
Adan: Adaptive Nesterov Momentum Algorithm for
Faster Optimizing Deep Models

Xingyu Xie1,2∗ Pan Zhou1∗ Huan Li3 Zhouchen Lin2⋆ Shuicheng Yan1⋆

1Sea AI Lab 2Peking University 3Nankai University
{xyxie,zhoupan,yansc}@sea.com {xyxie,zlin}@pku.cn lihuanss@nankai.edu.cn

Abstract

Adaptive gradient algorithms [1–4] combine the moving average idea with heavy
ball acceleration to estimate accurate first- and second-order moments of gradient
for accelerating convergence. But Nesterov acceleration which converges faster
than heavy ball acceleration in theory [5] and also in many empirical cases [6] is
much less investigated under the adaptive gradient setting. In this work, we propose
the ADAptive Nesterov momentum algorithm (Adan) to speed up the training of
deep neural networks. Adan first reformulates the vanilla Nesterov acceleration to
develop a new Nesterov momentum estimation (NME) method that avoids the extra
computation and memory overhead of computing gradient at the extrapolation point.
Then Adan adopts NME to estimate the first- and second-order gradient moments in
adaptive gradient algorithms for convergence acceleration. Besides, we prove that
Adan finds an ϵ-approximate stationary point within O

(
ϵ−4
)

stochastic gradient
complexity on the non-convex stochastic problems, matching the best-known lower
bound. Extensive experimental results show that Adan surpasses the corresponding
SoTA optimizers for vision, language, and RL tasks and sets new SoTAs for
many popular networks and frameworks, e.g. ResNet [7], ConvNext [8], ViT [9],
Swin [10], MAE [11], Transformer-XL [12] and BERT [13]. More surprisingly,
Adan can use half of the training cost (epochs) of SoTA optimizers to achieve
higher or comparable performance on ViT, ResNet, MAE, etc, and also shows great
tolerance to a large range of minibatch size, e.g. from 1k to 32k. Code is released
at https://github.com/sail-sg/Adan.

1 Introduction

Deep neural networks (DNNs) have made remarkable success in many fields, e.g. computer vision [7,
8, 14–16] and natural language processing [17, 18]. A noticeable part of such success is contributed
by the stochastic gradient based optimizers which find satisfactory solutions with high efficiency.
Starting from AdaGrad [19] and RMSProp [20], adaptive gradient algorithms [1–3, 19–25] have
gained wide attention with faster convergence speed. They adjust the learning rate for each gradient
coordinate according to the current geometry curvature of the loss objective. Indeed, Adam [1] and
AdamW [3], as two representatives which often offer fast convergence speed across many DNN
frameworks, have become the default choice to train CNNs and ViTs [9], respectively.

However, none of the above optimizers can always stay undefeated among all its competitors across
different network architectures and application settings. For instance, for vanilla ResNet, SGD often
achieves better generalization performance than adaptive gradient algorithms such as Adam, whereas
on vision transformers (ViTs) [9, 10, 26], SGD often fails and AdamW is the dominant optimizer
with higher and more stable performance. Moreover, these commonly used optimizers usually fail for

∗Equal contribution. Xingyu did this work during an internship at Sea AI Lab.
⋆Co-corresponding authors.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/sail-sg/Adan

large-batch training, but which is a default setting of the prevalent distributed training. Although there
is some performance degradation, we still tend to choose the large-batch setting for large-scale deep
learning training tasks due to the unaffordable training time. Though some methods, e.g. LARS [27]
and LAMB [4], have been proposed to handle large batch sizes, their performance often varies
significantly across batch sizes. This performance inconsistency increases the training cost and
engineering burden, since one usually has to try various optimizers for different architectures.

When we rethink the current adaptive gradient algorithms, we find that they mainly combine the
moving average idea with the heavy ball acceleration technique to estimate the first- and second-order
moments of the gradient [1–4]. However, previous studies [5, 28, 29] have revealed that Nesterov
acceleration can theoretically achieve a faster convergence speed than heavy ball acceleration, as it
uses gradient at an extrapolation point of the current solution and sees a slight “future". Moreover, a
recent work [6] has shown the potential of Nesterov acceleration for large-batch training [30]. Thus
we are inspired to consider efficiently integrating Nesterov acceleration with adaptive algorithms.

Contributions: 1) We propose an efficient dnn optimizer, named Adan, to train DNNs. Adan
develops a Nesterov momentum estimation method to estimate stable and accurate first- and second-
order gradient moments in adaptive algorithms for acceleration. 2) Adan enjoys provably faster
convergence speed than previous adaptive algorithms, e.g. Adam. 3) Empirically, Adan shows
superior performance over the SoTA deep optimizers across vision, language, and RL tasks.

2 Methodology

In this work, we study the following regularized nonconvex optimization problem:

minθ F (θ) := Eζ∼D [f(θ, ζ)] +
λ

2
∥θ∥2, (1)

where loss f(·, ·) is differentiable and possibly nonconvex, data ζ is drawn from an unknown
distribution D, θ is learnable parameters, and ∥·∥ is the classical ℓ2 norm. Here we consider the
square ℓ2 regularizer as it can improve generalization performance and is widely used in practice [3].

2.1 Preliminaries

Taking a deeper step into Adam, one can easily observe that the key moving average idea in Adam is
similar to the classical (stochastic) heavy-ball acceleration (HBA) technique [31]:

HBA: gk = ∇f(θk) + ξk, mk = (1− β1)mk−1 + gk, θk+1 = θk − ηmk,

where gk is the minibatch gradient gk := Eζ∼D[∇f(θk, ζ)] + ξk, ξk is the gradient noise, and the
scalar constant η is the base learning rate.

In addition to HBA, Nesterov’s accelerated (stochastic) gradient descent (AGD) [5, 28, 29] is another
popular acceleration technique in the optimization community:

AGD: gk = ∇f(θk−η(1− β1)mk−1)+ξk, mk = (1− β1)mk−1+gk, θk+1 = θk−ηmk. (2)

Unlike HBA, AGD uses the gradient at the extrapolation point θ′
k = θk − (1− β1)(θk − θk−1).

Hence AGD sees a slight “future” to converge faster. Indeed, AGD theoretically converges faster than
HBA and achieves optimal convergence rate on the general smooth convex problems [5]. Meanwhile,
since the over-parameterized DNNs have been observed/proved to have many convex-alike local
basins [32–39], AGD seems more suitable than HBA for DNNs.

For large-batch training, the recent work [6] shows that AGD has the potential to achieve comparable
performance to some specifically designed optimizers, e.g. LARS and LAMB. With its advantage in
convergence and large-batch training, we consider applying AGD to improve adaptive algorithms.

2.2 Adaptive Nesterov Momentum Algorithm

Main iteration. We temporarily set λ = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point θ′

k instead of the current iterate θk, which however brings extra computation
and memory overhead for computing θ′

k and preserving both θk and θ′
k. To solve the issue, we

reformulate AGD (2) into its equivalent (See Lemma 1 in Appendix) but more DNN-efficient version:

Reformulated AGD: mk = (1− β1)mk−1 + [gk + (1− β1)(gk − gk−1)], θk+1 = θk − ηmk.

2

Algorithm 1: Adan (Adaptive Nesterov Momentum Algorithm)

Input: initialization θ0, step size η, momentum (β1, β2, β3) ∈ [0, 1]3, weight decay λk > 0.
Output: some average of {θk}Kk=1.

