., 2022a) 26.5 49.5 61.8 25.6 49.9 61.6 274.9
CLIP (Radford et al., 2021) 29.3 55.4 65.4 29.2 55.3 65.4 300.0
MaCo (Huang et al., 2024b) 32.1 55.8 66.6 33.0 59.2 67.5 314.2
IRRA (Jiang & Ye, 2023) 34.4 57.9 65.6 34.5 60.5 66.5 319.4
MedTrim (Ozturk et al., 2025) 36.2 60.4 70.7 37.5 61.8 68.1 334.7
CXR-CLIP (You et al., 2023) 39.2 61.4 69.7 38.5 61.2 69.4 339.4
Ours 41.4 63.4 72.5 40.2 65.2 72.3 355.0

results. We report R@K for K = 1, 5, 10 to provide a comprehensive assessment. RSUM, computed
as the sum of all R@K values, serves as an aggregate measure of overall retrieval performance.

4.2 IMPLEMENTATION DETAILS

All images are resized to 256×256 pixels and then center-cropped to 224×224. Reports are trun-
cated or padded to 150 tokens. We use a 512-dimensional embedding space. We employ ResNet-50
and vision Transformer as our vision backbone. For ResNet-50, visual features are extracted from
the fourth residual block, while for vision Transformer, we use the [CLS] token representation.
Both are followed by a linear projection into the embedding space. For text encoding, we adopt
BERT, extracting text representations from the [EOS] token and projecting them to the embedding
space through a linear transformation. For HIP-InfoNCE, the sampling number K and masking
ratio r are set to 4 and 0.3, respectively, based on empirical validation (see Section 4.5.1). The
learnable temperature parameter τ is initialized to 0.07. Training uses the AdamW (Loshchilov &
Hutter, 2017) optimizer with learning rate 5e-5, weight decay 1e-5, and batch size 128. All models
are trained for 80 epochs on two NVIDIA GeForce RTX 4090 GPUs. Training typically converges
within 60-70 epochs. Our implementation is in PyTorch.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 presents a comparison with current state-of-the-art approaches. We compare against both
medical domain-specific approaches (MedTrim (Ozturk et al., 2025), Med-ST (Yang et al., 2024),
MaCo (Huang et al., 2024b), CLIP-Adaptor (Qin et al., 2024), CXR-CLIP (You et al., 2023), LIM-
ITR (Dawidowicz et al., 2023), MGCA (Wang et al., 2022a), GLoRIA (Huang et al., 2021), and
ConVIRT (Zhang et al., 2022)) and general-domain methods (IRRA (Jiang & Ye, 2023) and CLIP
(Radford et al., 2021)).

Note that several competing methods leverage additional information: Med-ST utilizes temporal
cues, while LIMITR and CXR-CLIP incorporate lateral views. CXR-CLIP further benefits from
extensive data augmentation and self-supervised learning.

Our method achieves state-of-the-art performance with an RSUM of 355.0, surpassing CXR-CLIP
by 15.6 points. Gains over LIMITR, Med-ST, and MGCA are 46.0, 71.3, and 80.1 points, respec-
tively. Notably, our method achieves superior performance across all individual metrics (R@1,
R@5, R@10) for both image-to-text and text-to-image retrieval directions without relying on addi-
tional data sources or augmentation strategies.
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Table 2: Ablation study showing individual contributions of HIP-InfoNCE (HIP) and text-aware
label smoothing (TLS).

HIP TLS Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10
- - 32.1 57.7 67.2 31.7 57.7 67.2 313.6
✓ - 36.9 61.6 71.6 36.6 61.9 70.7 339.3
- ✓ 36.6 61.6 70.8 38.2 61.0 69.1 337.3
✓ ✓ 41.4 63.4 72.5 40.2 65.2 72.3 355.0

4.4 ABLATION STUDIES

Table 2 presents systematic ablation studies examining the contribution of each proposed compo-
nent. Starting from the baseline InfoNCE loss, we observe that:

HIP-InfoNCE alone provides consistent improvements (+25.7 RSUM) across both retrieval direc-
tions. This validates our hypothesis that modeling the holistic-to-partial alignment through masked
text views better captures the multi-faceted nature of medical reports.

Text-aware label smoothing alone yields significant improvements (+23.7 RSUM), with particu-
larly strong gains in text-to-image retrieval (+6.5 R@1), confirming that its soft label formulation
enhances contrastive learning in the medical domain.

Combined approach achieves optimal performance (+41.4 RSUM), demonstrating that both con-
tributions are complementary.

