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ABSTRACT

Learning cooperative multi-agent policy from offline multi-task data that can gen-
eralize to unseen tasks with varying numbers of agents and targets is an attrac-
tive problem in many scenarios. Although aggregating general behavior patterns
among multiple tasks as skills to improve policy transfer is a promising approach,
two primary challenges hinder the further advancement of skill learning in of-
fline multi-task MARL. Firstly, extracting general cooperative behaviors from
various action sequences as common skills lacks bringing cooperative temporal
knowledge into them. Secondly, existing works only involve common skills and
can not adaptively choose independent knowledge as task-specific skills in each
task for fine-grained action execution. To tackle these challenges, we propose
Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for gen-
eralizable offline multi-task MARL through skill learning. HiSSD leverages a
hierarchical framework that jointly learns common and task-specific skills. The
common skills learn cooperative temporal knowledge and enable in-sample explo-
ration for offline multi-task MARL. The task-specific skills represent the priors of
each task and achieve a task-guided fine-grained action execution. To verify the
advancement of our method, we conduct experiments on multi-agent MuJoCo and
SMAC benchmarks. After training the policy using HiSSD on offline multi-task
data, the empirical results show that HiSSD assigns effective cooperative behav-
iors and obtains superior performance in unseen tasks. Source code is available at
https://github.com/mooricAnna/HiSSD.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has drawn great attention to many attrac-
tive problems such as games, intelligent warehouses, automated driving, and social science (Vinyals
et al., 2019; Yun et al., 2022; Gronauer & Diepold, 2022; Tian et al., 2025; Shentu et al., 2025; Wu
et al., 2025). When it comes to large-scale tasks, the MARL method yields superior performance
compared to the traditional control techniques. In most real-world applications, however, building
high-fidelity simulators or deploying online interaction can be costly or even infeasible. Meanwhile,
multi-agent systems are expected to perform flexibility among tasks with varying numbers of agents
and targets. To address these issues, training multi-agent policies that can transfer across tasks with
various numbers of agents under limited experience has become an attractive direction to tackle
real-world multi-agent applications (Wu et al., 2019; Kumar et al.).

Although training the multi-agent policy on a single task and fine-tuning on the target task is a simple
way for policy transfer, it has the following drawbacks (Wen et al., 2022; Hu et al., 2021; Yang et al.,
2022; Long et al., 2020): (i) the fine-tuning stage still requires costly interaction. (ii) it lacks the
capacity to handle tasks with various numbers of agents and targets. To overcome these issues,
existing works leverage Transformer (Vaswani et al., 2017) to enable a flexible population-invariant
framework (Long et al., 2020; Wang et al., 2020). They also discover general cooperative behavior
patterns as common skills from offline multi-task data to improve multi-agent policy transfer. ODIS
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(Zhang et al., 2023) conducts a two-stage offline multi-task MARL to discover generalizable multi-
agent common skills. They pre-train the common skills from a global view and then optimize the
policy by discovering the value-maximized skills on the multi-task data. HyGen (Zhang et al.,
2024) integrates online and offline learning to ensure both multi-task generalization and training-
efficiency. These methods obtained convincing improvement by learning generalizable common
skills and reduced interaction costs during policy transfer.

However, existing works only learn general and reusable cooperation behaviors by aggregating co-
operative actions from multi-task data. Equipping offline multi-task MARL with skill learning to
improve policy transfer remains an issue. Firstly, extracting general cooperative behaviors from var-
ious cooperative actions as common skills lack bringing cooperative temporal knowledge into them.
Existing works have demonstrated the significance of learning temporal knowledge in multi-agent
cooperation (Xu et al., 2022b; Song et al., 2023). Secondly, existing works in literature mainly focus
on discovering task-irrelevant common knowledge. Yet, few of them consider learning task-specific
knowledge which is also beneficial for policy transfer in offline multi-task MARL (Yang et al., 2024;
Xu et al., 2022a; Bose et al., 2024; Ishfaq et al., 2024).

In light of these issues, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel
approach for generalizable offline multi-task MARL through skill learning. HiSSD distinguishes
knowledge derived from multi-task data into common skills and task-specific skills, utilizing a hi-
erarchical framework that concurrently learns both categories. Concretely, the common skill rep-
resents the general cooperation patterns that involve cooperative temporal knowledge and enable
in-sample dynamics exploration for offline multi-task MARL. The task-specific skill represents the
unique knowledge of action execution in different tasks and achieves a task-guided fine-grained ac-
tion execution. Therefore, HiSSD effectively bridges offline multi-agent policy improvement and
adaptive multi-task action execution with common and task-specific skills learning.

Overall, our contributions can be summarized as following points: (i) We present HiSSD, an offline
multi-task MARL method that leverages the hierarchical framework and jointly learns common and
task-specific skills. (ii) HiSSD is proposed to learn common skills representing cooperative be-
haviors among multiple tasks for offline multi-agent policy exploration and action guidance. (iii)
Meanwhile, HiSSD adaptively abstracts task-specific skills for each task to achieve a task-guided
fine-grained imitation. (iv) We conduct experiments on the SMAC and multi-agent MuJoCo bench-
marks. After training policy using HiSSD on offline multi-task data, the empirical results show that
HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.

2 PRELIMINARIES

2.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Cooperative multi-agent reinforcement learning is formulated as a decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek et al., 2016), as the problem is defined by a tuple
G = ⟨K,S,Ω,A,P, O,R, γ⟩. Here, K = {1, ..., k} is the set of agents. The global observation
s ∈ S is unobservable to each agent in the centralized training and decentralized execution (CTDE)
pipeline. Cooperative agent k uses local observation ok ∈ Ω drawn from the observation function
O(s, k) to sample actions ak from the actions space A. During interaction, the joint action u =
{a1, a2, ..., ak} leads to a next state s′ ∼ P(s′|s,u) and a global reward r. The training goal is
to learn a cooperative multi-agent system to maximize the cumulative reward R. We use τ =
{τ1, τ2, ..., τk} to denote the trajectory of each agent, and the policy evaluation used to estimate the
performance of the joint policy π(u|τ ) is normally defined by rewards in infinite-horizon tasks,

E [R] = E

[ ∞∑
t=0

γtrt(st,ut, st+1|π)

]
, (1)

where γ ∈ [0, 1) is the discount factor, rt denotes the reward at time t.

2.2 LEARNING GENERALIZABLE POLICY FROM OFFLINE MULTI-TASK DATA

While cooperative multi-agent reinforcement learning has achieved advancement in many scenarios,
it is still hard to transfer the policy to unseen tasks without additional interaction (Hu et al., 2021;
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Iqbal et al., 2021). An effective solution is leveraging multi-task learning, extracting generalizable
knowledge across tasks to improve policy transfer. In multi-task learning, tasks within the same task
set possess identical types of units while exhibiting varying distributions. For instance, the quantity
of agents and targets may differ across these tasks. DenoteM as overall tasks, the whole data DM

are divided into source task dataDSource (orDT ) and target task dataDTarget, where the target tasks
are unseen during training. The goal is to train the multi-agent policy on the source task data that
can be transferred to unseen tasks in the same task set without additional interaction.

3 METHOD

In this section, we introduce the Hierarchical and Separable Skill Discovery (HiSSD) framework,
a novel approach for addressing offline multi-task multi-agent reinforcement learning problems.
Our main solution is leveraging the hierarchical skill learning framework and jointly learning com-
mon and task-specific skills among multiple cooperation tasks. We begin by illustrating the overall
framework of our offline multi-task MARL. We then detail the high-level planner with common
skills and the low-level controller with task-specific skills. Finally, we describe the overall objective
and training pipeline.

3.1 OFFLINE MULTI-TASK MARL WITH COOPERATIVE SKILL LEARNING

Skill is a series of latent variables representing general and reusable knowledge among tasks to guide
action execution (Zhang et al., 2023; 2024). Besides the solution proposed by existing works, we
give two insights into multi-task skill learning for further advancement in policy transfer. Firstly,
integrating cooperative temporal knowledge into common skills helps decision-making. It gives both
dynamics transition information and a global perspective into multi-agent policy. Secondly, learning
task-specific skills to guide action execution is beneficial to transfer policy adaptively. It brings each
task’s unique knowledge into the controller and adjusts the output action distribution. In this way,
we propose an offline multi-task MARL method that jointly learns common and task-specific skills
to improve policy transfer. Figure 1 provides a brief illustration of the proposed framework.

Specifically, our method can be divided into two parts: (a) The high-level planner and (b) The low-
level controller. The high-level planner contains a common skills encoder πθh , a forward predictor
fϕ, and a value net V tot

ξ . We feed local observation o1:Kt into πθh to extract common skills c1:Kt .
fϕ receives common skills to output the predicted next global state s′t+1 and local information l1:Kt+1 .
The local information can be seen as the local observation’s embedding. The value net receives
o1:Kt and l1:Kt to approximate the accumulated reward

∑
γrt. The low-level controller includes a

task-specific skills encoder gω and an action decoder πθl . The task-specific skills encoder infers
task-specific skills z1:Kt using local observation o1:Kt . The action decoder utilizes local observation,
common skills, and task-specific skills to generate the real actions {a′kt ∼ πθl(·|okt , ckt , zkt )}Kk=0.

Integrating cooperative temporal knowledge into common skills indicates that these skills maintain
perceptibility with respect to global dynamic transitions. The transition falls into two parts, the
global state transition and the value estimation. Therefore, the common skill is trained to minimize
the prediction error to the real next global state st+1 and maximize the accumulated reward. This
training objective facilitates offline exploration while effectively integrating cooperation temporal
knowledge into generalizable skills through a local-to-global transition prediction mechanism. As
for achieving an adaptive policy transfer, the major request is to distinguish each task’s specific
knowledge. The task-specific skills are trained through distribution matching with each task priors,
enabling adaptive action execution guidance across diverse tasks. Moreover, our method does not
require global information during execution, which differs from previous work (Liu et al., 2021).
We will describe the details of the proposed skill learning in sections 3.2 and 3.3.

