
Perfectly Secure Steganography Using
Minimum Entropy Coupling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Steganography is the practice of encoding a plaintext message into another piece1

of content, called a stegotext, in such a way that an adversary would not real-2

ize that hidden communication is occurring. This problem setting possesses two3

(competing) objectives: 1) To make the stegotext as similar as possible to the “nor-4

mally” occuring content (known as covertext); 2) To encode as much information5

as possible about the content of the plaintext into the stegotext. Our first contri-6

bution is showing that any coupling procedure can be used to achieve perfectly7

secure steganography (assuming shared private keys for the communicating parties)8

against computationally unbounded passive adversaries. Our second contribution9

is proving that, among steganography procedures with perfect security, the one10

induced by minimum entropy coupling maximizes the amount of information11

transmitted over the channel. We combine this perspective with recent insights for12

approximate and iterative minimum entropy coupling to yield the first steganog-13

raphy procedure that can be scaled to arbitrary covertext distributions, without14

sacrificing security guarantees. Finally, as our third contribution, we empirically15

demonstrate that this procedure is able to encode plaintext messages into language16

and audio model covertext distributions with greater efficiency than alternative17

scalable approaches, despite having stricter security constraints.18

1 Introduction19

Modern applications, such as mobile-to-mobile communication or app-to-server communication,20

often require communicating sensitive information over insecure channels. Such applications21

motivate the development of methodologies for communicating over these channels while concealing22

sensitive content from adversarial third parties. Cryptographic procedures are one class of methods23

designed for this use case [Katz and Lindell, 2007, Chamberlain, 2017]. However, cryptographic24

procedures possess a drawback—they reveal to adversaries that sensitive information is being25

communicated, by virtue of the fact that encrypted messages (which appear as random content) are26

being sent over the channel. If an adversary controls the channel, it may simply block attempts to27

send encrypted messages, making cryptographic procedures inapplicable. Even if the adversary does28

not control the channel, it may engage in other undesirable activities, such as cyber-attacks.29

A complementary approach to communicating sensitive information over insecure channels is30

steganography [Blum and Hopper, 2004, Cachin, 2004]. In steganography, the goal, informally31

speaking, is to encode a plaintext message in a manner that appears similar enough to innocuous32

communication (called covertext) that an adversary would not realize that hidden communication33

is occurring in the first place. Because steganographic procedures hide the existence of sensitive34

communication from adversaries altogether, they provide a complementary kind of security to that35

of cryptographic methods.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



In this work, we cast the problem of steganography as that of minimum entropy coupling (MEC).37

Given two marginal distributions for two random variables, the minimum entropy coupling is the joint38

distribution over these two random variables that has minimal joint entropy, subject to the constraint39

that it marginalizes correctly [Kovačević et al., 2015]. Our theoretical contribution proves that minimal40

entropy coupling between the covertext distribution and the ciphertext distribution (an encoded form41

of the plaintext that can be made to look uniformly random) yields a steganographic procedure that42

communicates the maximal possible amount of information about the plaintext message, subject to43

perfect steganographic security.44

While minimum entropy coupling is an NP-hard problem, there exist O(N logN) approximation45

algorithms [Kocaoglu et al., 2017, Cicalese et al., 2019, Rossi, 2019] that are suboptimal (in terms of46

joint entropy) by no more than one bit, while retaining exact marginalization guarantees. Furthermore,47

Sokota et al. [2022] introduced an iterative minimum entropy coupling approach (iMEC) that48

iteratively applies these approximation procedures to construct couplings between one uniform49

distribution and one autoregressively specified distribution, both having arbitrarily large supports,50

while still retaining marginalization guarantees. Because ciphertext can be made to look uniformly51

random, and any distribution of covertext can be specified autoregressively, we can leverage iMEC to52

perform steganography for arbitrary covertext distributions and plaintext messages. Excitingly, this53

yields the first instance of a steganography algorithm with perfect security guarantees that scales to54

arbitrary distributions of covertext.55

In our experiments, we evaluate iMEC using language and audio models—specifically GPT-2 and56