1 while k < K do
2 compute the stochastic gradient estimator gk at θk;
3 mk = (1− β1)mk−1 + β1gk /* set m0 = g0 */;
4 vk = (1− β2)vk−1 + β2(gk − gk−1) /* set v1 = g1 − g0 */;
5 nk = (1− β3)nk−1 + β3[gk + (1− β2)(gk − gk−1)]

2 /* set n0 = g2
0 */;

6 ηk = η/(
√
nk + ε) /* ε > 0 is for stabilize training */;

7 θk+1 = (1 + λkη)
−1

[θk − ηk ◦ (mk + (1− β2)vk)];
8 end while

where gk = Eζ∼D[∇f(θk, ζ)]+ ξk. The main idea here is that we maintain (θk − η(1− β1)mk−1)
rather than θk in vanilla AGD per iteration, as there is no difference between them when the algorithm
converges. Like Adam, by regarding g′

k = gk + (1− β1)(gk − gk−1) as the current stochastic
gradient and movingly averaging g′

k to estimate the first- and second-moments of gradient, we obtain

Vanilla Adan:

mk = (1− β1)mk−1 + β1[gk + (1− β1)(gk − gk−1)]

nk = (1− β3)nk−1 + β3(gk + (1− β1)[gk − gk−1)]
2

ηk = η/
(√

nk + ε
)
, θk+1 = θk − ηk ◦mk.

The main difference of Adan with Adam-type methods is that as compared in Eqn. (3), the moment
mk of Adan is the average of {gt + (1− β1)(gt − gt−1)}kt=1 while those of Adam-type are the
average of {gt}kt=1. So is their second-order term nk.

mk=

{∑k
t=0 ck,t[gt + (1− β1)(gt − gt−1)], Adan,∑k
t=0 ck,tgt, Adam,

ck,t=

{
β1(1− β1)

(k−t)
t > 0,

(1− β1)
k

t = 0,
(3)

The first-order moment mk =
∑k

t=0 ck,t[gt + (1− β1)(gt − gt−1)] consists of two terms, i.e., gra-
dient term gt and gradient difference term (gt−gt−1), which actually have different physic meanings.
So we further decouple them for greater flexibility and also better trade-off between them:

(θk+1 − θk)/ηk=
∑k

t=0

[
ck,tgt + (1− β2)c

′
k,t(gt − gt−1)

]
= mk + (1− β2)vk,

where c′k,t = β2(1− β2)
(k−t) for t > 0, c′k,t = (1− β2)

k for t = 0, and mk and vk are defined as

mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2(gk − gk−1).

This change for a flexible estimation does not impair convergence speed. As we show in Theorem 1
(see Sec. C in Appendix), the complexity of Adan under this change matches the lower complexity
bound. We do not separate the gradients and their difference in the second-order moment nk, since
E(nk) contains the correlation term Cov(gk,gk−1) ̸= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. ℓ2 regularizer) can largely improve the generalization performance.
Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration,
we minimize the first-order approximation of F (·) at the point θk:

θk+1 = θk − ηk ◦ m̄k = argmin
θ

(
F (θk) + ⟨m̄k,θ − θk⟩+

1

2η
∥θ − θk∥2√nk

)
,

where ∥x∥2√nk
:= ⟨x,

√
nk + ε ◦ x⟩ and m̄k := mk+(1− β2)vk is the first-order derivative of F (·)

in some sense. Follow the idea of proximal gradient descent [40, 41], we decouple the ℓ2 regularizer
from F (·) and only linearize the loss function f(·):

θk+1 = argmin
θ

(λk

2
∥θ∥2√nk

+ ⟨m̄k,θ − θk⟩+
1

2η
∥θ − θk∥2√nk

)
=

θk − ηk ◦ m̄k

1 + λkη
, (4)

where λk > 0 is the weight decay constant at the k-th iteration. One can find that the optimization
objective of Separated Regularization at the k-th iteration is changed from the vanilla “static" function

3

Table 1: Top-1 Acc. (%) of ResNet and ConvNext on ImageNet. ∗ and ⋄ are reported in [42], [8].
ResNet-50 ResNet-101

Epoch 100 200 300 100 200 300

SAM 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M 77.0 78.6 79.3 79.3 81.0 81.4
Adam 76.9 78.4 78.8 78.4 80.2 80.6
AdamW 77.0 78.9 79.3 78.9 79.9 80.4
LAMB 77.0 79.2 79.8∗ 79.4 81.1 81.3∗

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300

AdamW [3, 8] 81.2 82.1⋄
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300

AdamW [3, 8] 82.2 83.1⋄
Adan (ours) 82.5 83.3

Table 2: Top-1 Acc. (%) of ViT and Swin on ImageNet. ∗ and ⋄ are respectively reported in [9], [10].
ViT Small ViT Base Swin Tiny Swin small Swin Base

Epoch 150 300 150 300 150 300 150 300 150 300

AdamW [3, 9, 10] 78.3 79.9∗ 79.5 81.8∗ 79.9 81.2⋄ 82.1 83.2⋄ 82.6 83.5⋄
Adan (ours) 79.6 80.9 81.7 82.3 81.3 81.6 82.9 83.7 83.3 83.8

F (·) in (1) to a “dynamic" function Fk(·), which adaptively regularizes the coordinates with larger
gradient square terms more. We summarize our Adan in Algorithm 1.

Convergence Analysis: As shown in Theorems 1 in Appendix. C, the convergence speed of Adan
matches the best-known theoretical lower bound for non-convex stochastic optimization problems.
This conclusion is still valid when it also uses the decoupled weight decay.

3 Experimental Results

Table 3: Top-1 Acc. (%) of
ViT-B and ViT-L trained by self-
supervised MAE on ImageNet.

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW 82.9 — 83.6 85.4 85.9
Adan 83.4 83.8 — 85.9 —

For all the tested vision tasks, NLP, and RL tasks, we only
replace the default optimizer with our Adan, and do not make
other changes, e.g. network architectures and data augmentation.

Vision Results. 1) supervised settings: we report the results
on CNN-type architectures and ViTs in Tables 1 and 2, respec-
tively. 2) self-supervised settings: we follow the MAE training
framework to pretrain and fine-tune ViT-B and ViT-L, and report
results in Table 3. All these results show that in most cases, Adan
can use half of the training cost (epochs) of SoTA optimizers to
achieve higher or comparable performance on ViT, ResNet, MAE, etc.

Table 4: Test PPL for Transformer-
XL-base model on WikiText-103.

Transformer-XL
Training Steps

50k 100k 200k
Adam [1] 28.5 25.5 24.2
Adan (ours) 26.2 24.2 23.5

NLP Results. 1) supervised settings: we investigate the per-
formance of Adan on Transformer-XL, and report the results in
Table 4. 2) self-supervised settings: we use Adan to train BERT
from scratch, and report the results in Table 5. For all NLP tasks,
Adan achieves higher performance than the default SoTAs, and
suppress Adam within half training steps on Transformer-XL.

Table 5: Results (the higher, the better) of BERT-base model on the development set of GLUE.
BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average
Adam [1] (from [43]) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam [1] (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Ant

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

2000

4000

6000

8000

10000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

HalfCheetah

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Walker2d

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

HumanoidFigure 1: PPO with Adam and Adan as its optimizer.

RL Results. We replace
the default Adam optimizer in
PPO [44] (one of the most popu-
lar policy gradient method), and
do not make other change in PPO.
Fig. 1 shows that on representa-
tive MuJoCo games, PPO-Adan
achieves much higher rewards
than PPO with Adam as its opti-
mizer.

More Extra Results. Due to
space limitation, we defer more extra results on vision, NLP and RL tasks (e.g. results with large
batch size, loss curve, ablation study, etc.) to Appendix.

4

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. Advances
in Neural Information Processing Systems, 33:18795–18806, 2020.

[3] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

[4] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. In International Conference on Learning Representations, 2019.

[5] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

[6] Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv preprint
arXiv:2102.06356, 2021.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[8] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. arXiv preprint arXiv:2201.03545, 2022.

[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pages 10347–10357. PMLR, 2021.

[10] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2022.

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2020.

[16] Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A
multi-granular self-supervised learning framework. In arXiv preprint arXiv:2203.14415, 2022.