3.2 LEARNING HIGH-LEVEL PLANNER WITH COMMON SKILLS

In this subsection, we introduce a high-level planning framework designed for extracting transfer-
able skill representations from offline multi-task MARL datasets. We start with the probabilistic
inference in MARL and construct a training objective to integrate cooperative temporal knowledge
into common skills.
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Figure 1: Overall framework of Hi-SSD. HiSSD utilizes a hierarchical framework that jointly learns
common and task-specific skills from offline multi-task data to improve multi-agent policy transfer.
(a) The high-level planner with common skills. HiSSD integrates cooperative temporal knowledge
into common skills and enables an offline exploration. (b) The low-level controller with task-specific
skills. The task-specific knowledge can guide the action execution adaptively among tasks. HiSSD
uses an implicit Q-learning objective to train the value network.

Inspired by Levine (2018), we define the problem of discovering the optimal high-level planner with
its common skill encoder π⋆

h as match the trajectory p(τ) given by Eq. 2. Here, p(τ) indicates to
maximize K agents’ accumulated reward

∑
γrt in each transition p(st+1|o1:Kt , c⋆1:Kt ),

p(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
exp

(
T∑

t=1

r(st, c
1:K
t )

)
. (2)

where st denotes the global state at time step t, o1:Kt indicate all agents’ local observation, and
c1:Kt represent common skills generated by the encoder c1:Kt ∼ π⋆

h. Matching p(τ) means that the
common skill encoder πθh in our learned planner needs to generate common skills c1:Kt and roll
out trajectories p̂(τ) that minimize the KL-divergence DKL(p̂(τ)∥p(τ)). Meanwhile, learning from
offline data requires the planner to be constrained and conservative. The common skill generated
by the planner must lead to the next state close to the offline dataset’s distribution. Therefore we
conduct the learned planner as a one-step predictor and formulate p̂(τ) by,

p̂(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
T∏

t=1

q(s′t+1|c1:Kt ), (3)

where c1:Kt ∼ πθh(o
1:K
t ) is the common skill inferred by the learned planner. st+1 represent the

ground-truth global next state and q(s′t+1|c1:Kt ) indicates that we use a forward predictor q to predict
the next global state using all agents’ common skills. In this way, we could derive the KL-divergence
and formulate our objective as below,

L(θh, ϕ) = −DKL(p̂(τ)∥p(τ)) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

 T∑
t=1

r(st, c
1:K
t )︸ ︷︷ ︸

Exploration

− log q(s′t+1|c1:Kt )︸ ︷︷ ︸
Prediction

 , (4)

where θh denote the parameters of the common skill encoder πh in the planner, DT represents
the multi-task dataset. The full derivation can be found in Appendix A.1. Eq. 4 is deployed on
all source tasks and aims to extract reusable cooperation knowledge as common skills c1:Kt . This
objective divides the trajectory matching into a trade-off between exploration and prediction which
fulfills the requirement of integrating cooperative temporal knowledge into common skills. The
Exploration term guarantees a value-maximization perspective in common skills to guide the action
execution. The Prediction term not only achieves a conservative planner in offline learning but also
brings the global state information into common skills, which is different from existing works.

To approximate each term in Eq. 4, we introduce a forward predictor fϕ for one-step global state
prediction and a value net V tot

ξ for reward estimation. fϕ receives common skills c1:Kt to predict
the next global state s′t+1 and next local information l1:Kt+1 . The local information can be seen as the
local observation’s embedding. V tot

ξ uses the current observation o1:Kt or the local information l1:K
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to estimate the accumulated reward. The goal of Eq. 4 is to maximize the estimated reward and
minimize the prediction error. To train the value net from the offline dataset, we utilize the Implicit
Q-learning objective (Kostrikov et al., 2021) given by,

LIQL(ξ) = EDT

[
Lϵ
2

(
rt + γV̄ tot

ξ̄ (o1:kt+1)− V tot
ξ (o1:kt )

)]
,where Lϵ

2(n) = |ϵ− 1(n < 0)|n2, (5)

where ϵ ∈ (0, 1) and the target value function V̄ tot
ξ̄

is the momentum version of V tot
ξ , DT is the

multi-task dataset. This objective down weights the contributions of the TD-residual smaller than 0
while giving more weight to larger values. By substituting fϕ and V tot

ξ into Eq. 4, we could rewrite
the empirical objective for learning the high-level planner with common skills as below,

LPlanner(θh, ϕ) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

[
V tot
ξ (l1:Kt+1)− α log fϕ(s

′
t+1|c1:Kt )

]
, (6)

where l1:Kt+1 ∼ fϕ(·|c1:Kt ) is the predicted local information. The weight α serves as the trade-off
between guiding to space with high-reward and space that the execution policy ought to have a
correct imitation. Inspired by Xu et al. (2022a), we introduce an alternative objective that implicitly
involves the behavior constraint by using the TD-residual [r+γV̄ tot

t+1−V tot
t ] as the imitation weight,

LPlanner(θh, ϕ) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

[
exp

(
r + γV̄ tot

ξ (l1:Kt+1)− V tot
ξ (o1:Kt )

α

)
log fϕ(s

′
t+1|c1:Kt )

]
,

(7)

Following this objective, the common skill acquires a global cooperative perspective and is more
likely to represent behavior patterns with high rewards from offline multi-task data.

3.3 LEARNING LOW-LEVEL CONTROLLER WITH TASK-SPECIFIC SKILLS

After constructing the objective of common skills, we now turn to the low-level controller with
task-specific skills z1:Ki , where i ∈ T denotes the current task. Here we omit the subscript of
timestep t to simplify the notation. The main function of our proposed controller is to generate
real actions following the skills’ guidance. Meanwhile, the job of the task-specific skill is to rec-
ognize the current task and guide the policy adaptively. To be more specific, we denote the low-
level controller’s components task-specific skills encoder as gω(z1:Ki |o1:Ki ) and the action decoder
πθl(a

1:K
i |z1:Ki , o1:Ki , c1:Ki ). We adopt an objective based on β-VAE (Higgins et al., 2017) to learn

action execution and utilize Self-Supervised Learning to learn task-specific representations for reg-
ularization. This learning objective is given by,

LController(θl, ω) = −E Di∈T

zi∼gω(oi)

[
log πθl(a

1:K
i |o1:Ki , c1:Ki , z1:Ki )− βDKL(z

1:K
i ∥p(Di))

]
, (8)

where the T denotes the task number, i denotes the current task, θl and ω represent the parameters
of action decoder πθl and task-specific skills encoder gω respectively, and β is the regularization
coefficient. The left term requires the action decoder πθl to maximize the likelihood of the real
action a1:Ki from offline data, the right term minimizes the KL-divergence between the task-specific
skills z1:Ki and the task priors p(Di) as a regularization. We show the full derivation in Appendix
A.2. Notably, the task-specific skill z1:Ki is regularized to approach the current task priors p(Di).
We show that the problem can be formulated as a contrastive learning objective, with its theoretical
lower bound provided in Theorem 3.1. Training the skill encoder for task discrimination enables the
integration of task-specific knowledge into the skill embeddings z1:Ki .

Theorem 3.1. Denote a set of N training tasks with their offline data DT , Di is the data of the
sampled task. Let random variables x be some observations sampled from Di, skill z ∼ gω(z|x),
h(x, z) = gω(z|x)

p(z) , p(Di) is the prior distribution of current task i, then we have

−EDi,z,x

[
log

h(z, x)∑
Dj∈DT h(z, xj)

]
≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(9)

where xj are observations sampled from task Dj and i ∈ {1, 2, · · · , N}.
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We leave the proof of Theorem 3.1 to Appendix A.3. In practice, we utilize the exponential cosine
similarity exp(z ·x) to approximate h(z, x) and randomly sample two agents’ observations {omi , oni }
in the same task as the positive pairs (q, k+) and regard trajectories from other tasks as the negative
samples k−. We introduce gω̄ the momentum version of gω to optimize the contrastive loss,

Lg(ω) = −
DT∑
Di

E{q,k+}∼Di,

k−∼DT \i

log exp(gω(q) · gω̄(k+)/σ)
exp(gω(q) · gω̄(k+)/σ) +

∑
T \i

exp(gω(q) · gω̄(k−)/σ)

 , (10)

where DT is overall source tasks, Di and DT \i denote the current task and other tasks in DT ,
respectively. σ denotes the temperature and gω̄ is updated by the exponential moving average ω̄′ ←
ηω + (1 − η)ω̄. This training pipeline empowers the policy to embed task-specific knowledge and
achieve adaptive action execution.

In summary, we integrate Eqs. 9 and 10 into Eq. 8 to obtain the empirical objective of training the
low-level controller. We propose to learn the prior of the current task using Eq. 10 and replace the
DKL term in Eq. 8 with it. The objective is given by,

LController(θl, ω) = −
∑

Di∈DT

E(oi,ai)∼Di

[
log πθl(a

1:K
i |o1:Ki , c1:Ki , z1:Ki )

]
− βLg(ω). (11)

3.4 TRAINING AND EVALUATION

HiSSD is fully trained offline and can be trained end-to-end. During training, each task’s data Di in
the source dataset DT will be chosen for training. In every training step, we sequentially optimize
Eqs. 5, 7, and 11 to train the value net, the planner, and the controller, respectively. At the test
time, we only use local information to perform decentralized execution. The planner πθh infers the
common skill c1:Kt at each time step. The controller πθl first generates task-specific skill z1:Kt and
then feed {(okt , ckt , zkt )}Kk=0 into action decoder to generate the real action. Due to space limitations,
we leave the pseudocode in Algorithm 1 in Appendix B.