WaveRNN. We compare against arithmetic coding [Ziegler et al., 2019] and Meteor [Kaptchuk et al.,57

2021], other recent methods for performing steganography with deep generative models. To examine58

empirical security, we estimate the KL divergence between the stegotext and the covertext for each59

method. For iMEC, we find that the KL divergence is on the order of the numerical precision of float64,60

in agreement with our theoretical guarantees. In contrast, arithmetic coding and Meteor yield KL61

divergences many orders of magnitude larger, reflecting their weaker security guarantees. To examine62

encoding efficiency, we measure the number of bits transmitted per step. We find that iMEC yields63

superior efficiency results to those of arithmetic coding and Meteor, despite its stricter constraints.64

2 Related Work65

The concept of perfect security that we use in this work was first defined in [Cachin, 1998]. One66

case in which perfect security is possible is when the covertext distribution is uniform. In this case,67

perfect security can be achieved by embedding the message in uniform random ciphertext over the68

same domain as the covertext. However, constructing algorithms that both guarantee perfect security69

and transmit information at non-vanishing rates for more general covertext distributions has proved70

challenging. One notable result is that of Wang and Moulin [2008], who show that, in the case that71

letters of the covertext are independently identically distributed, public watermarking codes Moulin72

and O’Sullivan [2003], Somekh-Baruch and Merhav [2003, 2004] that preserve first order statistics73

can be used to construct perfectly secure steganography protocols of the same error rate. Another74

important line of research is that of Ryabko and Ryabko [2009], who show that perfectly secure75

steganography can be achieved in the case that letters of the covertext are independently identically76

distributed under the weaker assumption of black box access to the covertext distribution. In follow77

up work, Ryabko and Ryabko [2011] generalize their earlier work to a setting in which the letters of78

the covertext need only follow a k-order Markov distribution. Unlike these works, our approach does79

not make any assumptions on the structure of the distribution of covertext, though, unlike Ryabko80

and Ryabko, we do assume that this distribution is known.81

There is also a body of related literature concerned with the combination of steganography and82

deep generative models. For example, Volkhonskiy et al. [2017] investigate the idea of training a83

generative adversarial network for steganography. In their setup, the generator is trained to be robust84

against both 1) a discriminator attempting to discriminate between real and generated images and85

2) a discriminator attempting to discriminate between unmodified images and images for which a86

least significant bit matching has been used to embed a secret message. Another important example87

is the work of Dai and Cai [2019], who introduce an algorithm using Huffman coding to modify88

the covertext distribution in a manner that controls the total variation distance between the covertext89

distribution and the stegotext distribution. Perhaps the most closely related work is that of [Ziegler90

et al., 2019]. Ziegler et al. [2019] build on the work of Sallee [2003], who showed that compression91
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Figure 1: A graphical depiction of steganography. The sender receives a plaintext message, a source
of randomness, and a private key, and outputs a stegotext. The receiver receives the same private key
as the sender, along with the stegotext. The adversary also receives the stegotext.

algorithms can be used for steganography and that, in cases in which perfect compression is possible,92

the corresponding steganography procedure achieves perfect security. Ziegler et al. [2019] leverage93

this insight to perform experiments on language models, showing that arithmetic coding offers favor-94

able trade-offs empirically compared to the Huffman coding. Most recently, Kaptchuk et al. [2021]95

also propose a steganography method called Meteor that resembles a modification of arithmetic96

coding. Kaptchuk et al. [2021] show empirical results in which Meteor outperforms arithmetic coding97

in terms of closeness to the covertext distribution, but is outperformed by arithmetic coding in terms of98

throughput. In contrast to these works, our approach possesses a provable perfect security guarantee.99

