
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL FOR SUPPRESSING OUT-
LIER RECONSTRUCTION IN AUTOENCODERS FOR OUT-
OF-DISTRIBUTION DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents the supplementary material for the paper Suppressing Outlier
Reconstruction in Autoencoders for Out-of-Distribution Detection.

1 DERIVATION FOR THE LOG LIKELIHOOD GRADIENT

Here, we present the derivation for the gradient of log likelihood (Eq.(2) in the main manuscript).

Ex∼p(x)[∇θ log pθ(x)] = −Ex∼p(x)[∇θE(x)] + Ex′∼pθ(x)[∇θE(x′)]. (1)

The gradient expression is well-known in energy-based model literature, but we provide its deriva-
tion to make the paper self-contained.

Recall that the model density function pθ(x) is defined from an energy function Eθ(x) using Gibbs
distribution: pθ(x) = exp(−Eθ(x))/Ωθ for the normalization constant Ωθ =

∫
exp(−Eθ(x))dx <

∞. The gradient for the log likelihood of a single datum x is given as follows:

∇θ log pθ(x) =−∇θE(x)−∇θ log Ωθ (2)

=−∇θE(x)− ∇θΩθ
Ωθ

(3)

=−∇θE(x)− 1

Ωθ
∇θ
∫

exp(−Eθ(x′))dx′ (4)

=−∇θE(x)− 1

Ωθ

∫
∇θ exp(−Eθ(x′))dx′ (5)

=−∇θE(x) +

∫
1

Ωθ
exp(−Eθ(x′))∇θEθ(x′)dx′ (6)

=−∇θE(x) + Ex′∼pθ(x′) [∇θEθ(x′)] . (7)

Taking the expectation over the data density p(x),

Ex∼p(x)[∇θ log pθ(x)] =− Ex∼p(x) [∇θE(x)] + Ex∼p(x)
[
Ex′∼pθ(x′) [∇θEθ(x′)]

]
(8)

=− Ex∼p(x) [∇θE(x)] + Ex′∼pθ(x′) [∇θEθ(x′)] . (9)

Thus, we obtain Eq.(2) of the main manuscript.

2 DATASETS

Here, we present details on the datasets used in the experiments.

In general, we follow Serrà et al. (2020) in preparing datasets. For MNIST, FashionMNIST, SVHN,
and CIFAR-10, we use the predefined test splits as the test sets and randomly select 10% from the
train splits as validation set. For CelebA, we randomly assign 10% of images for validation and test
sets. Each image in CelebA is cropped in 160×160 and then resized into 32×32. When MNIST and
Fashion MNIST are needed to be fed to a network trained on CIFAR-10, an image is resized into
32×32. The training set of ImageNet32 (Oord et al., 2016) is the randomly selected 80% from the

1



Under review as a conference paper at ICLR 2021

Table 1: Summary of dataset statistics.

Dataset Original Shape Training Validation Test

Constant (Synthetic) - - 4,000 4,000
MNIST 1×28×28 54,000 6,000 10,000

FashionMNIST 1×28×28 54,000 6,000 10,000
SVHN 3×32×32 65,930 7,327 20,632

CIFAR-10 3×32×32 45,000 5,000 10,000
CelebA 3×178×218 162,079 20,260 20,260

ImageNet32 3×32×32 1,024,919 256229 49999
Noise (Synthetic) 3×32×32 - 4,000 4,000

HalfMNIST (Synthetic) 1×28×28 - - 10,000
ChimeraMNIST (Synthetic) 1×28×28 - - 10,000

original train split, and the rest 20% are used as the validation set. We use the original validation
split as the test set in our experiment. All pixel values are normalized to interval [0, 1].

Constant images are generated by first drawing a random number from interval [0, 1], and then
making a 1×28×28 or 3×32×32 array filled with the drawn number. An image in Noise dataset is
created by randomly generating each pixel value from interval [0, 1].

3 IMPLEMENTATION DETAIL

Here, we present details on implementing EBAE. The sample code is provided in the supplementary
material.

Network architectures In all autoencoder-based methods, including EBAE, AE, DAE, WAE,
VAE and DAGMM, we use the same architectures for encoder and decoder for fair comparison.
The network architectures are described in Table 2, where we use the following notations to denote
operations in networks.

• Conv2d(in, out, kernel size, stride): A 2D convolutional operation with bias.
• ConvT2d(in, out, kernel size, stride): A 2D transposed convolutional operation with

bias.
• ReLU: A rectified linear unit activation function. y = max 0, x.
• Sigmoid: A sigmoid activation function. y = 1/(1 + exp(−x)).
• MaxPool(kernel size): A max-pooling operator with the window of
kernel size×kernel size and the stride of kernel size.

• Bilinear(scale factor): A bilinear upscaling operation that upsamples an input array into an
scale factor times larger array.