4.5 MODEL ANALYSIS

4.5.1 IMPACT OF HYPERPARAMETERS

333
339
345
351
357

K = 2

K = 4

K = 6K = 8

K = 10

r = 0.1
r = 0.3
r = 0.5

Figure 3: Hyperparameter analysis us-
ing a radar chart visualization. Perfor-
mance is measured using RSUM.

We begin by examining the influence of two key hyper-
parameters: the number of masked text views K and the
masking ratio r. Figure 3 presents a radar chart visual-
ization of performance across different parameter combi-
nations. Results demonstrate that r = 0.3 achieves the
best balance between semantic preservation and informa-
tion diversity, as evidenced by the largest enclosed area
in the radar chart. Masking ratios exceeding 0.5 lead to
convergence instability due to excessive information loss.
For K, we observe performance improvements as more
masked text views are incorporated. However, marginal
gains diminish beyond K = 4. The optimal configuration
occurs at K = 4 and r = 0.3, where our model achieves
the strongest retrieval performance.

4.5.2 IMAGE-TEXT ALIGNMENT STRATEGY ANALYSIS

Table 3 compares different strategies for constructing text views and aligning images with reports.
Starting from the baseline in Section 4.4 (RSUM 313.6), incorporating stochastic masking purely as
data augmentation yields a clear gain (+13.3 RSUM), confirming that stochastic masking enhances
representation learning through semantic variation, albeit with limited effect. In contrast, randomly
sampling a single sentence per report as data augmentation (cf. Fan et al. (2023); Liu et al. (2023b))
degrades performance (RSUM 314.7). Randomly sampling multiple sentences and applying a one-
to-many alignment loss (Zheng et al., 2024) yields only a marginal improvement (317.3). Both
approaches fragment clinical narratives into disjoint sentences, disrupting semantic continuity and
discarding contextual dependencies crucial for effective retrieval.

Our HIP-InfoNCE significantly outperforms all alternatives, achieving 339.3 RSUM (+25.7).
Specifically, image-to-text R@1 improves from 32.1 to 36.9, while text-to-image R@5 increases
from 57.7 to 61.9. This advantage stems from two key design principles: (1) stochastic masking
diversifies textual perspectives while preserving semantic coherence, and (2) multi-view alignment
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Table 3: Analysis of different image-text alignment strategies. Stoch. Mask. refers to stochastic
masking, Sent. Samp. to sentence sampling, Data Aug. to data augmentation, and 1-to-M. Align. to
one-to-many alignment.

Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10
Baseline 32.1 57.7 67.2 31.7 57.7 67.2 313.6
Stoch. Mask. as Data Aug. 35.2 57.9 69.6 35.7 60.4 68.1 326.9
Sent. Samp. as Data Aug. 31.5 57.3 68.3 30.5 58.4 68.7 314.7
Sent. Samp. & 1-to-M. Align. 32.0 58.2 68.9 31.7 58.9 67.6 317.3
HIP-InfoNCE 36.9 61.6 71.6 36.6 61.9 70.7 339.3

Table 4: Comparison of similarity metrics for text-aware label smoothing. Van. Lab. Smooth. de-
notes vanilla label smoothing. BERTScore uses BiomedBERT, as it achieves the best performance;
results with other pre-trained language models are provided in Appendix C.

Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10
Van. Lab. Smooth. 37.8 62.6 71.3 38.3 62.8 71.2 344.0
BLEU-2 40.7 61.5 69.6 39.7 62.6 71.1 345.2
BLEU-4 41.4 63.4 72.5 40.2 65.2 72.3 355.0
BLEU-6 39.9 63.1 71.6 40.9 63.3 72.2 351.0
Rouge-L 38.3 63.0 72.2 38.6 62.9 71.4 346.4
BERTScore 40.4 63.0 70.1 39.8 63.7 71.1 348.1

effectively captures the inherently multi-faceted nature of chest X-ray descriptions. Importantly,
our approach requires no manual parsing or domain-specific knowledge, making the approach both
effective and practical.

4.5.3 TEXT-AWARE LABEL SMOOTHING

We next evaluate different similarity metrics for constructing text-aware soft labels (see Table 4).
Vanilla label smoothing (Szegedy et al., 2016) performs poorly (RSUM 344.0), as uniform smooth-
ing fails to leverage semantic relationships between medical cases. Rouge-L (Lin, 2004) and low-
order n-gram BLEU (e.g., BLEU-2) (Papineni et al., 2002) yield modest gains. Metrics with
stronger semantic priors perform better; for example, BERTScoreBiomedBERT (Gu et al., 2020) lever-
ages domain-specific contextual embeddings to capture deeper similarity. Interestingly, higher-order
BLEU proves most effective: BLEU-6 captures long-span coherence, while BLEU-4 strikes the best
balance between precision and recall, achieving the highest RSUM (355.0). These results confirm
that text-aware label smoothing with appropriate similarity metrics strengthens representation learn-
ing.