[17] Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed, George E Dahl, George Saon, Hagen Soltau,
Tomas Beran, Aleksandr Y Aravkin, and Bhuvana Ramabhadran. Improvements to deep convolutional
neural networks for LVCSR. In 2013 IEEE workshop on automatic speech recognition and understanding,
pages 315–320. IEEE, 2013.

[18] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks for
speech recognition. IEEE Trans. on audio, speech, and language processing, 22(10):1533–1545, 2014.

5

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[20] Tieleman Tijmen and Hinton Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a run- ning average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[21] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

[22] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations, 2018.

[23] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2018.

[24] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on Learning
Representations, 2019.

[25] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung
Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers on scale-invariant
weights. In International Conference on Learning Representations, 2020.

[26] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. Metaformer is actually what you need for vision. arXiv preprint arXiv:2111.11418, 2021.

[27] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

[28] Yurii E Nesterov. A method for solving the convex programming problem with convergence rate o (1/k2).
In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[29] Yurii Nesterov. On an approach to the construction of optimal methods of minimization of smooth convex
functions. Ekonomika i Mateaticheskie Metody, 24(3):509–517, 1988.

[30] Xiaoxin He, Fuzhao Xue, Xiaozhe Ren, and Yang You. Large-scale deep learning optimizations: A
comprehensive survey. arXiv preprint arXiv:2111.00856, 2021.

[31] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computational
mathematics and mathematical physics, 4(5):1–17, 1964.

[32] M. Hardt and T. Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.

[33] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In Artificial
Intelligence and Statistics, pages 1216–1224. PMLR, 2017.

[34] Z. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In Advances in
Neural Information Processing Systems, 2017.

[35] Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that converge to
global optima. In International Conference on Machine Learning, pages 745–754. PMLR, 2018.

[36] Y. Zhou and Y. Liang. Characterization of gradient dominance and regularity conditions for neural networks.
In International Conference on Learning Representations, 2018.

[37] Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding why
lookahead generalizes better than sgd and beyond. In Neural Information Processing Systems, 2021.

[38] Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight bounds on the smallest eigenvalue of the
neural tangent kernel for deep relu networks. In International Conference on Machine Learning, pages
8119–8129, 2021.

[39] Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer followed
by pyramidal topology. Advances in Neural Information Processing Systems, 33:11961–11972, 2020.

[40] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–
239, 2014.

[41] Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding adamw through
proximal methods and scale-freeness. arXiv preprint arXiv:2202.00089, 2022.

6

[42] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in
timm. arXiv preprint arXiv:2110.00476, 2021.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics.

[44] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329–1338. PMLR,
2016.

[45] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[46] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for algorithms
of the adam family. arXiv preprint arXiv:2112.03459, 2021.

[47] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

[48] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages
3267–3275, 2021.

[49] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[50] Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Conference on
Machine Learning, pages 2260–2268. PMLR, 2020.

[51] Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam +: A stochastic method with
adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020.

[52] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on Machine
Learning, pages 5905–5914. PMLR, 2021.

[53] Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yi Xu, Yulun Zhang, and Yun Fu. Adapting stepsizes by
momentumized gradients improves optimization and generalization. arXiv preprint arXiv:2106.11514,
2021.

[54] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower
bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

[55] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.
Second-order information in non-convex stochastic optimization: Power and limitations. In Conference on
Learning Theory, pages 242–299. PMLR, 2020.

[56] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. Advances in neural information processing systems, 31, 2018.

[57] Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-parameter.
In International Conference on Learning Representations, 2020.

[58] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from saddle
points. In Conference on Learning Theory, pages 1192–1234. PMLR, 2019.

[59] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

7

[61] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018.

[62] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE International Conference on Computer Vision, pages 6023–6032, 2019.

[63] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 702–703, 2020.

[64] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic
depth. In European Conference on Computer Vision, pages 646–661, 2016.

[65] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without
pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

[66] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early convolutions
help transformers see better. Advances in Neural Information Processing Systems, 34:30392–30400, 2021.

[67] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations, 2019.

[68] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[69] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Hang Su, and Jun Zhu.
Tianshou: A highly modularized deep reinforcement learning library. arXiv preprint arXiv:2107.14171,
2021.

8

Appendix

The appendix contains some additional experimental results, detailed derivation of Adan, and the
technical proofs of convergence results of the paper entitled “Adan: Adaptive Nesterov Momentum
Algorithm for Faster Optimizing Deep Models”. It is structured as follows. Sec. A summarizes the
notations throughout this document. Sec. B provides the motivation and derivation of Adan in great
details. Sec. C offers the convergence analysis for Adan and compares several prevalent deep learning
optimizers from the theoretical perspective. We provide additional details, result, and discussion for
experiments in Sec. D.

Moreover, Sec. E provides the proof of the equivalence between AGD and reformulated AGD, i.e.,
the proof of Lemma 1. And then, we provide the proof of Theorem 1 in Sec. F. Finally, we present
some auxiliary lemmas in Sec. G.

A Notation

We provide some notations that are frequently used throughout the paper. The scale c is in normal
font. And the vector is in bold lowercase. Give two vectors x and y, x ≥ y means that (x− y)
is a non-negative vector. x/y or x

y represents the element-wise vector division. x ◦ y means the

element-wise multiplication, and (x)
2
= x ◦ x. ⟨·, ·⟩ is the inner product. Given a non-negative

vector n ≥ 0, we let ∥x∥2√n :=
〈
x,

√
n+ ε ◦ x

〉
. Unless otherwise specified, ∥x∥ is the vector ℓ2

norm. Note that E(x) is the expectation of random random vector x.

B Detailed Methodology

At below, we elaborate on detailed algorithmic steps in Sec. B.1.

B.1 Adaptive Nesterov Momentum Algorithm

Main Iteration. We temporarily set λ = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point θ′

k instead of the current iterate θk, which however brings extra computation
and memory overhead for computing θ′

k and preserving both θk and θ′
k. To solve the issue, Lemma 1

with proof in Appendix E reformulates AGD (2) into its equivalent but more DNN-efficient version.

Lemma 1. Assume E(ξk) = 0, Cov(ξi, ξj) = 0 for any k, i, j > 0, θ̄k and m̄k be the iterate and
momentum of the vanilla AGD in Eqn. (2), respectively. Let θk+1 := θ̄k+1 − η(1− β1)m̄k and
mk := (1− β1)

2
m̄k−1 + (2− β1)(∇f(θk) + ξk). The vanilla AGD in Eqn. (2) becomes

Reformulated AGD:

gk = Eζ∼D[∇f(θk, ζ)] + ξk
mk = (1− β1)mk−1 + [gk + (1− β1)(gk − gk−1)]

θk+1 = θk − ηmk

.

Moreover, if vanilla AGD in Eqn. (2) converges, so does AGD-II, and E(θ∞) = E(θ̄∞).

The main idea in Lemma 1 is that we maintain (θk − η(1− β1)mk−1) rather than θk in vanilla AGD
at each iteration, since there is no difference between them when the algorithm converges. Like other
adaptive optimizers, by regarding g′

k = gk + (1− β1)(gk − gk−1) as the current stochastic gradient
and movingly averaging g′

k to estimate the first- and second-moments of gradient, we obtain

Vanilla Adan:

mk = (1− β1)mk−1 + β1[gk + (1− β1)(gk − gk−1)]

nk = (1− β3)nk−1 + β3(gk + (1− β1)[gk − gk−1)]
2

ηk = η/
(√

nk + ε
)

θk+1 = θk − ηk ◦mk.