3 Background100

In this section, we review steganography and minimum entropy coupling, and describe the specific101

steganographic problem setting we consider in this work. For steganography, we provide both a102

high level summary of our problem setting in Section 3.1, and more precise technical descriptions103

in the successive sections.104

3.1 Steganography105

We consider a problem setting in which the distribution of normally occurring content C, called106

the covertext distribution, is known to all parties (the sender, the receiver, and the adversary) and107

the adversary is unbounded but passive. Unbounded means that it may use arbitrarily expensive108

computational operations toward the end of determining whether the distribution of stegotext S109

(i.e., the distribution of text being sent by the sender), differs from the distribution of covertext;110

passive means that it is not allowed to modify the content sent by the sender. Our goal is to achieve111

so-called perfect security [Cachin, 1998], wherein the distribution of stegotext is exactly equal to the112

distribution of covertext (and, resultantly, even an unbounded passive adversary cannot distinguish113

between them), while simultaneously communicating as much information as possible to the receiver114

about the content of the plaintext message through the stegotext.115

3.1.1 Problem Setting116

The objects involved in steganography can be divided into two classes: those which are externally117

specified and those which require algorithmic specification. Each class contains three objects. The118

externally specified objects include the distribution over plaintext messages M, the distribution over119

covertext C, and the random source generator R.120

• The distribution over plaintext messages may be known by the adversary, but is not known by the121

sender or the receiver. However, the sender and receiver are aware of the domain M over which122
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M ranges. The realized plaintext message is explicitly made known to the sender, but not to the123

receiver or the adversary.124

• The covertext distribution C is assumed to be known by the sender, the receiver, and the adversary.125

• The random source generator R provides the sender with a mechanism to take random samples126

from distributions. This random source is known to the sender but not to the receiver or the127

adversary. As a result, randomness involved in the sender’s encoding process cannot be exactly128

reproduced by the receiver or the adversary.129

The objects requiring algorithmic specification, which are collectively referred to as a stegosystem,130

are the key generator K, the encoder E , and the decoder D.131

• The key generator K produces a private key K, whose realization is an element of {0, 1}λ for132

some positive integer λ. This private key is shared between the sender and receiver over a secure133

channel prior to the start of the stegoprocess and can be used to coordinate communication. The134

key generation process K may be known to the adversary, but the realization of the key K is not.135

• The encoder E takes a private key K, a plaintext message M , and a source of randomness R as136

input and produces a stegotext S in the space of covertexts C.137

• The decoder D takes a private key K and a stegotext S as input and returns an estimated plaintext138

message M̂ .139

Many of the objects described above are depicted graphically in Figure 1.140

3.1.2 Security141

There are multiple ways to quantify the security level of a steganographic procedure. In this work,142

we are concerned with perfectly secure steganography.143

Definition 3.1. [Cachin, 1998] Given covertext distribution C and plaintext message space M, a144

stegosystem ⟨K, E ,D⟩ is ϵ-secure against passive adversaries if the KL divergence between the145

distribution of covertext C and the distribution of stegotext S less than ϵ; i.e., KL(C,S) < ϵ. It is146

perfectly secure if the KL divergence is zero; i.e., KL(C,S) < 0.147

In other words, a steganographic system is perfectly secure if the distribution of stegotext S commu-148

nicated by the sender is exactly the same as the distribution of covertext C.149

3.1.3 Methodological Outline150

One class of steganographic solution methods follows the following outline:151

1. The sender and receiver use their shared private key K to inject the plaintext message space M into152

a space of binary sequences X = {0, 1}ℓ called ciphertext. By using a random key, this injection153

can be done in such a way that the distribution over {0, 1}ℓ is uniformly random, regardless of the154

distribution of M. (For example, one could generate K, uniformly at random, convert each m to155

binary x = bin(m), and use the mapping m 7→ bin(m)XORK.)156

2. The sender uses an encoder {0, 1}ℓ → C to map the ciphertext X into stegotext (which exists in157

the space of covertexts).158

3. The sender sends the stegotext S over the channel.159

4. The receiver decodes the stegotext back into binary ciphertext.160

5. The receiver decodes the binary back to the plaintext message space. (For the example above, the161

receiver can recover the binarized message bin(m) = (bin(m)XORK)XORK using the shared162