4 EXPERIMENTS

4.1 BENCHMARKS AND DATASETS

SMAC The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a popular
MARL benchmark and can evaluate multi-task learning or policy transfer methods. We follow
the experimental settings by Zhang et al. (2023) and use the offline dataset they collected. Similar
to the D4RL benchmark (Fu et al., 2020), there are four dataset qualities labeled as Expert, Medium,
Medium-Expert, and Medium-Replay. We construct task sets Marine-Easy and Marine-Hard. In
each task set, units in different tasks have the same type and various numbers, all algorithms are
trained on offline data from multiple source tasks and evaluated on a wide range of unseen tasks
without additional data. Details are referred to the Appendix C.

MAMuJoCo Multi-Agent MuJoCo (MAMuJoCo) is a benchmark for continuous multi-agent
robotic control, based on the MuJoCo environment. To fulfill the requirement of offline multi-task
learning, we follow Wang et al. (2023a) and collect a multi-task dataset in HalfCheetah-v2 using
HAPPO (Kuba et al., 2022) algorithm. We partition the robotic into six agents and construct the
individual task by disabling each agent. Each task’s name corresponds to the joint controlled by
the disabled agent. Algorithms are trained on multiple source tasks and evaluated on unseen tasks
without additional data. Details of the dataset are presented in Appendix C.

4.2 BASELINES

SMAC To evaluate the capacity of policy transfer using HiSSD, we introduce several comparable
baselines from prior works: (i) ODIS (Zhang et al., 2023), an effective offline multi-task MARL
method for cooperative skill discovery. (ii) UPDeT-m, an offline variant of UPDeT (Hu et al., 2021)
by adopting the transformer-based Q mixing network. (iii) Transformer-based behavior cloning
(BC-t) method and its variants with return-to-go information (BC-r). We average Hi-SSD’s perfor-
mance over 5 random seeds and report the best score for each task.
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Table 1: Average test win rates of the best policies over five random seeds in the task set Marine-
Hard with different data qualities. For simplicity, the asymmetric task names are abbreviated. For
example, the task name ”5m6m” denotes the SMAC map ”5m vs 6m”. Results of BC-best stands
for the best test win rates between BC-t and BC-r.

Tasks Expert Medium
BC-best UPDeT-m ODIS HiSSD (Ours) BC-best UPDeT-m ODIS HiSSD (Ours)

Source Tasks

3m 97.7± 2.6 82.8±16.0 98.4± 2.7 99.5± 0.3 65.4±14.7 51.2± 3.4 85.9±10.5 62.7± 5.7
5m6m 50.4± 2.3 17.2±28.0 53.9± 5.1 66.1± 7.0 21.9± 3.4 6.3± 4.9 22.7± 7.1 26.4± 3.8
9m10m 95.3± 1.6 3.1± 5.4 80.4± 8.7 95.5± 2.7 63.8±10.9 28.5±10.2 78.1± 3.8 73.9± 2.3

Unseen Tasks

4m 92.1± 3.5 33.0±27.1 95.3± 3.5 99.2± 1.2 48.8±21.1 14.1± 5.2 61.7±17.7 77.3±10.2
5m 87.1±10.5 33.6±40.2 89.1±10.0 99.2± 1.2 76.6±14.1 67.2±21.3 85.9±11.8 88.4± 8.4
10m 90.5± 3.8 54.7±44.4 93.8± 2.2 98.4± 0.8 56.2±20.6 32.9±11.3 61.3±11.3 98.0± 0.3
12m 70.8±15.2 17.2±28.0 58.6±11.8 75.5±19.7 24.0±10.5 3.2± 3.8 35.9± 8.1 86.4± 6.0
7m8m 18.8± 3.1 0.0± 0.0 25.0±15.1 35.3± 9.8 1.6± 1.6 0.0± 0.0 28.1±22.0 14.2±10.1
8m9m 15.8± 3.3 0.0± 0.0 19.6± 6.0 47.0± 6.2 3.1± 3.8 2.3± 2.6 4.7± 2.7 15.3± 2.8
10m11m 45.3±11.1 0.0± 0.0 42.4± 7.2 86.3±14.6 19.7± 8.9 4.0± 3.4 29.7±15.4 43.6± 4.6
10m12m 1.0± 1.5 0.0± 0.0 1.6± 1.6 14.5± 9.1 0.0± 0.0 0.0± 0.0 1.6± 1.6 0.6± 0.5
13m15m 0.0± 0.0 0.0± 0.0 2.3± 2.6 1.3± 2.5 0.6± 1.3 0.0± 0.0 1.6± 1.6 1.4± 2.4

Medium-Expert Medium-Replay

Source Tasks

3m 67.7±23.7 85.2±17.9 73.6±22.0 86.6± 3.7 81.1± 8.8 41.4±20.1 83.6±14.0 78.8± 5.3
5m6m 31.3± 6.3 1.6± 1.6 9.4± 2.2 41.9± 9.7 25.0± 3.1 0.8± 1.4 16.6± 4.7 25.3±10.3
9m10m 26.0±13.9 24.3±18.7 31.3±14.5 83.6± 6.9 33.4±13.1 0.8± 1.4 34.4± 8.0 45.8± 3.9

Unseen Tasks

4m 81.3±18.9 43.9±39.0 82.8±13.5 91.1± 6.1 61.5± 9.0 35.9±12.6 55.6±14.5 77.3± 1.9
5m 74.0± 2.9 33.6±40.2 82.8±17.7 98.3± 1.8 75.0±24.2 61.7±20.3 96.1± 4.1 88.1±13.4
10m 78.1± 6.7 32.8±38.1 82.8±16.8 96.4± 2.1 82.4± 8.2 11.0± 7.8 84.4±15.1 94.7± 2.6
12m 64.8±24.3 9.4± 8.6 81.3±20.6 88.4±11.8 83.4± 4.5 2.3± 2.6 84.4± 6.6 90.3± 3.6
7m8m 13.3± 4.5 2.3± 4.1 15.6± 4.4 30.5±10.4 7.3± 6.4 1.6± 2.7 9.4± 2.2 21.7± 4.7
8m9m 10.2± 4.6 9.5± 8.6 10.9± 4.7 35.2±18.3 11.5± 3.9 0.8± 1.4 11.7± 8.7 14.5± 4.0
10m11m 26.6± 4.7 11.8± 8.1 33.6± 8.9 54.7± 6.8 46.8± 6.6 0.8± 1.4 35.9± 5.2 42.5± 4.4
10m12m 0.0± 0.0 0.0± 0.0 1.6± 1.6 2.5± 1.0 1.6± 2.7 0.0± 0.0 2.3± 1.4 0.5± 0.3
13m15m 0.8± 1.4 0.0± 0.0 2.3± 2.6 5.2± 3.7 1.6± 1.6 0.0± 0.0 2.4± 1.4 3.6± 2.1

MAMuJoCo For the continuous robotic control task, we compare HiSSD with four recent offline
MARL algorithms: (i) Behavior cloning (BC) method, the multi-agent version of (ii) IQL Kostrikov
et al. (2021), (iii) TD3-BC (Fujimoto & Gu, 2021), and (iv) ODIS (Zhang et al., 2023) reproduced
by ourselves. All algorithms are evaluated over 32 independent runs, with 4 different random seeds
employed during training to ensure reproducibility. Notably, all algorithms use the same architec-
ture, and the details for the implementations and hyperparameters of algorithms in MAMuJoCo are
shown in Appendix D.

4.3 MAIN RESULTS

SMAC We evaluate Hi-SSD and baselines on SMAC and present the average test win rates in the
Marine-Hard task set in Table 1. BC-best represents the highest test win rates between BC-t and
BC-r. Below are the key results: (i) HiSSD achieves top performance on over half of the tasks.
This indicates that using skills to guide action execution benefits policy transfer. (ii) Compared to
ODIS, which only discovers common skills from offline multi-task data, our method outperforms
it in medium and near-optimal data qualities, showing advancement in learning task-specific skills.
Due to space limitation, we leave results on other task sets in appendix E.

MAMuJoCo Table 2 shows the mean and standard deviation of average returns for the offline
multi-task learning on our HalfCheetah-v2 task set. The results show that HiSSD outperforms all
baselines and achieves state-of-the-art performance in most tasks. Compared to baselines with only
behavior cloning (BC), HiSSD outperforms in a wide range. We also find that HiSSD outperforms
ODIS and TD3-BC when transferring to unseen tasks. It indicates that learning cooperative temporal
knowledge and task-specific skills is beneficial for learning generalizable multi-agent policy from
offline multi-task data.
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Table 2: Average scores on HalfCheetah-v2 multi-task datasets in MAMuJoCo.

Tasks BC IQL ITD3-BC ODIS HiSSD(ours)

Source Tasks

complete 3188.16±566.68 4384.23±198.55 4365.10± 72.92 3677.66±174.82 4450.57±126.36
back thigh 3324.22± 58.49 3675.91± 18.99 3685.82± 40.84 2381.62±198.59 3698.38± 13.98
back foot 3079.01±355.66 3989.12±211.42 4119.48± 61.00 2713.40±195.63 3197.83± 6.99
front thigh 1861.53±415.80 2744.63±329.00 2700.17±407.46 2684.99±249.70 1948.74± 81.24
front shin 1819.94±273.96 4048.43±363.79 4155.15±180.99 3944.78±219.72 3468.32±290.72

Unseen Tasks

back shin 1964.55±268.24 1974.62±314.33 1690.40±251.77 3217.59±184.15 3472.12± 91.95
front foot 3468.40±369.40 3948.17±381.80 3683.16±419.42 3930.82±342.16 4175.29±338.96

Table 3: Ablation studies on HiSSD. We report average test win rates of the best policies over five
random seeds in the task set Marine-Hard with different data qualities.