The main difference of Adan with Adam-type methods and Nadam [45] is that as compared in
Eqn. (5), the momentom mk of Adan is the average of {gt + (1− β1)(gt − gt−1)}kt=1 while those

9

of Adam-type and Nadam are the average of {gt}kt=1. So is their second-order term nk.

mk=

∑k

t=0 ck,t[gt + (1− β1)(gt − gt−1)], Adan,∑k
t=0 ck,tgt, Adam,

µk+1

µ′
k+1

(∑k
t=0 ck,tgt

)
+ 1−µk

µ′
k

gk, Nadam,

ck,t=

β1(1− β1)

(k−t)
t > 0,

(1− β1)
k

t = 0,

(5)

where {µt}∞t=1 is a predefined exponentially decaying sequence, µ′
k = 1−

∏k
t=1 µt. So Nadam is

more like Adam than Adan, as their mk movingly averages the historical gradients instead of gradient
differences in Adan. For a large k (i.e. small µk), mk in Nadam and Adam are almost the same.

As shown in Eqn. (5), the first-order moment mk =
∑k

t=0 ck,t[gt + (1− β1)(gt − gt−1)] consists
of two terms, i.e. gradient term gt and gradient difference term (gt − gt−1), which actually have
different physic meanings. So here we further decouple them for greater flexibility and also better
trade-off between them. Specifically, we estimate

(θk+1 − θk)/ηk=
∑k

t=0

[
ck,tgt + (1− β2)c

′
k,t(gt − gt−1)

]
= mk + (1− β2)vk := m̄k, (6)

where c′k,t = β2(1− β2)
(k−t) for t > 0, c′k,t = (1− β2)

k for t = 0, and mk and vk are defined as
mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2(gk − gk−1).

This change for a flexible estimation does not impair convergence speed. As we show in Theorem 1,
the complexity of Adan under this change matches the lower complexity bound. We do not separate
the gradients and their difference in the second-order moment nk, since E(nk) contains the correlation
term Cov(gk,gk−1) ̸= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. ℓ2 regularizer) can largely improve the generalization performance.
Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration,
we minimize the first-order approximation of F (·) at the point θk:

θk+1 = θk − ηk ◦ m̄k = argmin
θ

(
F (θk) + ⟨m̄k,θ − θk⟩+

1

2η
∥θ − θk∥2√nk

)
,

where ∥x∥2√nk
:= ⟨x,

√
nk + ε ◦ x⟩ and m̄k := mk+(1− β2)vk is the first-order derivative of F (·)

in some sense. Follow the idea of proximal gradient descent [40, 41], we decouple the ℓ2 regularizer
from F (·) and only linearize the loss function f(·):

θk+1 = argmin
θ

(λk

2
∥θ∥2√nk

+ ⟨m̄k,θ − θk⟩+
1

2η
∥θ − θk∥2√nk

)
=

θk − ηk ◦ m̄k

1 + λkη
, (7)

where λk > 0 is the weight decay constant at the k-th iteration. Interestingly, we can easily reveal
the updating rule θk+1 = (1− λkη)θk − ηk ◦ m̄k of AdamW by using the first-order approximation
of Eqn. (7) around η = 0: 1) (1 + λkη)

−1 = (1 − λkη) + O
(
η2
)
; 2) λkηηk = O

(
η2
)
. One can

find that the optimization objective of Separated Regularization at the k-th iteration is changed from
the vanilla “static" function F (·) in (1) to a “dynamic" function Fk(·), shown in Eqn. (8), adaptively
regularizes the coordinates with larger gradient square terms more:

Fk(θ) := Eζ∼D [f(θ, ζ)] +
λk

2
∥θ∥2√nk

. (8)

We summarize our Adan in Algorithm 1.

C Convergence Analysis

For non-convex optimization, we follow [2, 46–53] to make several mild assumptions.
Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth w.r.t. the parameter, if ∃L > 0,

∥∇Eζ [f(x, ζ)]−∇Eζ [f(y, ζ)]∥ ≤ L∥x− y∥, ∀x, y.
Assumption 2 (Unbiased and bounded gradient oracle). The stochastic gradient oracle gk =
Eζ [∇f(θk, ζ)] + ξk is unbiased, and its magnitude and variance are bounded with probability 1:

E (ξk) = 0, ∥gk∥∞ ≤ c∞/3, E
(
∥ξk∥2

)
= E

(
∥∇Eζ [∇f(θk, ζ)]− gk∥2

)
≤ σ2, ∀k ∈ [T].

For a general nonconvex problem, if Assumptions 1 and 2 hold, the lower bound of the stochastic
gradient complexity (a.k.a. IFO complexity) to find an ϵ-approximate first-order stationary point
(ϵ-ASP) is Ω(ϵ−4) [54, 55].

10

Table 6: Comparison of different adaptive gradient algorithms on nonconvex stochastic problems.
“Separated Reg.” refers to whether the ℓ2 regularizer (weight decay) can be separated from the
loss objective like AdamW [3]. “Complexity" denotes stochastic gradient complexity to find an
ϵ-approximate first-order stationary point. Adam-type methods [46] includes Adam, AdaMomen-
tum [53], AdaGrad [19], AdaBound [23] and AMSGrad [21], etc. AdamW has no available conver-
gence result. For SAM [49], we compare their adaptive versions. d is the variable dimension.

Optimizer Separated Reg. Batch Size Condition Grad Bound Complexity Lower Bound [55]

Adam-type [46] % % ℓ∞ ≤ c∞ O
(
c2∞dϵ−4

)
Ω
(
ϵ−4

)
RMSProp [20, 47] % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
AdamW [3] " — — — —
Adabelief [2] % % ℓ2 ≤ c2 O

(
c62ϵ

−4
)

Ω
(
ϵ−4

)
Padam [48] % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
LAMB [4] % O

(
ϵ−4

)
ℓ2 ≤ c2 O

(
c22dϵ

−4
)

Ω
(
ϵ−4

)
Adan (ours) " % ℓ∞ ≤ c∞ O

(
c2.5∞ ϵ−4

)
Ω
(
ϵ−4

)
Lipschitz Gradient Theorem 1 with proof in Appendix F proves the convergence of Adan on
problem (8) with lipschitz gradient condition.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let max {β1, β2} = O
(
ϵ2
)
, µ := β3c

2
∞/ε ≪ 1,

η = O
(
ϵ2
)
, and λk = λ(1− µ)

k. Algorithm 1 runs at most K = Ω
(
c2.5∞ ϵ−4

)
iterations to achieve

1

K + 1

∑K

k=0
E
(
∥∇Fk(θk)∥2

)
≤ 4ϵ2.

That is, to find an ϵ-ASP, the stochastic gradient complexity of Adan on problem (8) is O
(
c2.5∞ ϵ−4

)
.

Theorem 1 shows that under Assumptions 1 and 2, Adan can converge to an ϵ-ASP of a nonconvex
stochastic problem with stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which accords with the lower

bound Ω(ϵ−4) in [54]. For this convergence, Adan has no requirement on minibatch size and
only assumes gradient estimation to be unbiased and bounded. Moreover, as shown in Table 6 in
Sec. 1, the complexity of Adan is superior to those of previous adaptive gradient algorithms. For
Adabelief and LAMB, Adan always has lower complexity, and respectively enjoys d3× and d2×
lower complexity for the worst case. See detailed discussion in Sec. 1. Adam-type optimizers
(e.g. Adam and AMSGrad) enjoy the same complexity with Adan. But they cannot separate the
ℓ2 regularizer with the objective like AdamW and our Adan. In other words, they always solve a
static loss F (·) rather than a dynamic loss Fk(·) in Adan or AdamW. The regularizer separation can
boost generalization performance [9, 10] and already helps AdamW dominate training of ViT-alike
architectures.

Besides, some previous analyses [23, 24, 56, 57] need the moving average hyper-parameters (i.e. βs)
to be close or increased to one, which contradicts with the practice that βs are close to zero. In
contrast, Theorem 1 assumes that all βs are very small, which is more consistent with the practice.
Note that when µ = c/T , we have λk/λ ∈ [(1− c), 1] during training. We may let (1− c) close to
1, and hence we could choose the λk as a fixed constant in the experiment for convenience.

C.1 Comparison between DNN Optimizers in Theory

As shown in Table 6, we theoretically justify the advantages of Adan over previous SoTA adaptive
gradient algorithms on nonconvex stochastic problems, e.g. deep learning problems.