private key, and invert the binary to recover the plaintext m.)163

In the outline above, steps 1, 3, and 5 can be accomplished using standard operations in steganography164

literature and, thus, are left implicit in much of the remainder of the paper. Our methodological165

contribution specifically concerns steps 2 and 4.166
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<latexit sha1_base64="mmO7tMmVuykZdbAnn2nvq0KeFhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r16sVdvdK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RUo2q</latexit>

y3

<latexit sha1_base64="AtC+sictXjsHbY8xLtLSfyYdY9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg9YJZwP6JDJULBKFrpPuuf98sVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hOqUTDJp6VeanhC2ZgOeddSRSNu/Mn81Ck5scqAhLG2pZDM1Z8TExoZk0WB7YwojsyyNxP/87ophlf+RKgkRa7YYlGYSoIxmf1NBkJzhjKzhDIt7K2EjaimDG06JRuCt/zyX9I6q3q16sVdrVK/zuMowhEcwyl4cAl1uIUGNIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzcS1o2r</latexit>

y4

<latexit sha1_base64="tB2z1bhoNFlNqkInXCK6fzKtqgI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbQuql6tenlfq9Rv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMUWo2s</latexit>
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Figure 2: Two example couplings, shown in magenta, between X (red) and Y (blue). The left
coupling has lower entropy than the right coupling (shading reflects the probability mass).

3.2 Minimum Entropy Coupling167

Let X and Y be probability distributions over finite sets X and Y. A coupling γ of X and Y is168

a joint distribution over X × Y such that, for all x ∈ X,
∑

y′ γ(x, y′) = X (x) and such that, for169

all y ∈ Y,
∑

x′ γ(x′, y) = Y(y). In other words, a coupling is a joint distribution over X and Y170

that marginalizes to X and Y , respectively. In general, there may be many possible couplings for171

distributions X and Y . (As an example, Figure 2 visually depicts two possible couplings for the same172

marginal distributions.) Let Γ(X ,Y) denote the set of all couplings. The goal of minimum entropy173

coupling (MEC) is to find the element of Γ(X ,Y) with minimal entropy. In other words, to find174

γ ∈ Γ(X ,Y) such that the entropy H(γ) = −∑
x,y γ(x, y) log γ(x, y) is no larger than that of any175

other coupling in Γ(X ,Y).176

In general, computing the MEC is an NP-hard problem. That said, there has been substantial recent177

progress in approximating MECs. Cicalese et al. [2019], Rossi [2019] recently showed that it is178

possible to approximate MECs in N logN time with a solution guaranteed to be suboptimal by179

no more than one bit. Even more recently, Sokota et al. [2022] introduced an iterative minimum180

entropy coupling approach (iMEC) that uses an approximate MEC algorithm as a subroutine to181

couple distributions with arbitrarily large supports, so long as one of the distributions is uniform and182

the other can be specified autoregressively. This approach provably produces couplings, meaning that183

exact marginalization to the inputs is guaranteed, regardless of the input distributions. Because this184

approach, which we call iterative minimum entropy coupling (iMEC), is central to our experiments,185

we describe it in further detail below.186

3.2.1 Iterative Minimum Entropy Coupling187

Assume that X is a uniform distribution and let X1 × · · · × Xn = X and Y1 × · · · × Ym = Y be188

factorizations over the spaces that X and Y range. iMEC implicitly defines a coupling γ between X189

and Y using procedures that iteratively call an approximate MEC as a subroutine [Sokota et al., 2022].190

These procedures can sample γ(Y | x) and query γ(X | y) for a given x and y respectively. To align191

with steganography terminology, we will call these operations encoding and decoding. Because these192

procedures share a similar structure, we describe them as a unified operation as follows:193