Data Qualities w/o Planning w/o Predicting Half-Negative L2-Loss BC-best HiSSD

Source Tasks

Expert 80.7±22.4 85.9±16.4 87.0±15.3 80.8±21.2 81.1±21.8 84.5±17.1
Medium 52.7±25.5 53.1±20.0 54.3±20.6 42.3±21.8 50.3±20.1 55.9±19.2
Medium-Expert 56.0±22.4 63.5±26.1 70.7±21.3 57.8±27.1 41.7±18.5 64.2±23.5
Medium-Replay 51.1±28.2 47.7±25.1 50.0±22.9 44.7±28.1 46.5±26.7 51.9±24.0

Target Tasks

Expert 45.8±39.0 55.0±37.4 60.9±37.1 53.2±38.9 46.8±36.8 61.2±37.4
Medium 38.4±37.5 37.6±34.2 46.7±38.0 42.4±38.6 25.6±26.8 48.6±40.1
Medium-Expert 47.2±36.9 51.2±34.3 55.8±37.6 51.0±38.9 38.8±33.0 57.6±37.5
Medium-Replay 45.0±37.8 42.8±36.2 48.1±37.6 47.9±40.3 41.2±33.7 48.7±39.0

4.4 ABLATION STUDY

In this section, we provide additional empirical analysis of HiSSD. First, we demonstrate the ef-
fectiveness of our skill learning approach that jointly encodes cooperative temporal patterns and
task-specific knowledge. Next, we identify key factors in task-specific skill acquisition. Finally, we
present skill visualizations for deeper insights.

Common Skills Analysis We conduct experiments on SMAC’s Marine-Hard task set to demon-
strate the effects of our proposed skills learning paradigm in HiSSD and present results in Table 3.
We implement two variants of HiSSD to show the impact of three factors on HiSSD’s skills learn-
ing, respectively: (i) w/o Planning. HiSSD only learns task-specific skills among tasks. (ii) w/o
Prediction. HiSSD trains the planner without the next global state prediction. The results indicate
that learning common skills improves policy transfer, and learning to predict the next global state
acquires further advancement.

Task-Specific Skills Analysis To investigate what is the essential factor of learning task-specific
skills, we conduct experiments on SMAC’s Marine-Hard task set with three variants of HiSSD: (i)
Half-Negative. We reduce to half of the negative samples during contrastive learning. (ii) L2-Loss.
The objective is replaced with one similar to Grill et al. (2020) which does not require negative
samples. According to the results in 3, learning to distinguish the difference between tasks plays
a key role in learning task-specific skills. Meanwhile, increasing the number of negative samples
further improves the capacity of multi-agent policy transfer.

4.5 VISUALIZATION OF LEARNED SKILLS

To investigate the effectiveness of our proposed method more clearly, we evaluate HiSSD on multi-
ple tasks in SMAC and visualize the learned skills using t-SNE (Hinton & Roweis, 2002).

Common Skills In Figure 2, we visualize the chosen common skills among multiple tasks. Neigh-
boring points in the same distribution represent similar common skills. To show the skill flow, we
partition the collected trajectories into four sub-parts by timestep. The plots show that common
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Figure 2: Visualization of learned common skills. We use HiSSD to collect trajectories on five tasks
in SMAC and partition these trajectories into four time windows. Plots in each figure represent the
distribution of chosen common skills. We use multiple time windows to indicate the task flow.

Figure 3: Visualization of learned task-specific skills. We use HiSSD to collect trajectories on
five tasks in SMAC and partition these trajectories into four time windows. Plots represent the
distribution of chosen task-specific skills. We use multiple time windows to indicate the task flow.

skills are mapped into multiple clusters each containing skills from different tasks. Points with the
same color in each distribution represent the collaboration between agents in the corresponding task.
The results indicate that HiSSD acquires the capability to learn task-irrelevant common skills.

Task-Specific Skills Figure 3 represented the chosen task-specific skills during evaluation. We
collect trajectories on multiple tasks in SMAC using HiSSD and partition these trajectories into four
sub-parts by timestep. From the plots, task-specific skills chosen in small-scale tasks (i.e., 3m, 4m,
and 5m) are mapped into different distributions. However, the chosen skills in large-scale tasks
(i.e., 10m and 12m) overlap with each other. The results indicate that HiSSD efficiently generalizes
to small-scale tasks similar to source domains, learning task discrepancies effectively. However,
for large-scale tasks (10m, 12m), it struggles to capture significant distribution shifts, leading to
overlapping. Notably, our method adaptively reduces distribution distance over time, demonstrating
dynamic transition learning across tasks. As episodes progress, task representations converge due to
agent attrition, where multi-agent tasks naturally decompose into simpler sub-tasks during episode
execution. This demonstrates HiSSD’s ability to: (i) effectively encode task-specific knowledge,
and (ii) adaptively distinguish between tasks through learned policies.

5 RELATED WORK

5.1 OFFLINE MARL

Training policies from offline experience without interaction effectively reduce the trial and error
costs when implementing RL in real-world scenarios (Levine et al., 2020; Zhang et al., 2021).
Due to the distribution shift in offline learning (Fujimoto et al., 2019), training a policy from static
datasets faces unexpected extrapolation errors when estimating unseen data (Wu et al., 2019; Kumar
et al.). Therefore, previous works consider learning behavior-constrained policies (Kumar et al.,
2020; Kostrikov et al., 2021), which can be extended to the MARL paradigm. They aim at adopting
sufficient conservatism to current online MARL methods (Yang et al., 2021; Jiang & Lu, 2021; Pan
et al., 2022), training policies by value function decomposition (Sunehag et al., 2018; Rashid et al.,
2020; Yang et al., 2020b; Wang et al., 2021), or multi-agent policy gradient algorithms (Lowe et al.,
2017; Foerster et al., 2018; Iqbal & Sha, 2019; Yu et al., 2022; Kuba et al., 2022). Another effective
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way for offline learning is leveraging the powerful transformer-based model (Chen et al., 2021; Lee
et al., 2022; Meng et al., 2023; Liu et al., 2023) or diffusion model (Janner et al., 2022; Pearce et al.,
2023; He et al., 2023). Yet the problem of combining generative models with the policy improve-
ment paradigm of reinforcement learning remains an issue (Zheng et al., 2022; Wang et al., 2023b;
Kang et al., 2023).

5.2 MULTI-TASK MARL

Multi-task learning plays a key role in improving data-efficiency and generalization in MARL. It
highlights knowledge reuse (Da Silva & Costa, 2016; Shen et al., 2021; Sodhani et al., 2021),
which is beneficial for transferable multi-agent collaboration. This paradigm requires the policy to
hold a flexible structure for deploying agents across tasks with varying input dimensions (Agarwal
et al., 2020; Wang et al., 2020; Hu et al., 2021; Zhou et al., 2021). Recent works consider mul-
tiple ways to realize multi-task adaptations such as policy representations learning (Grover et al.,
2018), evolutionary-based curriculum learning (Long et al., 2020), randomized entity-wise factor-
ization (Iqbal et al., 2021), high-level cooperation strategy reusing (Liu et al., 2021), and training
transformer-based population-invariant policies (Hu et al., 2021; Wen et al., 2022; Liu et al., 2023).
Although these methods relieve the need for learning from scratch during transferrin, generalizing
policies without simultaneous learning or fine-tuning remains challenging Zhang et al. (2023).

5.3 MARL WITH SKILL LEARNING

Hierarchical MARL with skill learning is a practical way to solve complex decision-making tasks.
This paradigm embeds behavior patterns in a skill space, promoting the exploration of cooperative
multi-agents with state empowerment from information theory (Barto & Mahadevan, 2003; Eysen-
bach et al., 2019; Yang et al., 2023; He et al., 2020; Liu et al., 2022). MASD (He et al., 2020)
introduces an information bottleneck for cooperation patterns discovery. HSD (Yang et al., 2020a)
and HSL (Liu et al., 2022) utilize hierarchical architectures to discover diverse behaviors. HMASD
(Yang et al., 2023) treats skill discrimination as a sequential modeling problem. However, their
framework requires global information during execution. VO-MASD (Chen et al., 2024) discov-
ers hierarchy-like cooperation skills in a pre-training stage to speed up the online learning. ODIS
(Zhang et al., 2023) combines offline multi-task learning with hierarchical MARL to learn a general-
izable multi-agent policy. Although they discover skills following the value function decomposition,
they only consider the common skill among tasks. HyGen (Zhang et al., 2024) follows ODIS and in-
tegrates online exploration to further improve transfer capability, especially in middle data qualities.
In this article, we propose a hierarchical policy that jointly learns common and task-specific skills
from offline multi-task data, further enhancing the capacity of multi-agent policy’s generalization.

6 CONCLUSION

In this paper, we propose a new hierarchical multi-agent policy that jointly learns common and
task-specific skills from offline multi-task data, further improving the capacity of policy transfer
in offline multi-task MARL. We analyze the primary issues in current offline multi-task MARL
methods and propose novel objectives to overcome these issues. We compare HiSSD to SOTA
methods on popular MARL benchmarks and certify that it acquires promising improvement. One
limitation of Hi-SSD is its training stability, and we consider it as our future work. Hopefully, our
proposed skill learning pipeline can lead to a new branch for offline multi-task learning in MARL.