Given Lipschitz Gradient condition, to find an ϵ-approximate first-order stationary point, Adan has
the stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which accords with the lower bound Ω(ϵ−4) in [58]

(up to a constant factor). This complexity is lower than O
(
c62ϵ

−4
)

of Adabelief [2] and O
(
c2
√
dϵ−4

)
of LAMB, especially on over-parameterized networks. Specifically, for the d-dimensional gradient,
compared with its ℓ2 norm c2, its ℓ∞ norm c∞ is usually much smaller, and can be

√
d× smaller for

the best case. Moreover, different from Adam-type optimizers (e.g. Adam), Adan can separate the ℓ2
regularizer with the loss objective like AdamW whose generalization benefits have been validated in
many works [9, 10]. For AdamW, its convergence has not been proved yet.

11

D Detailed Experimental Results

We evaluate Adan on vision tasks, natural language processing (NLP) tasks and reinforcement
learning (RL) tasks. For vision tasks, we test Adan on several representative SoTA backbones
under the conventional supervised settings, including 1) CNN-type architectures (ResNets [7] and
ConvNexts [8]) and 2) ViTs (ViTs [9, 15] and Swins [10]). Moreover, we also investigate Adan
via the self-supervised pretraining by using it to train MAE ViT [11]. For NLP tasks, we train
Transformer-XL [12] and BERT [13] for sequence modeling. On RL tasks, we evaluate Adan on four
games in MuJoCo [59]. For fairness, in all experiments, we only replace the optimizer with Adan
and tune the base step size, warmup epochs and weight decay while fixing the optimizer-independent
hyper-parameters, e.g. data augmentation and model parameters.

D.1 Experiments for Vision Tasks

Besides the vanilla supervised training setting used in ResNets [7], we further consider the following
two prevalent training settings on ImageNet [60].

Training Setting I. The recently proposed “A2 training recipe” in [42] has pushed the performance
limits of many SoTA CNN-type architectures by using stronger data augmentation and more training
iterations. For example, on ResNet50 it sets new SoTA 80.2%, and improves the accuracy 76.1%
under vanilla setting in [7]. Specifically, for data augmentation, this setting uses random crop,
horizontal flipping, Mixup (0.1) [61]/CutMix (1.0) [62] with probability 0.5, and RandAugment [63]
with M = 7, N = 2 and MSTD = 0.5. It sets stochastic depth (0.05) [64], and adopts cosine
learning rate decay and binary cross-entropy (BCE) loss. For Adan, we use batch size 4096 for ViT
and 2048 for ResNet.

Training Setting II. We follow the same official training procedure of ViT/Swin/ConvNext. For this
setting, data augmentation includes random crop, horizontal flipping, Mixup (0.8), CutMix (1.0),
RandAugment (M = 9, MSTD = 0.5) and Random Erasing (p = 0.25). We use CE loss, the cosine
decay for base learning rate, the stochastic depth (with official parameters), and weight decay. For
Adan, we set batch size 2048 for Swin and 4096 for ViT/ConvNext/MAE. We follow MAE and tune
β3 as 0.1.

Implementation Details of Adan. For the large-batch training experiment, we use the sqrt

rule to scale the learning rate: lr =
√

batch size
256 × 6.25e-3, and respectively set warmup epochs

{20, 40, 60, 100, 160, 200} for batch size bs = {1k, 2k, 4k, 8k, 16k, 32k}. For other remaining
experiments, we use the hyper-parameters: learning rate 1.5e-2 for ViT/Swin/ResNet/ConvNext
and MAE fine-tuning, and 2.0e-3 for MAE pre-training according to the official settings. We set
β1 = 0.02, β2 = 0.08 and β3 = 0.01, and let weight decay be 0.02 unless noted otherwise. We clip
the global gradient norm to 5 for ResNet training and do not clip gradient for ViT, Swin, ConvNext,
and MAE.

D.1.1 Results on CNN-type Architectures

To train ResNet and ConvNext, we respectively use their official Training Setting I and II. For
ResNet/ConvNext, its default official optimizer is LAMB/AdamW. From Table 1, one can observe
that on ResNet, 1) in most cases, Adan only running 200 epochs can achieve higher or comparable
top-1 accuracy on ImageNet [60] compared with the official SoTA result trained by LAMB with
300 epochs; 2) Adan gets more improvements over other optimizers, when training is insufficient,
e.g. 100 epochs. The possible reason for observation 1) is the regularizer separation, which can
dynamically adjust the weight decay for each coordinate instead of sharing a common one like
LAMB. For observation 2), this can be explained by the faster convergence speed of Adan than other
optimizers. As shown in Figure 2, Adan converges faster than many adaptive gradient optimizers.
This faster speed partially comes from its large learning rate guaranteed by Theorem 1, almost 3×
larger than that of LAMB. The same as Nesterov acceleration, Adan could look ahead for possible
corrections. Note, we have tried to adjust learning rate and warmup-epoch for Adam and LAMB,
but observed unstable training behaviors. On ConvNext (tiny and small), one can observe similar
comparison results on ResNet.

12

Table 7: Top-1 accuracy (%) of ViT-S on ImageNet under the Training Setting I.
Batch Size 1k 2k 4k 8k 16k 32k

LAMB [4, 30] 78.9 79.2 79.8 79.7 79.5 78.4
Adan (ours) 80.9 81.1 81.1 80.8 80.5 80.2

Table 8: Top-1 accuracy (%) of different optimizers when training ViT-S on ImageNet trained under
training setting II. * is reported in [9].

Epoch 100 150 200 300

AdamW (default) 76.1 78.9 79.2 79.9∗

Adam 62.0 64.0 64.5 66.7
SGD-M (AGD) 64.3 68.7 71.4 73.9
LAMB 69.4 73.8 75.9 77.7
Adan (ours) 77.5 79.6 80.0 80.9

D.1.2 Results on ViTs

Supervised Training. For this setting, we train ViT and Swin under their official training setting,
i.e. Training Setting II. Table 2 shows that across different model sizes of ViT and Swin, Adan
outperforms the official AdamW optimizer by a large margin. For ViTs, their gradient per iteration
differs much from the previous one due to the much sharper loss landscape than CNNs [65] and
strong random augmentations for training. So it is hard to train ViTs to converge within a few
epochs. Thanks to its faster convergence, as shown in Figure 2, Adan is very suitable for this situation.
Moreover, the direction correction term from the gradient difference vk of Adan can also better
correct the first- and second-order moments. One piece of evidence is that the first-order moment
decay coefficient β1 = 0.02 of Adan is much smaller than 0.1 used in other deep optimizers. Note, we
have also tried to increase the decay coefficient for AdamW but observed performance degradation.

Besides AdamW, we also compare Adan with several other popular optimizers, including Adam,
SGD-M, and LAMB, on ViT-S. Table 8 shows that SGD, Adam, and LAMB perform poorly on ViT-S,
which is also observed in the works [6, 66]. These results demonstrate that the decoupled weight
decay in Adan and AdamW is much more effective than 1) the vanilla weight decay, namely the
commonly used ℓ2 regularization in SGD, and 2) the one without any weight decay, since as shown
in Eqn. (8), the decoupled weight decay is a dynamic regularization along the training trajectory and
could better regularize the loss. Compared with AdamW, the advantages of Adan mainly come from
its faster convergence shown in Figure 2 (b). We will discuss this below.

Self-supervised MAE Training (pretraining + finetuning). We follow the MAE training framework
to pretrain and fine tune ViT-B on ImageNet, i.e. 300/800 pretraining epochs and 100 fine-tuning
epochs. Table 3 shows that 1) with 300 pretraining epochs, Adan makes 0.5% improvement over
AdamW; 2) Adan pretrained 800 epochs surpasses AdamW pretrained 1,600 epochs by non-trial
0.2%. All these results show the superior convergence and generalization performance of Adan.