4.5.4 CROSS-DOMAIN GENERALIZATION

We further validate the zero-shot generalization capability of our method on CheXpert5x200 and IU
X-ray (Table 5). All models are trained exclusively on MIMIC-CXR and tested without fine-tuning.

CheXpert5x200 results. With ResNet-50, we achieve the highest RSUM of 99.9, excelling in
image-to-text retrieval (R@1: 6.7, R@5: 17.7). Using vision Transformer, our method reaches an
RSUM of 114.0, significantly surpassing CXR-CLIP (102.6) and MedTrim (106.1), with superior
performance in 5 out of 6 metrics.

IU X-ray results. Despite a domain shift toward shorter, less detailed reports, our method maintains
strong performance. With ResNet-50, we obtain RSUM 64.1, leading in text-to-image R@5/R@10
and image-to-text R@10. With vision Transformer, RSUM reaches 63.8, achieving the best text-to-
image R@5/R@10 and image-to-text R@1/R@10.

The consistent superiority across diverse datasets demonstrates the robustness and generalizability
of our design.
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Text: The air component of the moderate multiloculated left hydro pneumothorax, has grown larger. Small right pleural 
effusion unchanged. Moderate subcutaneous emphysema in the left chest wall is stable. Hyperinflation reflects severe 
emphysema. Right lung clear of focal abnormalities. The roughly 5.5 cm wide round opacity projecting over the left paraspinal 
region has increased since the earliest post surgical radiograph, and probably. On a subsequent chest radiograph available the 
time of this review, the abnormality has resolved, and it presumably was due to an unusual configuration of atelectasis. 

Image Ours CXR-CLIP MedTrim IRRA MaCo CLIP

Figure 4: Attention visualization comparison using Grad-CAM. Our method generates more dis-
tributed attention patterns that align with multiple regions described in the text.

Table 5: Cross-domain generalization results on CheXpert5x200 and IU X-ray. All models are
trained on MIMIC-CXR and evaluated zero-shot. Results are reported for both ResNet-50 (top) and
vision Transformer (bottom) backbones.

CheXpert5x200 IU X-ray
Image to Text Text to Image RSUM Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MGCA 4.1 9.8 15.1 3.3 10.4 15.7 58.4 2.4 8.2 11.6 3.0 7.9 12.2 45.3
Med-ST 2.9 9.5 13.8 3.3 10.3 15.6 55.4 2.2 7.7 12.0 2.0 7.9 13.1 44.9
ConVIRT 3.9 12.9 18.0 4.7 13.4 21.6 74.5 4.8 9.2 12.5 4.6 11.0 13.9 56.0
GLoRIA 3.1 11.0 16.5 4.9 13.0 20.1 68.6 2.3 6.7 10.9 5.1 10.8 13.2 49.0
CLIP 4.5 13.5 20.2 5.7 15.1 21.3 80.3 3.4 9.6 13.9 4.8 10.6 14.1 56.4
IRRA 4.3 13.1 19.3 5.3 12.9 20.9 75.8 4.2 8.2 11.8 5.9 10.6 14.1 54.8
LIMITR 5.6 15.1 24.8 5.7 18.4 26.5 96.1 4.4 10.0 14.0 5.0 11.5 14.7 59.6
MedTrim 6.2 16.2 23.8 5.6 18.6 24.9 95.3 4.2 10.4 13.2 4.1 10.3 15.5 57.7
CXR-CLIP 6.0 15.8 22.6 7.1 19.4 25.5 96.4 4.0 11.0 14.1 4.8 11.4 14.3 59.6
Ours 6.7 17.7 24.8 6.2 18.5 26.0 99.9 4.4 10.8 14.4 5.2 11.8 17.5 64.1
CLIP-Adapt. 5.7 16.8 23.2 5.1 17.0 24.3 92.1 3.5 10.6 13.9 5.2 11.6 14.8 59.6
MGCA 5.5 14.4 18.9 4.2 12.6 18.9 74.5 2.7 8.2 10.9 4.3 10.1 13.5 49.7
CLIP 6.6 16.7 23.5 6.5 16.5 24.4 94.2 3.2 8.2 11.6 4.0 10.5 14.0 51.5
MaCo 6.5 15.7 22.8 5.6 17.2 26.9 94.7 3.1 8.1 11.2 4.4 11.3 15.1 53.2
IRRA 6.5 16.3 24.7 6.9 17.6 25.0 97.0 3.2 9.7 10.8 4.8 11.9 15.1 55.5
MedTrim 7.5 19.2 27.3 7.2 18.6 26.3 106.1 4.2 9.2 12.8 4.7 10.8 15.0 56.7
CXR-CLIP 6.9 18.2 26.9 6.7 18.1 25.8 102.6 3.9 11.2 14.3 4.2 10.6 14.0 58.2
Ours 7.4 20.9 28.5 9.5 19.8 27.9 114.0 5.4 10.9 14.3 5.0 12.2 16.0 63.8