7 REPRODUCIBILITY STATEMENT

Source code is available at https://github.com/mooricAnna/HiSSD. The full derivation
of our proposed objective and theorem is presented in Appendix A. The pseudocode is presented in
Appendix B. We leave the detailed description of the used benchmarks and datasets in Appendix C
and present the implementation details in Appendix D.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International conference on machine learning,
pp. 1802–1811. PMLR, 2018.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Shuncheng He, Jianzhun Shao, and Xiangyang Ji. Skill discovery of coordination in multi-agent
reinforcement learning. arXiv preprint arXiv:2006.04021, 2020.

11



Published as a conference paper at ICLR 2025

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and
K. Obermayer (eds.), Advances in Neural Information Processing Systems, volume 15. MIT Press,
2002.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. UPDeT: Universal multi-agent RL via
policy decoupling with transformers. In International Conference on Learning Representations,
2021.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 2961–2970. PMLR, 2019.

Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson, and
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A ADDITIONAL DERIVATION

A.1 OBJECTIVE FOR HIGH-LEVEL PLANNER

In this section, we formulate our objective using probabilistic inference, following the theoretical
analysis in Levine (2018). We assume that the training goal for behavior cloning is to minimize
the distance between the optimal trajectory p(τ) formulated in Eq. 2 and the rollout trajectory p̂(τ).
p̂(τ) is required to predict the next global state s′t+1 that is not far from the offline dataset. Therefore,
we could formulate p̂(τ) as below,

p̂(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
T∏

t=1

q(s′t+1|c1:Kt ), (12)

where q(·) is a predefined predictor, c1:Kt is the learned common skill. A practical way to match
this objective is by adopting an optimization-based approximate inference approach. In this article,
we minimize the KL-divergence between the approximated trajectory and the optimal trajectory to
achieve this objective,

DKL(p̂(τ)∥p(τ)) = −Eτ∼p̂(τ) [log p(τ)− log p̂(τ)] . (13)
In this way, we derive Eq. 13 and obtain the planner’s objective,
−DKL(p̂(τ)∥p(τ)) = Eτ∼D [log p(τ)− log p̂(τ)]

= Eτ∼D

[
log p(s1) +

T∑
t=1

(log p(st+1|o1:Kt , c1:Kt ) + r(st, c
1:K
t ))−

log p(s1)−
T∑

t=1

(log p(st+1|o1:Kt , c1:Kt ) + log q(s′t+1|o1:Kt , c1:Kt ))

]

= Eτ∼D

[
T∑

t=1

r(st, c
1:K
t )− log q(s′t+1|o1:Kt , c1:Kt )

]

=

T∑
t=1

Eτ∼D
[
r(st, c

1:K
t )− log q(s′t+1|o1:Kt , c1:Kt )

]
.

(14)

A.2 OBJECTIVE FOR LOW-LEVEL CONTROLLER

To formulate the objective for our fine-grained action controller, we perform the controller as a
generative model and introduce the variational inference. With the help of Jensen’s inequality, we
formulate the ELBO as below,

log p(a) = log

∫
z

p(a, z)
q(z|o)
q(z|o)

= logEq(z|o)

[
p(a, z)

q(z|o)

]
≥ Eq(z|o) [log p(a, z)]− Eq(z|o) [log q(z|o)]
= Eq(z|o) [p(a|z) · p(z)]− Eq(z|o) [log q(z|o)]→ ELBO,

(15)

where q(·) is a predefined encoder, o denotes the local observation of each agent, and z denotes
the task embedding. Practically, we introduce a task-guided controller πθl as p(a|z) and a task
discriminator gω as q(z|o). The prior distribution p(z) is unreachable to each task during training
and we use p(Di) to represent the prior distribution of skill z in each task. We also embed the
common skill ct and local observation ot into πθl . Thus, we rewrite Eq. 15 and formulate the
objective of our low-level controller in a decentralized manner,
LController(θc, ω) = −LELBO

= −EDi∼D

[
Egω(zi

t|oit)
[
log πθl(a

i
t|zit, oit, cit)

]
+ Egω(zi

t|oit)

[
log

p(Di)

gω(zit|oit)

]]
= −EDi∼D

[
Egω(zi

t|oit)
[
log πθl(a

i
t|zit, oit, cit)

]
−DKL(z

i
t∥p(Di)))

]
,

(16)
where i denotes the current task and D indecates the offline d ataset.
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A.3 BRIDGING KL-DIVERGENCE AND CONTRASTIVE LEARNING

In this section, we illustrate how to bridge the contrastive loss to approximate the KL-divergence in
Eq. 8 We first introduce a lemma. Then we give a proof of Theorem 3.1.

Lemma A.1. Given Di ∼ DT as the the current task’s data distribution. Denote x as the local
observations sampled from the offline data x ∼ Di, gω is the task-specific skill encoder, skill z ∼
gω(z|x). Then we have,

p(z|Di)

p(z)
=

∫
p(x|Di)p(z|x,Di)

p(z)
dx =

∫
p(x)gω(z|x)

p(z)
dx = Ex

[
gω(z|x)
p(z)

]
. (17)

Theorem 3.1. Denote a set of N training tasks with their offline data DT , Di is the data of the
sampled task. Let random variables x be some observations sampled from Di, skill z ∼ gω(z|x),
h(x, z) = gω(z|x)

p(z) , p(Di) is the prior distribution of current task i, then we have

−EDi,z,x

[
log

h(z, x)∑
Dj∈DT h(z, xj)

]
≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(9)

where xj are observations sampled from task Dj and i ∈ {1, 2, · · · , N}.

Proof. We introduce the mutual information I(z,Di) between the learned skill z and the current
task’s data distribution Di, and rewrite the inequality as below,

−EDi,z,x

[
log

h(z, x)∑
D∗∈DT h(z, x∗)

]
≥ I(z;Di) ≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(18)

For the left side:

I(z;Di) = EDi,z

[
log

p(z|Di)

p(z)

]
(a)
= EDi,z

[
logEx

[
gω(z|x)
p(z)

]]
≥ EDi,z,x

[
log

gω(z|x)
p(z)

]
= −EDi,z,x

[
log

(
p(z)

gω(z|x)
N

)]
+ logN

≥ −EDi,z,x

[
log

(
1 +

p(z)

gω(z|x)
(N − 1)

)]
+ logN

≥ −EDi,z,x

[
log

(
1 +

p(z)

gω(z|x)
(N − 1) E

D∗∈DT \i

gω(z|x∗)

p(z)

)]
+ logN

= −EDi,z,x

log
1 +

p(z)

gω(z|x)
∑

D∗∈DT \i

gω(z|x∗)

p(z)

+ logN

= EDi,z,x

log
 gω(z|x)

p(z)

gω(z|x)
p(x) +

∑
D∗∈DT \i

gω(z|x∗)
p(z)

+ logN

≥ EDi,z,x

log
 gω(z|x)

p(z)∑
D∗∈DT

gω(z|x∗)
p(z)


= EDi,z,x

[
log

h(z, x)∑
D∗∈DT h(z, x∗)

]
,

(19)

where N is the number of the task set DT . Here, (a) is derived from Lemma A.1.
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For the right side:

I(z;Di) =

∫ ∫
gω(z, x) log

gω(z|x)
gω(z)

dzdx

=

∫ ∫
gω(z, x) log gω(z|x)dzdx−

∫
gω(z) log gω(z)dz

(b)

≤
∫ ∫

gω(z, x) log gω(z|a)dzdx−
∫

gω(z) log p(Di)dz

=

∫ ∫
gω(x)gω(z|x) log

gω(z|x)
p(Di)

dzdx

= Ex∼Di

[∫
gω(z|x) log

gω(z|x)
p(Di)

dz

]
= Ex∼Di

[
DKL(gω(·|x)∥p(Di))

]

(20)

The inequality at (b) is derived from DKL(gω(·)∥p(Di) ≥ 0.

B PSEUDOCODE FOR HISSD

Algorithm 1 HiSSD for Offline Multi-Task MARL
1: Inputs:
2: High-Level Planner πθh , Low-Level Controller πθl , Value Net V tot

ξ and V̄ tot
ξ̄ , Forward Predictor fϕ, Task-

Specifc Skill Encoder gω , Training Steps T , Task Numbers N , Offline Multi-Task Dataset DT , Current
Training Task i and its data Di ∼ DT , Agent Numbers {Ki}Ti=1, Batch Size B, learning rate δ, target
update rate τ .

3: Training:
4: for each timestep n in 1..N do
5: Di ∼ DT # Sample one task data from the offline dataset.
6: {st, rt, {ot, at, ot+1}Kk=1}Bj=1 ∼ Di

7: c1:kt ← πθh(o
1:k
t ) # Infer common skills.

8: Compute V tot
ξ (o1:kt ), V̄ tot

ξ̄ (o1:kt+1), and V̄ tot
ξ̄ (fϕ(c

1:k
t )) with st

9: s′t+1 ← fϕ(c
1:k
t )

10: z1:kt ← gω(o
1:k
t ) # Infer task-specific skills.

11: a′1:k
t ← πθl(z

1:k
t , o1:kt , c1:kt )

12: Optimizing Eq. 5 with V tot
ξ (o1:kt ), V̄ tot

ξ̄ (o1:kt+1), and rt

13: Optimizing Eq. 7 with V tot
ξ (o1:kt ), V̄ tot

ξ̄ (fϕ(c
1:k
t )), rt, and s′t+1

14: Optimizing Eq. 11 with c1:kt , z1:kt , a′1:k
t , and samples from other tasks

15: end for
16: Execution:
17: for each timestep t in current environment do
18: c1:kt ← πθh(o

1:k
t ) # Infer common skills.