Large-Batch Training. Although large batch size can increase computation parallelism to reduce
training time and is heavily desired, optimizers often suffer performance degradation, or even fail.
For instance, AdamW fails to train ViTs when batch size is beyond 4,096. How to solve the problem
remains open [30]. At present, LAMB is the most effective optimizer for large batch size. Table 7
reveals that Adan is robust to batch sizes from 2k to 32k, and shows higher performance and
robustness than LAMB.

D.1.3 Detailed Comparison and Convergence Curve

Besides AdamW, we also compare Adan with several other popular optimizers, including Adam,
SGD-M, and LAMB, on ViT-S. Table 8 shows that SGD, Adam, and LAMB perform poorly on ViT-S,
which is also observed in the works [6, 66]. These results demonstrate that the decoupled weight
decay in Adan and AdamW is much more effective than 1) the vanilla weight decay, namely the
commonly used ℓ2 regularization in SGD, and 2) the one without any weight decay, since as shown
in Eqn. (8), the decoupled weight decay is a dynamic regularization along the training trajectory and
could better regularize the loss. Compared with AdamW, the advantages of Adan mainly come from
its faster convergence shown in Figure 2 (b). We will discuss this below.

13

0 20 40 60 80 100
Epochs

2

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

ResNet50

Adan(ours)
AdamW
LAMB
Nadam
SAM
SGD-M

0 20 40 60 80 100
Epochs

1

2

3

4

5

6

Te
st

 L
os

s

ResNet50

Adan(ours)
AdamW
LAMB
Nadam
SAM
SGD-M

(a) Training and test curves on ResNet-50 under Training Setting I.

0 20 40 60 80 100
Epochs

1

2

3

4

5

6

7

Te
st

 L
os

s

ViT-S

Adan(ours)
Adam
AdamW
LAMB
SGD-M

0 20 40 60 80 100
Epochs

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

ViT-S

Adan(ours)
Adam
AdamW
LAMB
SGD-M

(b) Training and test curves on ViT-S under Training Setting II.

Figure 2: Training and test curves of various optimizers on ImageNet dataset. Training loss is larger
due to its stronger data argumentation.

In Figure 2 (a), we plot the curve of training and test loss along with the training epochs on ResNet50.
One can observe that Adan converges faster than the compared baselines and enjoys the smallest
training and test losses. This demonstrates its fast convergence property and good generalization
ability. To sufficiently investigate the fast convergence of Adan, we further plot the curve of training
and test loss on the ViT-Small in Figure 2 (b). From the results, we can see that Adan consistently
shows faster convergence behaviors than other baselines in terms of both training loss and test loss.
This also partly explains the good performance of Adan over other optimizers.

D.2 Experiments for Natural Language Processing Tasks

D.2.1 Results on Transformer-XL

Here we investigate the performance of Adan on Transformer-XL [12] which is often used to model
long sequences. We follow the exact official setting 1 to train Transformer-XL-base on the WikiText-
103 dataset that is the largest available word-level language modeling benchmark with long-term
dependency. We only replace the default Adam optimizer of Transformer-XL-base by our Adan,
and do not make other changes for the hyper-parameter. For Adan, we set β1 = 0.1, β2 = 0.1, and
β3 = 0.001, and choose learning rate as 0.001. We test Adan and Adam with several training steps,
including 50k, 100k, and 200k (official), and report the results in Table 4.

From Table 4, one can observe that on Transformer-XL-base, Adan surpasses its default Adam
optimizer in terms of test PPL (the lower, the better) under all training steps. Surprisingly, Adan
using 100k training steps can even achieve comparable results to Adam with 200k training steps.
All these results demonstrate the superiority of Adan over the default SoTA Adam optimizer in
Transformer-XL.

1https://github.com/kimiyoung/transformer-xl

14

https://github.com/kimiyoung/transformer-xl

D.2.2 Results on BERT

Similar to the pretraining experiments of MAE which is also a self-supervised learning framework
on vision tasks, we utilize Adan to train BERT [13] from scratch, which is one of the most widely
used pretraining models/frameworks for NLP tasks. We employ the exact BERT training setting
in the widely used codebase—Fairseq [67]. We replace the default Adam optimizer in BERT with
our Adan for both pretraining and fune-tuning. Specifically, we first pretrain BERT-base on the
Bookcorpus and Wikipedia datasets, and then finetune BERT-base separately for each GLUE task
on the corresponding training data. Note, GLUE is a collection of 9 tasks/datasets to evaluate
natural language understanding systems, in which the tasks are organized as either single-sentence
classification or sentence-pair classification.

Here we simply replace the Adam optimizer in BERT with our Adan and does not make other
changes, e.g. random seed, warmup steps and learning rate decay strategy, dropout probability, etc.
For pretraining, we use Adan with its default weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08, and
β3 = 0.01), and choose learning rate as 0.001. For fine-tuning, we consider a limited hyper-parameter
sweep for each task, with a batch size of 16, and learning rates ∈ {2e− 5, 4e− 5} and use Adan with
β1 = 0.02, β2 = 0.01, and β3 = 0.01 and weight decay 0.01. Following the conventional setting, we
run each fine-tuning experiment three times and report the median performance in Table 5. On MNLI,
we report the mismatched and matched accuracy. The performance of our reproduced one (second
row) is slightly better than the vanilla results of BERT reported in Huggingface-transformer [43]
(widely used codebase for transformers in NLP), since the vanilla Bookcorpus data in [43] is not
available and thus we train on the latest Bookcorpus data version.

From Table 5, one can see that in the most commonly used BERT training experiment, Adan reveals
much better advantage over Adam. Specifically, in all GLUE tasks, on BERT-base model, Adan
achieves higher performance than Adam, and makes 1.8 average improvements on all tasks. In
addition, on some tasks of Adan, BERT-base trained by Adan can outperform some large models.
e.g., BERT-large which achieves 70.4% on RTE, 93.2% on SST-2 and 60.6 correlation on CoLA, and
XLNet-large which has 63.6 correlation on CoLA. See [68] for more results.

D.3 Results on Reinforcement Learning Tasks

Here we evaluate Adan on reinforcement learning tasks. Specifically, we replace the default Adam
optimizer in PPO [44] which is one of the most popular policy gradient method, and do not many any
other change in PPO. For brevity, we call this new PPO version “PPO-Adan". Then we test PPO and
PPO-Adan on several games which are actually continuous control environments simulated by the
standard and widely-used engine, MuJoCo [59]. For these test games, their agents receive a reward
at each step. Following standard evaluation, we run each game under 10 different and independent
random seeds (i.e. 1 ∼ 10), and test the performance for 10 episodes every 30,000 steps. All these
experiments are based on the widely used codebase Tianshou2 [69]. For fairness, we use the default
hyper-parameters in Tianshou, e.g. batch size, discount, and GAE parameter. We use Adan with its
default βs (β1 = 0.02, β2 = 0.08, and β3 = 0.01). Following the default setting, we do not adopt
the weight decay and choose learning rate as 3e-4.

We report the results on four test games in Figure 3, in which the solid line denotes the averaged
episodes rewards in evaluation and the shaded region is its 75% confidence intervals. From Figure 3,
one can observe that on the four test games, PPO-Adan achieves much higher rewards than vanilla
PPO which uses Adam as its optimizer. These results demonstrate the advantages of Adan over
Adam, since PPO-Adan simply replaces the Adam optimizer in PPO with our Adan and does not
make other changes.

D.4 Ablation Study

D.4.1 Robustness to in momentum coefficients

Here we choose MAE to investigate the effects of the momentum coefficients (βs) to Adan, since as
shown in MAE, its pre-training is actually sensitive to momentum coefficients of AdamW. To this end,
following MAE, we pretrain and fine tune ViT-B on ImageNet for 800 pretraining and 100 fine-tuning

2https://github.com/thu-ml/tianshou

15

https://github.com/thu-ml/tianshou

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Ant

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

2000

4000

6000

8000

10000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

HalfCheetah

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000
Ep

is
od

e
Re

w
ar

d

ppo
ppo_adan

Walker2d

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Humanoid

Figure 3: Comparison of PPO and our PPO-Adan on several RL games simulated by MuJoCo. Here
PPO-Adan simply replaces the Adam optimizer in PPO with our Adan and does not change others.