• FC(in, out): A fully-connected layer.
• Res(in, hidden, out): A residual block composed of two two fully-connected lay-

ers F1 = FC(in, hidden) and F2 = FC(hidden, out). It operates as y = x +
F2(ReLU(F1(ReLU(x)))) given an input x and an output y.

• ResAtt(in, hidden, out): A residual attention block which has two residual blocks R1 =
Res(in, hidden, out) and R2 = Res(in, hidden, out) and operates as y = x + R1(x) �
Sigmoid(R2(x)), where � denotes an element-wise product.

We devise two network architectures, Arch28 and Arch32, tailored for MNIST-like inputs and
CIFAR-10-like inputs, respectively.

The optimal Dz is searched among [2, 4, 8, 16, 32, 64, 128, 256]. The best parameter is selected
according to AUC of classifying a separate OOD dataset, as described in the main manuscript.

For ImageNet32 experiment, we use ResNet-based architecture for an encoder and a decoder. The
encoder is the same as one used in Du & Mordatch (2019). The last representation layer is average-
pooled. The decoder has the same architecture to the generator used in Miyato et al. (2018).

2



Under review as a conference paper at ICLR 2021

Table 2: Network architectures for autoencoders.

Arch28 (For 1×28×28 input) Arch32 (For 3×32×32 input)

Encoder

Conv2d(1, 32, 3, 1)-ReLU-
Conv2d(32, 64, 3, 1)-ReLU-MaxPool(2)-
Conv2d(64, 64, 3, 1)-ReLU-
Conv2d(64, 128, 3, 1)-ReLU-MaxPool(2)-
Conv2d(128, 1024, 4, 1)-ReLU-
FC(1024, Dz)

Conv2d(3, 32, 4, 2)-ReLU-
Conv2d(32, 64, 4, 2)-ReLU-
Conv2d(64, 128, 4, 2)-ReLU-
Conv2d(128, 256, 2, 2)-ReLU-
Conv2d(256, Dz, 1, 1)-ReLU-
ResAtt(Dz, 1024, Dz)

Decoder

ConvT2d(Dz, 128, 4, 1)-ReLU-Bilinear(2)-
ConvT2d(128, 64, 3, 1)-ReLU-
ConvT2d(64, 64, 3, 1)-ReLU-Bilinear(2)-
ConvT2d(64, 32, 3, 1)-ReLU-
ConvT2d(32, 1, 4, 1)-Sigmoid

ConvT2d(Dz, 256, 6, 1)-ReLU-
ConvT2d(256, 128, 4, 2)-ReLU-
ConvT2d(128, 64, 4, 2)-ReLU-
ConvT2d(64, 3, 3, 1)-Sigmoid

Sampling parameters For the latent chain, the step size λz is 0.4 for Arch28 and 2.0 for Arch32.
The standard deviation of the noise εz is set to 0.05 and 0.02 for Arch28 and Arch32, respectively.
The length of a latent chain is 10 for Arch32 and 50 for Arch32. We use the sample replay buffer as
described in Du & Mordatch (2019) with the buffer size of 10,000 and the replay ratio of 95%. In
other words, a starting point of a latent chain is given as a random point for probability of 5% or a
previous sample for probability of 95%.

In the visible chain, the step size λx is 20 and the gradient∇x log pθ(x) is clipped at 0.01, similarly
to Du & Mordatch (2019). The length of a visible chain is 50. We let the standard deviation of εx
decay as the visible chain proceeds: std(εx) = 0.05/(1 + step) for step = 0, · · · , 49.

Learning parameters We use Adam optimizer Kingma & Ba (2014) with learning rate 1× 10−5.
Also, for EBAE, we regularize L2 norm of the encoder with a coefficient of 1× 10−4.

Pre-training of EBAE is done for 100 epochs for MNIST and 120 epochs for CIFAR-10. The weight
with the minimal validation loss is retrieved and used as the initial weights for EBAE training. EBAE
training is done for 50 epochs.

Implementing baselines PixelCNN++ Salimans et al. (2017) is implemented based on an open-
source code base1. We use set parameters as nr resnet=5 and nr filters=80. Input values
are scales to [−1, 1] only when running PixelCNN++.

Glow Kingma & Dhariwal (2018) is also implemented based on the open-source repository2. We
set K = 12, L = 1, hidden channels = 64.

DAGMM Zong et al. (2018) is implemented based on the public repository3. We failed to train it on
CIFAR-10 such that it produces AUC of 1.0 for Noise dataset, and therefore we exclude the result
from the Table 2 of the main manuscript.

WAE-MMD is implemented. We use median heuristic to determine the kernel parameter of RBF
kernel. Regularization coefficient is searched between 0.001 and 0.1

For DAE, we use Gaussian noise with standard deviation of 0.3.