19: zt ← gω(o
1:k
t ) # Infer task-specific skills.

20: a1:k
t ← πθl(z

1:k
t , o1:kt , c1:kt )

21: end for

C BENCHMARKS AND DATASETS

C.1 SMAC

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a widely used cooperative
multi-agent testbed that contains diverse StarCraft micromanagement scenarios. In this paper, we
utilize three distinct SMAC task sets defined by Zhang et al. (2023): Marine-Hard, Marine-Easy,
and Stalker-Zealot to evaluate the capacity of transferring policy to unseen tasks. The Marine-
Hard and Marine-Easy task sets include various marine battle scenarios, and the trained multi-agent
policy needs to control groups of allied marines to confront equivalent or superior numbers of built-
in-AI enemy marines. The stalker-zealot task set includes several tasks with symmetric stalkers and
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Table 4: Descriptions of tasks in the Marine-Easy task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric
10m 10 Marines 10 Marines homogeneous & symmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
6m 6 Marines 6 Marines homogeneous & symmetric
7m 7 Marines 7 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
9m 9 Marines 9 Marines homogeneous & symmetric
11m 11 Marines 11 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

Table 5: Descriptions of tasks in the Marine-Hard task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric

10m 10 Marines 10 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

zealots on each side. To achieve generalization to unseen tasks with limited sources, we train on
three selected tasks and reserve the remaining tasks for evaluation. Detailed attributes of these task
sets are enumerated in Tables 4, 5, and 6.

As stated in the experiments section, we utilize the same offline multi-task dataset as Zhang et al.
(2023) to maintain a fair comparison. Definitions of these four qualities are listed below:

• The expert dataset contains trajectory data collected by a QMIX policy trained with
2, 000, 000 steps of environment interactions. The test win rate of the trained QMIX policy
(as the expert policy) is recorded for constructing medium datasets.

• The medium dataset contains trajectory data collected by a QMIX policy (as the medium
policy) whose test win rate is half of the expert QMIX policy.

• The medium-expert dataset mixes data from the expert and the medium dataset to acquire
a more diverse dataset.

• The medium-replay dataset is the replay buffer of the medium policy, containing trajectory
data with lower qualities.

The Properties of offline datasets with different qualities are detailed in Table 7.

C.2 MAMUJOCO

Multi-Agent MuJoCo (Peng et al., 2021) is a benchmark developed for assessing and comparing
the effectiveness of algorithms in continuous multi-agent robotic control. In MAMuJoCo, a robotic
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Table 6: Descriptions of tasks in the Stalker-Zealot task set.

Task type Task Ally units Enemy units Properties

Source tasks

2s3z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

2s4z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

3s5z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

Unseen tasks

1s3z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

1s4z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

1s5z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

2s5z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

3s3z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

3s4z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

4s3z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

4s4z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

4s5z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

system is partitioned into independent agents, each tasked with controlling a specific set of joints
to accomplish shared objectives. To conduct offline multi-task learning, we choose HalfCheetah-
v2 as our base scenarios and partition the robotic system into six agents. Besides the complete
HalfCheetah robot, we design six new tasks by disabling each agent. Therefore, our MAMuJoCo
multi-task data comprises seven tasks. Each task’s name corresponds to the joint controlled by the
disabled agent. We follow Wang et al. (2023a) and generate offline data using the policy trained
by HAPPO (Kuba et al., 2022). The hyperparameter env_args.agent_obsk (determines up to
which connection distance agents will be able to form observations) is set to 1. We list the average
return of our datasets in Table 8.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF HISSD IN SMAC

We follow prior works and decompose the observation to process the varying observation sizes
among tasks. The local observation oi is decomposed into several portions, the one including agent
i’s own information oown

i , and the other contains other entities’ information {oentityi,j }. We employ a
transformer model for parallel tensor processing to embed these portions. Each portion is embedded
by a separate fully connected layer with an output dimension of 64, and the transformer processes
these embedding according to the attention mechanism,

Q = WQ([oown
i , oentity

i,1 , . . . ]),K = WK([oown
i , oentity

i,1 , . . . ]), V = WV ([oown
i , oentity

i,1 , . . . ]),

[eown
i , eentity

i,1 , . . . ] = softmax
(
QKT
√
dK

)
V,

where [oown
i , oentity

i,1 , . . . ] = Decompose(oi), dK = dim(K).

(21)
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Table 7: Properties of offline datasets in SMAC with different qualities.

Tasks Quality Trajectories Average Return Average Win Rate

3m

expert 2000 19.8929 0.9910
medium 2000 13.9869 0.5402
medium-expert 4000 16.9399 0.7656
medium-replay 3603 N/A N/A

5m

expert 2000 19.9380 0.9937
medium 2000 17.3288 0.7411
medium-expert 4000 18.6334 0.8674
medium-replay 711 N/A N/A

10m

expert 2000 19.9438 0.9922
medium 2000 16.6297 0.5413
medium-expert 4000 18.2595 0.7626
medium-replay 571 N/A N/A

5m_vs_6m

expert 2000 17.3424 0.7185
medium 2000 12.6408 0.2751
medium-expert 4000 14.9916 0.4968
medium-replay 32607 N/A N/A

9m_vs_10m

expert 2000 19.6140 0.9431
medium 2000 15.5049 0.4146
medium-expert 4000 17.5594 0.6789
medium-replay 13731 N/A N/A

2s3z

expert 2000 19.7655 0.9602
medium 2000 16.6279 0.4465
medium-expert 4000 18.1967 0.7034
medium-replay 4505 N/A N/A

2s4z

expert 2000 19.7402 0.9509
medium 2000 16.8735 0.4965
medium-expert 4000 18.3069 0.7237
medium-replay 6172 N/A N/A

3s5z

expert 2000 19.7850 0.9518
medium 2000 16.3126 0.3114
medium-expert 4000 18.0488 0.6316
medium-replay 11528 N/A N/A

Table 8: Properties of offline datasets on HalfCheetah-v2 in MAMuJoCo.

Tasks Trajectories Average Return
complete 100 2881.63

back thigh 100 2764.65
back foot 100 2880.78

front thigh 100 2011.00
front shin 100 3048.01

The common skill encoder, the task-specific skill encoder, the individual value network, and the
action decoder use single-layer transformers (64-unit hidden layers) to process the decomposed ob-
servation. The mixing value network implements an attention block, following Zhang et al. (2023).
The forward predictor comprises two single-layer transformers. To tackle the partial observability,
we append the history hidden state hi

t−1 in each agent’s common skill encoder, value net, and action
decoder when applying self-attention and thus get the output of hi

t.
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Figure 4: Overall framework of Hi-SSD in SMAC. HiSSD utilizes a hierarchical framework that
jointly learns common and task-specific skills from offline multi-task data to improve multi-agent
policy transfer. (a) The high-level planner with common skills. HiSSD integrates cooperative tem-
poral knowledge into common skills and enables an offline exploration. (b) The low-level controller
with task-specific skills. The task-specific knowledge can guide the action execution adaptively
among tasks. (c) HiSSD uses an implicit Q-learning objective to train the value network.

The common skills, extracted through the common skill encoder, are fed into the forward predictor
for global state prediction and the action decoder for execution. Our framework employs a dual-
transformer architecture for global state prediction: the first transformer integrates enemy informa-
tion, while the second processes ally and preprocessed enemy information to predict subsequent
global states. For the action execution, we concatenate the decomposed information outputted by
the action decoder with the task-specific skills and feed them into an MLP to get the real actions.
Figure 4 illustrates the overall framework of HiSSD in SMAC. The hyperparameters used in SMAC
are listed in Table 9.

Table 9: Hyperparameters of HiSSD for offline multi-task SMAC.

Hyperparameter Setting
Hidden layer dimension 64
Hidden units in MLP 128
Attention dimension 64
Skill dimension per token 64
Discount factor γ 0.99
α 10
β 0.05
ϵ 0.9
Trajectories per batch 32
Training steps 30000
Optimizer Adam
Learning rate 0.0001
Weight decay 0.001 in Stalker-Zealot

0.0001 in others
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D.2 DETAILS OF HISSD IN MAMUJOCO

The observation shapes are consistent among tasks and we do not apply the observation decompo-
sition deployed in SMAC. The common skill encoder, the task-specific skill encoder, the individual
value network, and the action decoder use single-layer transformers (64-unit hidden layers) to pro-
cess the observation. The common skills, extracted through the common skill encoder, are fed into
the forward predictor for global state prediction and the action decoder for execution. We concate-
nate the decomposed information outputted by the action decoder with the task-specific skills and
feed them into an MLP to get the real actions. The hyperparameters used in MAMuJoCo are listed
in Table 10.

Table 10: Hyperparameters of HiSSD for offline multi-task MAMuJoCo.

Hyperparameter Setting
Hidden layer dimension 256
Hidden units in MLP 256
Attention dimension 256
Skill dimension per token 256
Discount factor γ 0.99
Target update rate 0.005
α 10.0
β 2.0
ϵ 0.9
Batch size 128
Training steps 1000000
Optimizer Adam
Learning rate 0.0005

D.3 TRAINING COSTS

The training process of HiSSD with an NVIDIA GeForce RTX 3090 GPU and a 32-core CPU costs
12-14 hours typically. Our released implementation of HiSSD follows Apache License 2.0, the same
as the PyMARL framework.

E ADDITIONAL RESULTS

E.1 RESULTS ON OTHER TASK SET IN SMAC.