1. Initialize a uniform distribution µi over Xi for each i = 1, . . . ,m.194

2. Iterate j = 1, . . . ,m.195

(a) Select i∗ = maxi H(µi) to be the index of block whose distribution has maximal entropy.196

(b) Call the approximate MEC subroutine between µi∗ and Q(Yj | y1:j−1). Denote this coupling197

as ν. If performing encoding, set yj = Yj ∼ ν(Yj | xi∗); if performing decoding, yj is198

known and no sampling is required. Update µi∗ to be equal to ν(Xi∗ | yj).199

3. If performing encoding, return y; if performing decoding, return γ(X | y) : x 7→ ∏
i µi(xi).200
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4 Steganography as Minimum Entropy Coupling201

Having introduced steganography and minimum entropy coupling, we are ready to explain our202

contribution. We describe how steganography can be handled as a coupling problem as follows:203

Steganography as Coupling

1. Let γ ∈ Γ(X , C) be a coupling over ciphertext distribution X and covertext distribution C.
2. Given ciphertext x, let the sender communicate stegotext S ∼ γ(C | X = x).
3. Given stegotext S, let the receiver estimate ciphertext arg maxx′γ(X = x′ | C = S).

Viewing steganography as a coupling problem has value because of its strong security guarantees.204

Proposition 1. Steganography as coupling has perfect steganographic security.205

Proof. Consider that the distribution of stegotext S is dictated by γ(C | X = x) for a given ciphertext206

x. Thus the marginal distribution of stegotext is given by EX∼Xγ(C | X) = γ(C). By definition of207

a coupling, we have γ(C) = C. Therefore, we have S = C and KL(C,S) = 0.208

Viewing steganography, in particular, as a minimum entropy coupling problem, has value because of209

its implications on information throughput.210

Proposition 2. Performing steganography as coupling with a minimum entropy coupling procedure211

maximizes the mutual information I(M ;S) between the plaintext message and the stegotext, subject212

to the constraint of perfect steganographic security.213

Proof. Consider that I(M ;S) = H(M) + H(S) − H(M,S). Now, note that the distribution of214

M is externally specified and, therefore, H(M) cannot be optimized. Next, recall that perfect215

steganographic security implies S = C. Thus, the distribution of S is externally specified, implying216

H(S) cannot be optimized. Finally, recall that our ciphertext encoding is injective and ranges over a217

discrete distribution. Therefore, H(M,S) = H(X,S). Noting that H(X,S) is exactly the quantity218

being minimized by minimum entropy coupling yields our result.219

We also observe that, given the sender’s procedure, the receiver’s behavior is rational.220

Remark 1. Given the sender’s encoding procedure, the receiver’s decoding procedure minimizes221

its error rate.222

Proof. Because the sender’s encoding process is dictated by the joint distribution γ, the posterior223

over ciphertexts is γ(X = x | C = S). Therefore, the error rate is 1− γ(X = x̂ | C = S), which is224

minimized by x̂ = arg maxx′γ(X = x′ | C = S).225

In light of of these results, we suggest that viewing steganography as a minimum entropy coupling226

problem is a natural and fundamental perspective. Indeed, we have proven that, among steganography227

procedures with perfect security, the one induced by minimum entropy provably maximizes the228

amount of information transmitted by the sender. Furthermore, our insight is easily extended beyond229

our theoretical results. Because, as discussed in the background, it is always possible to make230

ciphertext look uniformly random, iMEC [Sokota et al., 2022] can immediately be plugged into the231

steganography as coupling framework for arbitrary covertext distributions. And while iMEC does232

not possess proven approximation guarantees as a minimum entropy coupling algorithm, it yields233

performant couplings in large scale settings, as we will see in the experiments.234

5 Experiments235

We empirically compare iMEC against arithmetic coding [Ziegler et al., 2019] and Meteor [Kaptchuk236

et al., 2021] on four different covertext types. We also include a variant of Meteor that employs237

bin-sorted probabilities [Kaptchuk et al., 2021, Meteor:reorder].238
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Figure 3: Kullback-Leibler divergences between the stegotext distribution and covertext distribution
for each method. Errorbars indicate estimates of 95% confidence intervals computed from the central
limit theorem over 1000 runs.