0.98 0.94 0.92

1.0 1 = 0.98

0.96

0.94

0.90

1.
0

3

83.65 83.67 83.68

83.73 83.72 83.70

83.69 83.59 83.75

1.0 2
0.98 0.97 0.95

1.0 3 = 0.9

0.98

0.94

0.92

1.
0

2

83.69 83.64 83.57

83.59 83.54 83.51

83.75 83.72 83.60

1.0 1

83.4

83.5

83.6

83.7

83.8

A
cc. (%

)

0.98 0.97 0.95

1.0 2 = 0.92

0.96

0.94

0.90

1.
0

3

83.68 83.52 83.45

83.70 83.58 83.50

83.75 83.72 83.60

1.0 1

Figure 4: Effects of momentum coefficients (β1, β2, β3) to top-1 accuracy (%) of Adan on ViT-B
under MAE training framework (800 pretraining and 100 fine-tuning epochs on ImageNet).

16

epochs. We also fix one of (β1, β2, β3) and tune others. Figure 4 shows that by only pretraining 800
epochs, Adan achieves 83.7%+ in most cases and outperforms the official accuracy 83.6% obtained
by AdamW with 1600 pretraining epochs, indicating the robustness of Adan to βs. We also observe
1) Adan is not sensitive to β2; 2) β1 has a certain impact on Adan, namely the smaller the (1.0− β1),
the worse the accuracy; 3) similar to findings of MAE, a small second-order coefficient (1.0− β3)
can improve the accuracy. The smaller the (1.0− β3), the more current landscape information the
optimizer would utilize to adjust the coordinate-wise learning rate. Maybe the complex pre-training
task of MAE is more preferred to the local geometric information.

E Proof of Lemma 1: equivalence between the AGD and AGD II

In this section, we show how to get AGD II from AGD. For convenience, we omit the noise term ζk.
Note that, let α := 1− β1:

AGD:

gk = ∇f(θk − ηαmk−1)

mk = αmk−1 + gk

θk+1 = θk − ηmk

.

We can get:
θk+1 − ηαmk = θk − ηmk − ηαmk

=θk − η(1 + α)(αmk−1 +∇f(θk − ηαmk−1))

=θk − ηαmk−1 − ηα2mk−1 − η(1 + α)(∇f(θk − ηαmk−1)).

(9)

Let {
θ̄k+1 := θk+1 − ηαmk,

m̄k := α2mk−1 + (1 + α)∇f(θk − ηαmk−1) = α2mk−1 + (1 + α)∇f(θ̄k)

Then, by Eq.(9), we have:
θ̄k+1 = θ̄k − ηm̄k. (10)

On the other hand, we have m̄k−1 = α2mk−2 + (1 + α)∇f(θ̄k−1) and :

m̄k − αm̄k−1 = α2mk−1 + (1 + α)∇f(θ̄k)− αm̄k−1

= (1 + α)∇f(θ̄k) + α2
(
αmk−2 +∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k) + α
(
α2mk−2 + α∇f(θ̄k−1)− m̄k−1

)
= (1 + α)∇f(θ̄k) + α

(
α2mk−2 + α∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k)− α∇f(θ̄k−1)

= ∇f(θ̄k) + α
(
∇f(θ̄k)−∇f(θ̄k−1)

)
.

(11)

Finally, due to Eq.(10) and Eq.11, we have:m̄k = αm̄k−1 +
(
∇f(θ̄k) + α

(
∇f(θ̄k)−∇f(θ̄k−1)

))
θ̄k+1 = θ̄k − ηm̄k

F Proof of Theorem 1

Before starting the proof, we first provide several notations. Let Fk(θ) := Eζ [f(θ, ζ)] +
λk

2 ∥θ∥2√nk

and µ := β3c
2
∞/ε = O

(
ϵ4
)
,

∥x∥2√nk
:=
〈
x,

√
nk + ε ◦ x

〉
, λk = λ(1− µ)

k
.

Moreover, we let
θ̃k :=

√
nk + ε ◦ θk.

Lemma 2. Assume f(·) is L-smooth. For

θk+1 = argmin
θ

(
λk

2
∥θ∥2√nk

+ f(θk) + ⟨uk,θ − θk⟩+
1

2η
∥(θ − θk)∥2√nk

)
.

17

With η ≤ min{ 1
3L/

√
ε
, 1
10λ}, then we have:

Fk+1(θk+1) ≤ Fk(θk)−
η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2
√
ε
∥gk − uk∥2,

where gk := ∇f(θk).

Proof. We denote pk := uk/
√
nk + ε. By the optimality condition of θk+1, we have

λkθk + pk =
λkθ̃k + uk√

nk + ε
=

1 + ηλk

η
(θk − θk+1). (12)

Then for η ≤ 1
3L/

√
ε
, we have:

Fk+1(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk+1

2
∥θk+1∥2√nk+1

(a)

≤f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk

2
∥θk+1∥2√nk

(b)

≤Fk(θk) +

〈
θk+1 − θk, λkθk +

gk√
nk + ε

〉
√
nk

+
L/

√
ε+ λk

2
∥θk+1 − θk∥2√nk

=Fk(θk) +
L/

√
ε+ λk

2
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk, λkθk + pk +

gk − uk√
nk + ε

〉
√
nk

(c)
=Fk(θk) +

(
L/

√
ε+ λk

2
− 1 + ηλk

η

)
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

(d)

≤Fk(θk) +

(
L/

√
ε

2
− 1

η

)
∥θk+1 − θk∥2√nk

+
1

2η
∥θk+1 − θk∥2√nk

+
η

2
√
ε
∥gk − uk∥2

≤Fk(θk)−
1

3η
∥θk+1 − θk∥2√nk

+
η

2
√
ε
∥gk − uk∥2

≤Fk(θk)−
η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2
√
ε
∥gk − uk∥2,

where (a) comes from the fact λk+1(1− µ)−1 = λk and Proposition 1:(√
nk + ε√

nk+1 + ε

)
i

≥ 1− µ,

which implies:

λk+1∥θk+1∥2√nk+1
≤ λk+1

1− µ
∥θk+1∥2√nk

= λk∥θk+1∥2√nk
,

and (b) is from:

∥θk+1∥2√nk
=
(
∥θk∥2√nk

+ 2 ⟨θk+1 − θk,θk⟩√nk
+ ∥θk+1 − θk∥2√nk

)
,

(c) is due to Eqn. (12), and for (d), we utilize:〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

≤ 1

2η
∥θk+1 − θk∥2√nk

+
η

2
√
ε
∥gk − uk∥2,

the last inequality comes from the fact in Eqn. (12) and η ≤ 1
10λ , such that:

1

3η
∥(θk+1 − θk)∥2√nk

=
η

3
√
nk + ε(1 + ηλk)

∥∥∥uk + λkθ̃k

∥∥∥2 ≥ η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2.

18

Theorem 1. Suppose Assumptions 1 and 2 hold. Let cl := 1
c∞

and cu := 1√
ε
. With β3c

2
∞/ε ≪ 1,

η2 ≤ clβ
2
1

8c3uL
2
, max {β1, β2} ≤ clϵ

2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
,

where ∆0 := F (θ0)− f∗ and f∗ := minθ Eζ [∇f(θk, ζ)], then we let uk := mk + (1− β1)vk and
have:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ ϵ2,

and
1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ ϵ2

4
,

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ ϵ2

4
.

Hence, we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [∇f(θk, ζ)]

)∥∥∥∥2
)

≤ 4ϵ2.