We follow the multi-task learning settings in ODIS (Zhang et al., 2023) and conduct additional ex-
periments on two offline multi-task task sets: Marine-Easy and Stalker-Zealot. The results are pre-
sented in Tables 11 and 12. We also present the average win rates on Stalker-Zealot task set in Table
13 to show the improvement of HiSSD on tasks with heterogeneous units clearly. For the Marine-
Easy task set, HiSSD gains convincing performance in most source and unseen tasks compared to
other baselines. For the Stalker-Zealot task set, HiSSD obtains competitive performance and sur-
passes ODIS when the dataset is generated by near-optimal policy (i.e., Expert and Medium-Expert).
Moreover, both skill-learning-based methods fail to outperform BC-based methods on some tasks
in Stalker-Zealot task set. We suspect this is due to the different task properties between Marine
and Stalker-Zealot task set as the controlled items in Marine are homogeneous and in Stalker-Zealot
are heterogeneous. Therefore, it is more difficult for the policy to learn generalizable cooperative
patterns from the limited dataset in the Stalker-Zealot task set.

E.2 SENSITIVITY ANALYSIS OF HYPER-PARAMETERS.

To investigate the model’s sensitivity analysis to ϵ in Eq. 5, α in Eq. 7, and β in Eq. 11, we conduct
experiments on Marine-Hard task set in SMAC with expert data qualities. We list the results in
Tables 14, 15, and 16. While our framework incorporates additional architectural components and
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Table 11: Average test win rates in the Marine-Easy task set with different data qualities. Results of
BC-best stands for the best test win rates between BC-t and BC-r.

Tasks Expert Medium
BC-best UPDeT-m ODIS Hi-SSD (Ours) BC-best UPDeT-m ODIS Hi-SSD (Ours)

Source Tasks

3m 94.5± 4.6 83.6±12.6 97.7± 2.6 99.5± 8.1 67.2± 4.7 60.2±29.9 57.8± 9.2 74.7±14.6
5m 94.4± 7.6 74.8±22.9 95.3± 5.2 99.9± 0.0 79.2± 5.9 67.8± 5.9 82.8± 5.2 81.6±10.8
10m 86.1±22.7 83.6±19.2 88.3±20.3 95.2± 8.4 63.1± 7.2 48.8± 7.9 71.9± 6.6 84.8± 8.6

Unseen Tasks

4m 91.2± 1.6 53.0±32.3 90.6± 7.0 94.4± 2.9 62.5±11.6 41.7±17.4 63.3±16.1 74.5±15.5
6m 75.3±22.6 37.9± 8.6 79.7±17.5 99.7± 0.3 86.0± 4.7 75.8±22.7 89.8±17.6 88.0±10.0
7m 70.3±11.0 44.2±13.2 72.7±16.9 99.1± 0.7 99.9± 0.0 65.2±25.2 96.1± 1.4 97.3± 2.3
8m 74.7±16.5 51.7±26.2 80.9±14.4 99.8± 0.3 96.9± 2.2 88.4±13.7 97.7± 2.6 93.8± 5.2
9m 97.7± 2.6 76.3±13.4 99.2± 1.4 99.9± 0.0 78.9±11.8 64.8±35.6 87.5± 2.2 75.2±15.5
11m 83.3±11.8 53.6±22.4 83.6±12.4 99.2± 0.8 42.2± 4.7 23.4±11.8 64.7± 3.1 62.0±21.8
12m 56.7±30.0 44.3±22.8 70.3±30.2 99.7± 1.1 29.7±23.4 13.5±11.7 41.4± 6.0 55.5±25.7

Medium-Expert Medium-Replay

Source Tasks

3m 81.3±18.8 48.4±36.8 89.8± 9.7 90.9± 5.9 77.8± 3.2 29.7±10.0 79.7± 4.7 87.7± 2.9
5m 74.0± 2.9 64.1±17.9 83.7±16.0 79.4± 6.9 5.5± 5.6 6.2±10.8 3.1± 5.4 87.5± 2.9
10m 90.6± 3.1 68.8±23.8 93.8± 4.4 60.2±21.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 84.2±4.9

Unseen Tasks

4m 35.2±38.0 43.7±25.0 57.8±18.8 70.9± 9.1 67.2± 4.7 25.0±22.6 25.0± 5.4 71.6± 4.1
6m 42.2± 1.6 47.7±30.0 76.0± 6.0 70.6± 6.1 7.8±10.2 0.0± 0.0 3.1± 5.4 99.8± 0.3
7m 65.6±16.4 57.8±32.9 66.4±14.6 85.0±11.7 0.8± 1.4 0.0± 0.0 0.0± 0.0 99.8± 0.3
8m 40.3±42.6 40.6±19.3 43.8±11.5 72.8± 9.5 0.8± 1.4 0.0± 0.0 1.6± 1.6 96.7± 0.3
9m 70.8±16.6 47.7±24.8 73.4±16.2 80.0±14.6 0.8± 1.4 0.0± 0.0 0.0± 0.0 88.8± 1.3
11m 55.5±12.4 85.9±14.2 68.8±20.3 70.9± 5.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 45.6± 4.5
12m 29.7±29.8 46.1±15.5 62.5± 8.0 62.7± 7.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 38.0± 3.7

learning objectives compared to prior approaches, empirical evaluations demonstrate its consistent
robustness across varying hyperparameter configurations.

E.3 COMPARED TO HYGEN

HyGen (Zhang et al., 2024) is a recent work that focuses on integrating offline pertaining and online
exploration to speed up multi-task MARL for policy transfer. HyGen first pre-trains the skill space
with an action decoder using the global information, then implements online exploration to maintain
a hybrid replay buffer using offline and online data, improving the high-level policy and refining the
action decoder simultaneously. Compared to HyGen, our method requires no online exploration
and pretraining steps. HyGen only conducts common skills learning while our method leverages
task-specific skills to complement the common skills discovery. We compare our method to HyGen
in the SMAC’s Marine hard task set and propose the empirical results in Table 17. While HiSSD
demonstrates superior performance over HyGen across most tasks under expert-level data quality
conditions, HyGen capitalizes on online exploration to achieve policy refinement when provided
with moderate-quality offline datasets.

E.4 EXTENDED ABLATION STUDY

To demonstrate the effectiveness of learning task-specific skills, we conduct a variant of HiSSD
named w/o Specific and present the empirical results in Table 18. We find that policy with only
common skills significantly outperforms the BC-based method, learning both skills further improves
the transfer capability of the policy.
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Table 12: Average test win rates in the Stalker-Zealot task set with different data qualities. Bold
represents the best score in each task.

Tasks Expert Medium
BC-best UPDeT-m ODIS Hi-SSD (Ours) BC-best UPDeT-m ODIS Hi-SSD (Ours)

Source Tasks

2s3z 93.1± 4.6 50.0±33.4 97.7± 2.6 95.2± 1.0 48.8± 9.8 35.0±23.0 49.2± 8.4 32.3±11.7
2s4z 78.1± 8.1 23.4±26.6 60.9± 6.8 79.8± 6.0 12.5± 8.1 18.8±10.3 32.8±12.2 17.0± 2.2
3s5z 92.5±4.2 17.2±19.8 87.5± 9.6 92.8± 5.0 24.4±12.4 25.6±24.2 28.9± 6.8 24.4± 7.9

Unseen Tasks

1s3z 45.6±23.8 1.6± 1.6 76.6± 3.5 81.6±15.2 21.9±37.6 3.8± 5.0 41.4±18.8 44.2± 9.9
1s4z 60.0±32.3 26.6±19.3 17.2±10.5 42.0±26.1 6.2± 7.7 2.5± 3.6 50.7± 7.5 18.1±11.0
1s5z 45.6±26.9 29.7±26.4 2.5 ± 2.3 16.7±12.3 3.1± 2.6 5.0± 4.2 14.1± 8.4 2.5± 2.2
2s5z 75.6±11.9 23.4±22.2 27.3± 6.0 79.7± 2.2 14.4± 9.0 16.9±14.1 32.0± 4.6 11.3± 3.7
3s3z 80.6± 9.1 20.3±10.9 89.1± 5.2 88.0± 4.5 45.6±14.6 24.4±28.6 23.4± 9.2 21.9±10.7
3s4z 92.5± 5.1 12.5±19.9 96.9± 2.2 88.1± 9.0 40.0±19.0 28.8±31.6 50.8±15.5 17.2± 4.5
4s3z 67.5±19.8 6.2± 4.4 64.1±13.0 88.6± 4.1 28.8±26.4 11.2±18.0 13.3± 7.5 31.9±23.2
4s4z 53.1±18.4 7.8±13.5 79.7±10.9 73.4± 5.2 20.0±12.0 1.2± 1.5 12.5± 7.0 13.2± 6.5
4s5z 40.6±19.1 5.5± 7.8 86.7±12.6 65.6± 3.7 14.4± 8.5 5.6± 8.5 7.0± 4.1 4.5± 1.3
4s6z 48.1±23.8 4.7± 6.4 88.3± 8.4 68.4± 4.9 3.8± 3.6 1.9± 2.5 1.6± 1.6 0.9± 0.9

Medium-Expert Medium-Replay

Source Tasks

2s3z 57.5±25.1 57.5±27.1 58.6±15.5 68.1± 8.1 3.1± 2.6 14.4±13.2 15.6±18.2 9.0± 1.5
2s4z 37.5±15.3 53.1±24.6 41.4± 7.8 41.9±10.2 5.2± 7.4 12.5± 9.7 7.8± 5.2 6.0± 1.2
3s5z 63.1±13.3 35.0±23.5 41.4±18.5 57.8±10.7 31.3± 6.3 20.0±16.6 18.8± 3.1 17.5± 2.0