5.1 Experiment Setup239

Our first covertext distribution consists of uniformly random noise (UNIF) of dimension 40 and a240

mean channel entropy of HC = 5.32 bits. The second and third covertext distributions are variants241

of GPT-2 [Radford et al., 2019] with 12 attention modules [Wolf et al., 2020] conditioned on 1024-242

character strings from the Wikitext-103 dataset [Merity et al., 2016]. The second covertext distribution243

performs top-k sampling from a re-normalised categorical distribution over the 40 highest-probability244

outputs. The third covertext distribution instead performs nucleus sampling [Holtzman et al., 2020]245

from the highest-probability outputs that together comprise 90% of the raw channel entropy [Radford246

et al., 2019]. The fourth covertext distributions consists of a text-to-speech (TTS) pipeline [Yang et al.,247

2022] based on Tacotron-2 [Shen et al., 2018] mel-spectogram encodings, followed by a WaveRNN248

generative model [Kalchbrenner et al., 2018] pretrained on the LJSpeech dataset [Ito and Johnson,249

2017] with an average channel entropy of HC = 0.35 bits. We condition the WaveRNN model using250

text generated by GPT-2 that we convert into audio data using mel-spectogram encodings.251

Our implementation of iMEC makes use of the approximative minimum entropy coupling heuristic252

suggested by [Kocaoglu et al., 2017, Algorithm 1] as its subprocedure. We also integrated the original253

implementations of arithmetic coding Ziegler et al. [2019] and Meteor/Meteor:reorder Kaptchuk et al.254

[2021] into our codebase.255

All experiments were performed on a AMD Ryzen Threadripper PRO 3955WX with 16 physical256

cores and 2x NVIDIA GeForce RTX 3090 GPUs. Note that, apart from neural model forwards,257

iMEC encoding and decoding occupies just a single CPU core, while both algorithmic coding and258

Meteor make use of multiple CPUs, and Meteor:reorder also makes use of GPUs during encoding259

and decoding.260

All ciphertexts are 80-bit bitstrings sampled uniformly at random. We measure the encoding efficiency261

of each method by measuring the amount of covertext required to transmit these bitstrings. We tuned262

the hyper-parameters of each method to yield the best performance on this task. For iMEC, we263

stop transmission when the entropy of every posterior block is less than 0.1, i.e., ∀i,H(µi) < 0.1.264

We found the error rate for this threshold to be lower than 1 in 106 bits (see Appendix for further265

discussion). For arithmetic coding and Meteor/Meteor:reorder, we performed a grid search over266

precision values of 8, 16, 32 and 48 bits. We find that both arithmetic coding and Meteor get stuck267

in a (seemingly) infinite loop at a frequency of about 3% (see Appendix for further discussion).268

For simplicity, we simply discard these runs from our investigation. This may result in slight269

overestimation of these algorithms’ encoding efficiencies.270
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Figure 4: Comparative encoding efficiencies (left) and bit rates (right) of our method and baselines.
Each method is evaluated at tuned hyperparameters. Errorbars indicate estimates of 95% confidence
intervals computed using the central limit theorem from 1000 runs. Horizontal lines on the right plot
correspond to the mean entropy of the channel.