Proof. For convince, we let uk := mk + (1− β1)vk and gfull
k := Eζ [∇f(θk, ζ)]. We have:∥∥∥uk − gfull

k

∥∥∥2 ≤ 2
∥∥∥mk − gfull

k

∥∥∥2 + 2(1− β1)
2∥vk∥2.

By Lemma 2, Lemma 3, and Lemma 4, we already have:

Fk+1(θk+1) ≤ Fk(θk)−
ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu

∥∥∥gfull
k −mk

∥∥∥2 + ηcu(1− β1)
2∥vk∥2, (13)

E
(∥∥∥mk+1 − gfull

k+1

∥∥∥2) ≤ (1− β1)E
(∥∥∥mk − gfull

k

∥∥∥2)+
(1− β1)

2
L2

β1
E
(
∥θk+1 − θk∥2

)
+ β2

1σ
2

(14)

E
(
∥vk+1∥2

)
≤ (1− β2)E

(
∥vk∥2

)
+ 2β2E

(∥∥∥gfull
k+1 − gfull

k

∥∥∥2)+ 3β2
2σ

2 (15)

Then by adding Eq.(13) with ηcu
β1

× Eq.(14) and ηcu(1−β1)
2

β2
× Eq.(15), we can get:

E(Φk+1) ≤ E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu
β1

(
(1− β1)

2
L2

β1
∥θk+1 − θk∥2 + β2

1σ
2

))

+
ηcu(1− β1)

2

β2
E
(
2β2L

2∥θk+1 − θk∥2 + 3β2
2σ

2
)

≤E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

(
(1− β1)

2

β2
1

+ 2(1− β1)
2

)
∥θk+1 − θk∥2

)
+ (β1 + 3β2)ηcuσ

2

(a)

≤E
(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

β2
1

∥θk+1 − θk∥2
)
+ 4βmηcuσ

2

(b)

≤E
(
Φk +

(
(ηcu)

3L2

β2
1

− ηcl
4

)∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2

≤E
(
Φk − ηcl

8

∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2,

where we let:

Φk := Fk(θk)− f∗ +
ηcu
β1

∥∥∥mk − gfull
k

∥∥∥2 + ηcu(1− β1)
2

β2
∥vk∥2,

βm = max {β1, β2} ≤ 2

3
, η ≤ clβ

2
1

8c3uL
2
,

19

and for (a), when β1 ≤ 2
3 , we have:

(1− β1)
2

β2
1

+ 2(1− β1)
2
<

1

β2
1

,

and (b) is due to Eq.(12) from Lemma 2. And hence, we have:

T∑
k=0

E(Φk+1) ≤
T∑

k=0

E(Φk)−
ηcl
8

T∑
k=0

∥∥∥uk + λkθ̃k

∥∥∥2 + (T + 1)4ηcuβmσ2.

Hence, we can get:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ 8Φ0

ηclT
+

32cuβσ
2

cl
=

8∆0

ηclT
+

8cuσ
2

β1clT
+

32cuβmσ2

cl
≤ ϵ2,

where

∆0 := F (θ0)− f∗, βm ≤ clϵ
2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
.

We finish the first part of the theorem. From Eq.(14), we can conclude that:

1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ σ2

βT
+

L2η2c2uϵ
2

β2
1

+ β1σ
2 <

ϵ2

4
.

From Eq.(15), we can conclude that:

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ 2L2η2c2uϵ

2 + 3β2σ
2 <

ϵ2

4
.

Finally we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [f(θk, ζ)]

)∥∥∥∥2
)

≤ 1

T + 1

(
T∑

k=0

E
(
2
∥∥∥uk + λkθ̃k

∥∥∥2 + 4
∥∥∥mk − gfull

k

∥∥∥2 + 4∥vk∥2
))

≤ 4ϵ2.

Now, we have finished the proof.

G Auxiliary Lemmas

Proposition 1. If Assumption 2 holds. Given β3 ≤ ε
c2∞

, we have:∥∥∥∥ηk − ηk−1

ηk−1

∥∥∥∥
∞

≤ β3c
2
∞

ε
.

Proof. Note that, give any index i ∈ [d]:∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ = ∣∣∣∣(√
nk−1 + ε√
nk + ε

)
i

− 1

∣∣∣∣.
By the definition of nk, we have:(

nk−1 + ε

nk + ε

)
i

= 1 +

(
nk−1 − nk

nk + ε

)
i

=1 + β3

(
nk−1 − (gk + (1− β2)(gk − gk−1))

2

nk + ε

)
i

∈
[
1− β3c

2
∞

ε
, 1 +

β3c
2
∞

ε

]
,

20

hence, we have:(√
nk−1 + ε√
nk + ε

)
i

∈

[√
1− β3c2∞

ε
,

√
1 +

β3c2∞
ε

]
⊂
[
1− β3c

2
∞

ε
, 1 +

β3c
2
∞

ε

]
,

where we utilize the fact
√

1− β3c2∞
ε ≥ 1− β3c

2
∞

ε when β3 ≤
√
ε

c∞
. In conclusion, we get:∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ ∈ [0, β3c
2
∞

ε

]
.

We finish the proof.

Lemma 3. Consider a moving average sequence:

mk = (1− β)mk−1 + βgk,

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [∇f(θk, ζ)] for convenience. Then we have:

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2.

Proof. Note that, we have:

mk − gfull
k =(1− β)

(
mk−1 − gfull

k−1

)
+ (1− β)gfull

k−1 − gfull
k + βgk

=(1− β)
(
mk−1 − gfull

k−1

)
+ (1− β)

(
gfull
k−1 − gfull

k

)
+ β

(
gk − gfull

k

)
.

Then, take expectation on both sides:

E
(∥∥∥mk − gfull

k

∥∥∥2)
=(1− β)

2E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+ (1− β)
2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2+

2(1− β)
2E
(〈

mk−1 − gfull
k−1,g

full
k−1 − gfull

k

〉)
≤
(
(1− β)

2
+ (1− β)

2
a
)
E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+(
1 +

1

a

)
(1− β)

2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

(a)

≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2

β
E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

≤(1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2,

where for (a), we set a = β
1−β .

Lemma 4. Consider a moving average sequence:

vk = (1− β)vk−1 + β(gk − gk−1),

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [f(θk, ζ)] for convenience. Then we have:

E
(
∥vk∥2

)
≤ (1− β)E

(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2.

21

Proof. Take expectation on both sides:

E
(
∥vk∥2

)
= (1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E(⟨vk−1,gk − gk−1⟩)

(a)
=(1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E

(〈
vk−1,g

full
k − gk−1

〉)
(b)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gk−1

〉)
+ 3β2σ2

(c)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gfull

k−1

〉)
+ 3β2σ2

(d)

≤ (1− β)E
(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2,

where for (a), we utilize the independence between gk and vk−1, while for (b):

E
(
∥gk − gk−1∥2

)
≤ E

(∥∥∥gk − gfull
k

∥∥∥2)+ 2E
(∥∥∥gfull

k−1 − gk−1

∥∥∥2)+ 2E
(∥∥∥gfull

k − gfull
k−1

∥∥∥2),
for (c), we know:

E
(〈

vk−1,g
full
k−1 − gk−1

〉)
= E

(〈
(1− β)vk−2 + β(gk−1 − gk−2),g

full
k−1 − gk−1

〉)
=E
(〈

(1− β)vk−2 − βgk−2,g
full
k−1 − gk−1

〉)
+ βE

(〈
gk−1 − gfull

k−1 + gfull
k−1,g

full
k−1 − gk−1

〉)
=− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2),
and thus E

(〈
vk−1,g

full
k − gk−1

〉)
= E

(〈
vk−1,g

full
k − gfull

k−1

〉)
− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2). Fi-
nally, for (d), we use:

2E
(〈

vk−1,g
full
k − gfull

k−1

〉)
≤ E

(
∥vk−1∥2

)
+ E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2).

22

