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A  DATASETS

A.1 DATA PREPROCESSING

For all of the datasets, frames consisted of 2500 samples and consecutive frames had no overlap with
one another. Data splits were always performed at the patient-level.

Chapman (Zheng et al.l [2020). Each ECG recording was originally 10 seconds with a sampling
rate of 500Hz. We downsample the recording to 250Hz and therefore each ECG frame in our setup
consisted of 2500 samples. We follow the labelling setup suggested by [Zheng et al.| (2020) which
resulted in four classes: Atrial Fibrillation, GSVT, Sudden Bradychardia, Sinus Rhythm. The ECG
frames were normalized in amplitude between the values of 0 and 1.

PTB-XL (Wagner et al., |2020). Each ECG recording was originally 10 seconds with a sampling
rate of 500Hz. We extract 5-second non-overlapping segments of each recording generating frames
of length 2500 samples. We follow the diagnostic class labelling setup suggested by [Strodthoff
et al.[ (2020) which resulted in five classes: Conduction Disturbance (CD), Hypertrophy (HYP),
Myocardial Infarction (MI), Normal (NORM), and Ischemic ST-T Changes (STTC). Furthermore, we
only consider ECG segments with one label assigned to them. The ECG frames were standardized to
follow a standard Gaussian distribution.

A.2  DATA SAMPLES
In this section, we outline the number of instances used during training.

Table 3: Number of instances (number of patients) used during training. These represent sample sizes
for all 12 leads.

Dataset \ Train Validation Test

Chapman | 76,614 (6,387) 25,524 (2,129) 25,558 (2,130)
PTB-XL | 22,670 (11,335) 3,284 (1,642) 3,304 (1,152)
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B IMPLEMENTATION DETAILS

B.1 NETWORK ARCHITECTURES

In this section, we outline the neural network architectures used for our experiments. More specifically,
we use the architecture shown in Table ] for all experiments pertaining to the Chapman dataset. Given
the size of the PTB-XL dataset, we opted for a more complex network. We modified the ResNet18
architecture whereby the number of blocks per layer was reduced from two to one, effectively
reducing the number of parameters by a factor of two. We chose this architecture after experimenting
with several variants.

Table 4: Network architecture used for experiments conducted on the Chapman dataset. K, Cj,,
and C,, represent the kernel size, number of input channels, and number of output channels,
respectively. A stride of 3 was used for all convolutional layers. E represents the dimension of the
final representation.

Layer Number Layer Components Kernel Dimension

Conv 1D T7x1x4 (KX Cinx Cou)
BatchNorm
1 ReLU
MaxPool(2)
Dropout(0.1)

Conv 1D T7x4x16
BatchNorm
2 ReLU
MaxPool(2)
Dropout(0.1)

Conv 1D 7x16x32
BatchNorm
3 ReLU
MaxPool(2)
Dropout(0.1)

Linear 320x E
ReLU

B.2 EXPERIMENT DETAILS

Table 5: Batchsize and learning rates used for training with different datasets. The Adam optimizer
was used for all experiments.

Dataset ‘Batchsize Learning Rate

Chapman 256 10
PTB-XL 128 107
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B.3 BASELINE IMPLEMENTATIONS
B.3.1 DEEPCLUSTER

In the implementation by |Caron et al.| (2018), a forward pass of each instance in the training set
is performed. This generates a set of representation which are then clustered, in an unsupervised
manner, using K-means. This involves a decision regarding the value of K, i.e., the number of clusters.
In our supervised setting, we have this information available and therefore set the value of K to be
equal to the number of distinct cardiac arrhythmia classes. Once the clustering is complete, each
instance is assigned a pseudo-label according to the cluster to which it belongs. Such pseudo-labels
are used as the ground-truth for supervised training during the next epoch. We repeat this process
after each epoch for a total of 30 epochs after realizing that the validation loss plateaus at that point.

B.3.2 IIC

In this implementation, the network is tasked with maximizing the mutual information between
the representation of an instance and that of its perturbed counterpart. Such perturbations must be
class-preserving and, in computer vision, consist of random crops, rotations, and modifications to
the brightness of the images. In our setup involving time-series data, we perturb instances by using
additive Gaussian noise in order to avoid erroneously flipping the class of a particular instance. In
addition to the aforementioned, we implement the auxiliary over-clustering method suggested by the
authors. This approach allows one to model additional ’distractor’ classes that may be present in the
dataset, and was shown by Ji et al|(2019) to improve generalization performance. In our setup, we
set the number of total clusters to the number of attribute combinations, M.

B.3.3 SELA

In this implementation, each instance is assigned a posterior probability distribution. For all instances,
this results in an assigned matrix of posterior probability distributions. Each instance’s label is ob-
tained by identifying the index associated with the largest posterior probability distribution. Deriving
the aforementioned matrix is the crux of SeLA. It does by solving the Sinkhorn-Knopp algorithm
under the assumption that the dataset can be evenly split into K clusters. Our setup does not deviate
from the original implementation found in (Asano et al., 2020).

B.3.4 DTCLUSTER

In this implementation, the distance between each representation and each cluster prototype is
calculated to generate a probability distribution over classes, p. The distribution, p, is encouraged to
be similar to a target distribution, ¢, by minimizing the KL divergence of these two distributions. In
the original unsupervised implementation, the target distribution is a sharper version of the empirical
distribution (Han et al., [2019). In our supervised implementation, we initialize the prototypes as
is done with DROPS and modify the target distribution to incorporate labels. As with the soft-
assignment used in DROPS, we aim for a target distribution that reflects discrepancies, d, between the
representation attributes, A;, and the prototype attributes, Aj. Mathematically, our target distribution,

q, is as follows:
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C DISCOVERING ATTRIBUTE-SPECIFIC FEATURES WITHIN CLINICAL
PROTOTYPES

We have shown that clinical prototypes can be deployed successfully for retrieval and clustering
purposes while managing to capture relationships between attributes. In this section, we aim to
quantify the relationship between clinical prototypes and explore their features further. In Fig. 5]
we illustrate a matrix of the clinical prototypes (M = 32) along the rows and their corresponding
features (£ = 128) along the columns. By implementing the hierarchical agglomerative clustering
(HAC) algorithm, we cluster these clinical prototypes and arrive at the dendrogram presented along
the rows of Fig.[5| In addition to being correctly clustered according to class labels, they are also
more similar to one another based on their attributes. This can be seen by the attribute combination
descriptions in the right column. This finding supports our earlier claim that clinical prototypes do
indeed capture relationships between attributes.

Motivated by recent work on disentangled representations, whereby representations can be factorized
into multiple sub-groups each of which correspond to a particular abstraction, we chose to cluster
the features of the clinical prototypes, resulting in the dendrogram presented along the columns of
Fig.[5] The intuition is that by clustering we may discover attribute-specific feature subsets. We show
that these features can indeed be clustered into three main groups, potentially coinciding with our
pre-defined attributes. Such a process can improve the interpretability of clinical prototypes and lead
to insights about how they can be further manipulated for retrieval purposes, for instance, by altering
a subset of features.
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Figure 5: Hierarchical agglomerative clustering of the learned clinical prototypes in M. (Rows)
Clustering is performed using the 128-dimensional features resulting in 4 major clusters corresponding
to the 4 classes. Clinical prototypes with similar attributes are also clustered together. The rows are
labelled according to the attribute combination, m. (Columns) Clustering is performed whereby each
of the 128 features is treated as an instance, resulting in 3 major clusters which are hypothesized to
correspond to the 3 attributes: class, sex, and age. This suggests that disentangled, attribute-specific
features may have been learned.
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