5.2 Results271

Empirical Security We first investigate the empirical security of each method. As estimating272

KL(C,S) is difficult, we instead show KL(S, C), which can easily be estimated from samples. We273

present the results in Figure 3. As expected from theory, we find that iMEC’s security is on order274

of the precision of the numerical data type employed in its implementation—rendering it ϵ-secure275

for arbitrarily small ϵ in practice. On the other hand, arithmetic coding’s divergence is consistently276

many orders of magnitude above the precision of the data type. For Meteor and Meteor:reorder, we277

observe good security for a uniform distribution. But, for more realistic distributions, they yield278

divergences many orders of magnitude above the precision of the data type. That said, consistent279

with Kaptchuk et al.’s findings, we observe that Meteor does result in better security than arithmetic280

coding. On the other hand, for Meteor:reorder, we see poorer security than arithmetic coding for281

realistic distributions, and even observe a divergent KL divergence for WaveRNN.282

Encoding Efficiency We next compare encoding efficiencies and bit rates. We say bit rate to mean283

the number of bits encoded per token. We say encoding efficiency to mean the bit rate normalized to284

the average channel entropy. We show the results for both in Figure 4. We present results for iMEC285

with varying block sizes {|Xi|}i over the ciphertext. These block sizes are hyperparameters for iMEC286

and can be made larger or smaller. We find that iMEC with a block size of 20 bits yields superior287

encoding efficiency to the baselines across all three of our realistic distributions. We also observe288

that iMEC with a block size of 16 bits generally yields competitive or superior performance to the289

other methods, and that 10 bit block sizes also performs competitively. Impressively, at a standard290

encoding frequency of 24kHz, iMEC’s performance for WaveRNN would allow it to encode a private291

message of 225 kilobytes in just 30 seconds of TTS voicemail—sufficient for sending compressed292

images. Among the baselines, we observe that arithmetic coding tends to produce higher efficiency293

than Meteor, again consistent with Kaptchuk et al.’s findings.294

Speed Lastly, we examine the speed of each algorithm. We show results in Figure 5. While, in295

the previous section, we observed that increasing iMEC’s block size generally improves encoding296

efficiency, we see here that this improved efficiency does not come without cost. While 10 bit blocks297

require an order of magnitude less time than model inference, 16 bit blocks require the same order of298

magnitude of time as model inference, and 20 bit blocks require an order of magnitude more time than299

that. The wall-clock time of arithmetic coding and Meteor are generally comparable to that of the 10300

bit blocks (though, as noted in the experimental setup, they also use more computational resources301

than iMEC), while the wall-clock of Meteor:reorder varies somewhat significantly depending on the302

task. We believe it is possible (perhaps even likely) that innovations in approximate minimum entropy303

coupling will allow some of the cost of coupling to be distributed across multiple cores, making the304

block sizes we experiment with here much cheaper.305
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Figure 5: Comparative speed evaluation from the cover distribution of our method and baselines.
Each method is evaluated at optimal hyperparameters. Errorbars indicate estimates of 95% confidence
intervals computed using the central limit theorem from 1000 runs. Horizontal lines indicate the
amount of time required for model inference for GPT-2 and WaveRNN.

6 Conclusion and Future Work306

In this work, we showed how steganography can be approached as a minimum entropy coupling307

problem. First, we proved that coupling algorithms yield steganography procedures with perfect308

security; second, we proved that, among steganography algorithms with perfect security, the one309

induced by minimum entropy coupling maximizes information throughput. In aggregate, we believe310

that these findings suggest that the steganography problem setting we consider may be viewed most311

naturally through the lens of minimum entropy coupling. Furthermore, we show that this insight312

is also practical. Using recent innovations in approximate and iterative minimum entropy coupling313

[Kocaoglu et al., 2017, Sokota et al., 2022], we showed how this perspective can be used to perform314

steganography with deep generative model covertext distributions. In empirical evaluations, we show315

that iterative minimum entropy coupling is perfectly secure in practice, up to numerical precision,316

and exhibits superior efficiency compared to existing methods.317

The most significant limitations of our work arise from the problem setting we consider. First, we318

assume that the adversary is passive, and that the stegotext arrives to the receiver unperturbed. While319

this assumption is standard among related work and may hold for many digital transmission channels,320

it is unrealistic in other settings. One direction for future work is to extend the minimum entropy321