4.5.5 QUALITATIVE ANALYSIS

Qualitative analysis through attention visualization using Grad-CAM (Selvaraju et al., 2017) (Fig-
ure 4) demonstrates our model’s ability to align image regions with textual descriptions. Our method
produces more distributed and fine-grained attention patterns that cover multiple key medical find-
ings mentioned in the report (e.g., right pleural effusion, subcutaneous emphysema, and opacity
projecting). In contrast, other methods exhibit overly concentrated attention on single image re-
gions, producing coarse heatmaps. This semantic alignment advantage stems from our alignment
mechanism, which better reflects the multi-faceted structure of medical reports. We show qualitative
retrieval examples in Appendix D.

5 CONCLUSION

In this paper, we present a framework for medical image-report retrieval that addresses domain-
specific limitations of existing CLIP-based methods. Our key contributions—HIP-InfoNCE loss
and text-aware label smoothing—better capture complex image-report relationships. Extensive ex-
periments show state-of-the-art performance, highlighting the importance of incorporating domain-
specific properties into the design of retrieval systems for medical applications. Future work will
investigate the application of our CLIP framework to tasks beyond cross-modal retrieval.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

Large language models were used solely for light editing tasks including grammar correction,
spelling checks, and minor phrasing improvements to enhance clarity and concision.

B PSEUDO-CODE FOR CROSS-MODAL RETRIEVAL

Algorithm 1 and Algorithm 2 present the pseudo-code of cross-modal retrieval with our model.
Specifically, image and text embeddings are extracted by the image encoder and text encoder, re-
spectively, followed by normalization. Similarity scores are then computed via dot products, and the
Top-k candidates with their scores are returned.

Algorithm 1 Pseudo-code of image-to-text retrieval.

def image_to_text_retrieval(I, T):
v = image_encoder(I)
t = text_encoder(T)

v = norm(v, dim=-1)
t = norm(t, dim=-1)

sims = matmul(v, t.T)
scores, indices = topk(sims, k, dim=-1)

return T[indices], scores

Algorithm 2 Pseudo-code of text-to-image retrieval.

def text_to_image_retrieval(T, I):
t = text_encoder(T)
v = image_encoder(I)

t = norm(t, dim=-1)
v = norm(v, dim=-1)

sims = matmul(t, v.T)
scores, indices = topk(sims, k, dim=-1)

return I[indices], scores

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C BERTSCORE

We examine the performance of different pre-trained language models within the BERTScore frame-
work when used as the similarity metric in our label smoothing method. Table 6 reports results.
Overall, the performance differences are minor. We adopt BiomedBERT as the default pre-trained
model for BERTScore in our experiments.

Table 6: Comparison of different pre-trained language models within BERTScore.

Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10
Medical-NER (Campillos-Llanos et al., 2021) 39.8 62.4 71.5 40.1 62.6 70.7 347.1
DistilBERT (Sanh et al., 2019) 40.9 61.8 70.6 40.5 62.7 70.6 347.1
BioClinicalBERT (Alsentzer et al., 2019) 38.3 63.6 70.6 39.3 63.5 72.0 347.3
BiomedBERT (Gu et al., 2020) 40.4 63.0 70.1 39.8 63.7 71.1 348.1
DeBERTa (He et al., 2023) 38.7 61.5 70.6 39.5 62.9 70.6 343.8
MedCPT (Jin et al., 2023) 39.9 62.7 69.8 40.7 63.4 70.4 346.9

D RETRIEVAL EXAMPLES

Figure 6 presents both text-to-image and image-to-text results with our model. Figures 7, 8, and 9
show qualitative retrieval examples on MIMIC-CXR, CheXpert5x200, and IU-Xray, comparing our
method with baselines.

E HYPERPARAMETER ANALYSIS

Table 7 provides a more detailed hyperparameter analysis, including all evaluation metrics for com-
pleteness.