4 EXPERIMENTAL DETAIL FOR FIGURE 2

We first define two 2D uniform distributions. The first distribution spans [−2,−1] in the horizontal
coordinate and [−0.5, 0.5] in the vertical coordinate. Likewise, the second distribution spans [1, 2]
and [−0.5, 0.5] in the horizontal and the vertical coordinate, respectively. 200 independent samples
are drawn from each uniform distribution, resulting in 400 samples for training.

1https://github.com/pclucas14/pixel-cnn-pp
2https://github.com/chaiyujin/glow-pytorch
3https://github.com/danieltan07/dagmm

3

https://github.com/pclucas14/pixel-cnn-pp
https://github.com/chaiyujin/glow-pytorch
https://github.com/danieltan07/dagmm


Under review as a conference paper at ICLR 2021

We build an autoencoder with an encoder, FC(2, 200)-ReLU-FC(200, 200)-ReLU-FC(200, 1)-tanh,
and a decoder, FC(1, 200)-ReLU-FC(200, 200)-ReLU-FC(200, 2). The autoencoder is first trained
as a conventional autoencoder by minimizing reconstruction error of the training data. The stochastic
gradient descent is performed via Adam with the learning rate of 0.001. The training is carried for
200 epochs with batch size of 128.

After training as an autoencoder (and after drawing the first panel in Figure 2 in the main
manuscript), the decoder weights are fixed and only encoder is trained via the gradients of EBAE.
Both the latent chain and the visible chain have 10 steps with step size of 0.1. During the latent
chain, if the state z of the chain moves outside of the interval [−1, 1], the state is pushed back to the
interval.

5 ABLATION STUDY

To demonstrate the contribution of learning techniques and components used in EBAE, we train
EBAEs with altered configurations on the MNIST 9 detection task. Following MNIST hold-out ex-
periment in Section 6.2 of the main manuscript, we use digit 9 in MNIST as the anomaly class and
use digits from 0 to 8 as the normal class. We mainly investigate the effect of three components:
latent LMC chain, sample replay buffer, and spherical latent space. Table 3 shows different configu-
rations experimented and their anomaly detection performance in AUC. Experiment No.1 represents
the original EBAE configuration used in the experiments in the main manuscript.

Table 3: Ablation results

No. Latent chain length Sample replay buffer Spherical latent space AUC

1 10 Yes Yes 0.957
2 0 No Yes 0.839
3 50 Yes Yes 0.944
4 10 No Yes 0.936
5 50 No Yes 0.952
6 10 Yes No 0.662

• The use of latent chain is substantially beneficial, as shown from the comparison between No.1
and No.2.

• A longer latent chain is needed for a better result. Comparing No.2, No.4, and No.5, the per-
formance increases monotonically with the chain length. Note that longer chain length requires
proportionally longer time in training.

• The sample replay buffer helps to reduce the length of the latent chain required in training. We see
that with the sample replay buffer, the latent chain with 10 steps (No.1) can achieve performance
comparable to that of 50 latent chain steps (No.5). In other words, using sample replay buffer
may reduce the training time up to five times without the loss of performance.

• The gain from a longer latent chain saturates. Especially when a sample replay buffer is used, a
chain longer than a certain threshold does not improve the performance (No.1 & No.3).

• The use of spherical latent space is essential in achieving a good performance.

6 COMPUTATIONAL PROPERTIES OF EBAE

The inference step of EBAE is as fast as that of a conventional autoencoder, requiring no more than
a single forward pass. On the other hand, VAE requires multiple passes of its decoder to reliably
evaluate its likelihood and reconstruction error.

The Langevin Monte Carlo (LMC) is the most time consuming procedure in EBAE training. A
single draw of sample involves dozens of transition steps, and each transition step requires multiple
backward passes one of which is comparable to a single training step for an autoencoder. However,
the number of transition step required is less than 100 in our experiments, and it is feasible to run
it on a modern hardware. Training of EBAE takes about 5 hours for MNIST, and 10 hours for
CIFAR-10 on a single Tesla V100 GPU.

4



Under review as a conference paper at ICLR 2021

REFERENCES

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based mod-
els. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 3608–
3618. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8619-implicit-generation-and-modeling-with-energy-based-models.
pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F. Núñez, and Jordi Luque. Input
complexity and out-of-distribution detection with likelihood-based generative models. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=SyxIWpVYvr.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In In-
ternational Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BJJLHbb0-.

5

http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
http://papers.nips.cc/paper/8619-implicit-generation-and-modeling-with-energy-based-models.pdf
https://openreview.net/forum?id=SyxIWpVYvr
https://openreview.net/forum?id=SyxIWpVYvr
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-

	Derivation for the Log Likelihood Gradient
	Datasets
	Implementation Detail
	Experimental Detail for Figure 2
	Ablation Study
	Computational Properties of EBAE