coupling perspective of steganography to settings in which the channel medium is noisy. We believe322

that this may be possible by taking inspiration from ideas in error control literature. Second, we323

assume that white box access to the covertext distribution is available (also a standard assumption324

among related work). Unfortunately, even modern deep generative models struggle to exactly capture325

complex distributions (though it is expected that this issue will be somewhat ameliorate over time,326

due to ongoing research efforts in the deep learning community). Furthermore, in realistic scenarios,327

the distribution of “normally” occurring content may shift over time and depend on other external328

context, making it difficult to capture. Dropping this second assumption appears more challenging329

the first one, suggesting that a minimum entropy coupling perspective on steganography may be330

better suited to settings in which the covertext distribution can be modeled accurately.331
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A Appendix454

In the original submission, we made a clerical error in the caption of Figure 3—for WaveRNN, for455

iMEC with 20 bits, the confidence interval was estimated from 100 runs, not 1000. We also made a456

plotting error in Figure 4—the error bars were wider than they should have been. A corrected version457

is shown below in Figure 6.

Uniform (k=40) GPT-2 TopK 40 GPT-2 90% WaveRNN

10 3
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10 1
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m

e 
[s

] GPT-2

WaveRNN

iMEC [20 bits]
iMEC [16 bits]
iMEC [10 bits]
Arithmetic
Meteor
Meteor:reorder

Figure 6: Comparative speed evaluation from the cover distribution of our method and baselines.
Each method is evaluated at optimal hyperparameters. Errorbars indicate estimates of 95% confidence
intervals computed using the central limit theorem from 1000 runs. Horizontal lines indicate the
amount of time required for model inference for GPT-2 and WaveRNN.

458

A.1 iMEC Error Rate459
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Figure 7: Bit error rate as a function of threshold size. The error bars shown are the standard deviation
of the mean over 100 trajectories.
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We show error rate as a function of the belief entropy threshold in Figure 7. As is suggested by the460

figure, the error rate can be made arbitrarily small by selecting a sufficiently small treshold value.461

A.2 Non-Termination Frequency for Arithmetic Coding462
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Figure 8: Bit error rate (X) and non-termination frequencies (circles) for arithmetic coding vs.
precision hyperparameter. We show estimates over 100 trajectories.

A plot of the error rate and non-termination frequency is shown in Figure 8. While we did not observe463

errors, non-termination occurred with non-negligible probability.464

A.3 Stegotext samples465

To illustrate the effect of bias, we reproduce a sample stegotext for both iMEC (block size 10), as466

well as Meteor:reorder (precision 32) and the private message length is 20 bytes. Both examples have467

been mildly post-processed for readability, including by removing special characters and whitespaces.468

Context:469

Heck horses are dun or grullo (a dun variant) in color, with no white markings.470

The breed has primitive markings, including a dorsal stripe and horizontal striping471

on the legs. Heck horses generally stand between 12.2 and 13.2 hands ( 50 and 54472

inches, 127 and 137 cm) tall. The head is large, the withers low, and the legs and473

hindquarters474

iMEC produces the following stegotext:475

are short. The neck is wide and thick, a characteristic that can be inherited from476

the male. The face can be seen as a broad head, with pointed toes. The head and477

neck are often used as a tool for hunting, though their appearance often depends on478

their social organization. The legs are479

Meteor:reorder produces the following stegotext:480

have a narrow and angular shape. The fore and hind legs are longer than the481

head. The tail is broad and short in a shape similar to the neck or neckbone. The482

front legs have a sharp protrusion that leads from the head to the head but not from483

the tail. The hind legs have long pangs (2) and lower484

Note how Meteor:reorder’s high bias seemingly lowers the content quality of the output text.485
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A.4 Broader Impact486

Our work makes a fundamental algorithmic contribution to shared private key steganography. We do487

not feel that our contribution raises specific negative societal concerns beyond those regarding shared488

private key steganography as a field.489
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