Table 7: Impact of hyperparameters K (number of masked text views) and r (masking ratio) on
retrieval performance.

K r
Image to Text Text to Image RSUMR@1 R@5 R@10 R@1 R@5 R@10

2
0.1 40.1 62.0 70.8 39.7 62.4 70.9 345.9
0.3 41.5 63.8 71.5 39.7 64.2 71.4 352.1
0.5 41.1 63.1 72.0 40.9 63.4 72.1 352.6

4
0.1 38.9 63.4 71.0 39.7 64.3 71.1 348.4
0.3 41.4 63.4 72.5 40.2 65.2 72.3 355.0
0.5 39.1 62.4 71.9 38.6 64.3 72.7 349.0

6
0.1 39.0 63.1 70.2 40.6 62.6 70.3 345.8
0.3 38.5 62.8 71.2 39.1 64.5 71.0 347.1
0.5 36.3 59.7 68.1 36.7 59.5 68.6 328.9

8
0.1 37.8 62.6 69.0 36.7 63.2 69.3 338.6
0.3 38.5 62.4 71.4 38.7 61.9 70.8 343.7
0.5 36.7 63.7 70.6 39.7 63.2 71.7 345.6

10
0.1 40.6 60.9 69.8 39.2 61.3 68.3 340.1
0.3 39.8 63.6 71.3 39.6 64.3 72.7 351.3
0.5 40.3 63.4 71.2 39.4 62.1 71.2 347.6

F WORD ATTENTION VISUALIZATION

Figure 5 visualizes the average multi-head attention from the last layer of our model’s text encoder.
In particular, it highlights the attention from the [EOS] token (used to aggregate semantic features)
to each input word. The importance of each word is determined by the maximum attention weight
across its sub-tokens.

The heatmap shows that the model assigns high attention to clinically critical terms. For example,
pathological words such as pneumothorax, emphysema, and hyperinflation, as well as anatomical
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words such as left chest and thorax, receive significantly higher attention. These terms correspond
to the primary findings and locations emphasized in clinical diagnosis, suggesting that the model
effectively captures key diagnostic cues. In contrast, functional or less informative words obtain
lower attention, indicating the model’s ability to filter irrelevant information.
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Figure 5: Word-level attention visualization. The model assigns high attention to key pathological
and anatomical terms, indicating effective capture of diagnostic cues.

Left pigtail catheter is in 
place. Subcutaneous air 
appears to be minimally 
decreased. For ’s left 
posterior aspect 3 fracture 
is unchanged. There is no 
pneumothorax. Lungs are 
overall clear. Small left 
pleural effusion is 
unchanged. The additional 
rib fractures also noted on 
the current examination.

Right pleural effusion has decreased in size following thoracentesis with an apparent tiny 
right apical pneumothorax and small residual pleural effusion. Small to moderate left 
pleural effusion is similar to the prior radiograph…
Signs of mild fluid overload have decreased in severity. Better seen than on the frontal 
radiograph, the lateral radiograph shows a moderate left and a small right pleural effusion…
As compared to the previous radiograph, the pre-existing right pleural effusion has slightly 
decreased, but the pre-existing left pleural effusion has slightly increased in extent…
Compared to chest radiograph, cardiomediastinal contours are stable.  Substantial bibasilar 
atelectasis has slightly worsened accompanied by persistent small bilateral pleural effusions.
The pre-existing small bilateral pleural effusions are constant. Slightly increased in extent 
and severity is the known platelike atelectasis at the right lung bases…
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Figure 6: Retrieval results with our model. Top: text-to-image retrieval with query text and top-10
retrieved images. Bottom: image-to-text retrieval with query image and top-5 retrieved reports.
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Query: Left pigtail catheter is in place. Subcutaneous air appears to be minimally decreased. For ’s left posterior aspect 3 
fracture is unchanged. There is no pneumothorax. Lungs are overall clear. Small left pleural effusion is unchanged. The 
additional rib fractures also noted on the current examination.
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Figure 7: Retrieval examples on MIMIC-CXR, comparing our method with competitors.
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Query: As before there is partial left upper lobe collapse with mild mediastinal shift the right lung remains clear no 
pneumothorax or pleural effusions the heart size is normal.
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Figure 8: Retrieval examples on CheXpert5x200, comparing our method with competitors.
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Query: Small left pleural effusion stable mild cardiomegaly stable cardiomediastinal contour is no pneumothorax or 
significant pulmonary edema small left pleural effusion no focal lung consolidation mildly low lung volumes.
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Figure 9: Retrieval examples on IU X-ray, comparing our method with competitors.
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