Unseen Tasks

1s3z 55.6±37.7 4.4± 8.8 72.7±12.2 73.0±10.2 24.0±15.4 0.0± 0.0 21.1±20.4 36.3± 7.1
1s4z 25.0±30.7 11.9± 9.8 44.5±20.3 32.3±30.5 2.1± 2.9 7.5±10.0 6.2± 7.7 24.8± 9.1
1s5z 14.4±19.4 3.8± 4.6 42.2±31.4 9.4± 9.5 7.3± 6.4 11.9± 9.6 7.8± 6.4 4.4± 2.2
2s5z 26.9±20.2 37.5±22.5 43.0±10.7 25.6± 7.8 12.5±15.5 20.0±16.8 14.1± 8.1 16.5± 2.8
3s3z 35.6±18.0 33.8±15.0 50.0±13.3 56.6±25.6 35.4±12.1 17.5±12.3 25.0±20.1 9.6± 3.3
3s4z 74.4±16.3 43.1±20.7 52.3± 9.5 71.7± 9.7 20.8± 9.0 15.6±11.2 19.5±16.6 22.5±10.6
4s3z 69.8± 7.8 23.8±21.0 17.2± 7.2 60.5±15.1 17.7± 5.3 11.2±15.0 8.6±14.9 11.0±10.4
4s4z 41.9±14.9 10.6±13.8 20.3± 6.8 37.3± 9.4 15.6± 6.8 5.6± 9.8 4.7± 8.1 9.4± 1.8
4s5z 17.3± 5.3 11.9±16.1 21.9± 2.2 17.0± 4.1 1.0± 1.5 10.6±19.7 0.8± 1.4 0.8± 0.8
4s6z 13.8± 3.2 5.0± 8.5 18.0± 5.1 19.7± 5.9 0.0± 0.0 6.9±13.8 2.3± 4.1 0.4± 0.3

Table 13: Average test win rates in the Stalker-Zealot task set with different data qualities.

Data Qualities BC-best UPDeT-m ODIS HiSSD

Source Tasks

Expert 87.9± 5.6 30.2±26.6 82.0± 6.3 89.3± 4.0
Medium 28.6±10.1 26.5±19.2 37.0± 9.1 24.6± 7.3
Medium-Expert 52.9±17.9 48.5±25.1 47.1±13.9 55.9± 9.7
Medium-Replay 13.2± 5.4 15.6±13.2 14.1± 8.8 10.8± 1.6

Target Tasks

Expert 60.9±19.0 13.8±13.2 62.8± 7.5 69.2± 8.7
Medium 19.8±14.1 10.1±11.8 24.7± 8.4 16.6± 7.4
Medium-Expert 37.5±17.4 18.6±14.1 38.2±11.9 40.3±12.8
Medium-Replay 13.6±7.6 10.7±11.8 11.0±10.8 13.6± 4.8
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Table 14: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for the
model’s sensitivity analysis to ϵ. ϵ balances the imitation and exploration in offline value estimation.

Tasks Expert
ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7 ϵ = 0.9 (Ours)

Source Tasks

3m 99.6± 0.6 99.9± 0.0 99.4± 0.5 99.4± 0.5 99.5± 0.3
5m6m 73.5± 5.1 71.3± 3.3 70.8± 2.4 74.4± 1.5 66.1± 7.0
9m10m 98.3± 0.3 97.1± 0.3 99.0± 0.3 96.7± 0.6 95.5± 2.7

Unseen Tasks

4m 97.7± 1.6 99.0± 0.3 99.0± 0.8 98.4± 0.5 99.2± 1.2
5m 99.8± 0.3 99.8± 0.3 99.2± 0.3 99.1± 1.2 99.2± 1.2
10m 99.2± 0.8 98.5± 1.6 99.2± 0.3 99.2± 0.3 98.4± 0.8
12m 69.0±33.7 67.9±17.0 71.0±26.0 87.5± 7.6 75.5±17.9
7m8m 29.2± 2.8 23.1± 4.9 32.7± 3.8 25.4± 2.9 35.3± 9.8
8m9m 46.0±16.6 47.5± 9.2 45.4±14.8 44.6±11.4 47.0± 6.2
10m11m 82.1± 4.3 81.4± 9.7 80.4± 3.1 72.3±13.8 86.3±14.6
10m12m 11.5± 6.9 9.4± 5.9 8.1± 2.2 7.3± 5.5 14.5± 9.1
13m15m 0.2± 0.3 0.4± 0.6 0.6± 0.5 0.4± 0.6 1.3± 2.5

Table 15: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for
the model’s sensitivity analysis to α. α weights the TD-residual Eq. 7.

Tasks Expert
α = 1 α = 5 α = 20 α = 10 (Ours)

Source Tasks

3m 99.2± 0.6 99.9± 0.0 99.8± 0.3 99.5± 0.3
5m6m 70.8± 4.7 71.0± 2.9 66.5± 1.1 66.1± 7.0
9m10m 97.1± 1.8 97.9± 2.1 93.4± 1.6 95.5± 2.7

Unseen Tasks

4m 98.4± 0.0 98.1± 0.5 99.0± 0.6 99.2± 1.2
5m 99.8± 0.3 99.8± 0.3 98.8± 1.8 99.2± 1.2
10m 99.4± 0.5 99.4± 0.9 99.0± 0.3 98.4± 0.8
12m 59.2±36.2 63.8±33.6 66.5±26.5 75.5±17.9
7m8m 34.5± 5.0 34.8±10.3 34.6± 2.8 35.3± 9.8
8m9m 46.3± 2.5 59.2±13.3 53.3± 3.6 47.0± 6.2
10m11m 83.3± 8.2 77.9±13.7 77.3± 6.8 86.3±14.6
10m12m 10.2± 4.1 8.3± 8.3 11.9± 6.7 14.5± 9.1
13m15m 2.5± 3.5 0.2± 0.3 1.3± 1.8 1.3± 2.5

Table 16: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for
the model’s sensitivity analysis to β. β controls the margin of regularization in Eq. 11.

Tasks Expert
β = 0.001 β = 0.01 β = 0.1 β = 1 β = 0.05 (Ours)

Source Tasks

3m 99.8± 0.3 99.9± 0.0 96.8± 4.5 99.5± 0.2 99.5± 0.3
5m6m 65.3± 1.1 64.7± 2.4 64.5± 4.9 65.9± 2.7 66.1± 7.0
9m10m 95.4± 2.6 95.3± 0.3 94.3± 0.6 92.0± 2.4 95.5± 2.7

Unseen Tasks

4m 98.3± 1.9 97.7± 0.6 97.5± 2.2 98.8± 0.3 99.2± 1.2
5m 99.0± 0.8 98.8± 0.3 99.0± 0.9 99.1± 0.8 99.2± 1.2
10m 97.5± 1.4 98.6± 0.3 96.7± 3.4 97.3± 1.3 98.4± 0.8
12m 64.8±14.9 66.9±22.0 68.1±30.3 75.2±20.3 75.5±17.9
7m8m 34.0± 5.5 35.4±12.0 36.5±13.0 40.6± 5.3 35.3± 9.8
8m9m 50.8±13.3 40.2± 2.8 58.1±13.0 41.3± 7.2 47.0± 6.2
10m11m 79.4± 2.3 79.6± 7.4 80.6±17.4 76.7±15.8 86.3±14.6
10m12m 7.7± 1.6 11.2±10.6 7.9± 3.1 14.4± 8.5 14.5± 9.1
13m15m 1.0± 0.8 1.7± 1.6 1.0± 1.1 2.1± 1.8 1.3± 2.5
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Table 17: Average test win rates of the best policies over five random seeds in the task set Marine-
Hard with Expert and Medium data qualities. Results of BC-best stands for the best test win rates
between BC-t and BC-r.

Tasks Expert Medium
BC-best HyGen HiSSD (Ours) BC-best HyGen HiSSD (Ours)

Source Tasks

3m 97.7± 2.6 99.1± 1.0 99.5± 0.3 65.4±14.7 91.5±11.0 62.7± 5.7
5m6m 50.4± 2.3 61.2± 8.0 66.1± 7.0 21.9± 3.4 31.6± 7.0 26.4± 3.8
9m10m 95.3± 1.6 96.4± 3.0 95.5± 2.7 63.8±10.9 79.2± 4.0 73.9± 2.3

Unseen Tasks

4m 92.1± 3.5 95.8± 4.0 99.2± 1.2 48.8±21.1 91.4± 8.0 77.3±10.2
5m 87.1±10.5 99.5± 1.0 99.2± 1.2 76.6±14.1 96.5± 6.0 88.4± 8.4
10m 90.5± 3.8 93.5± 5.0 98.4± 0.8 56.2±20.6 96.4± 3.0 98.0± 0.3
12m 70.8±15.2 85.2± 6.0 75.5±19.7 24.0±10.5 81.5±14.0 86.4± 6.0
7m8m 18.8± 3.1 28.9±12.0 35.3± 9.8 1.6± 1.6 24.5± 9.0 14.2±10.1
8m9m 15.8± 3.3 25.7± 9.0 47.0± 6.2 3.1± 3.8 24.5± 9.0 15.3± 2.8
10m11m 45.3±11.1 57.2±13.0 86.3±14.6 19.7± 8.9 47.2±13.0 43.6± 4.6
10m12m 1.0± 1.5 13.8± 4.0 14.5± 9.1 0.0± 0.0 5.2± 2.0 0.6± 0.5
13m15m 0.0± 0.0 9.5± 5.0 1.3± 2.5 0.6± 1.3 9.3± 6.0 1.4± 2.4

Table 18: Additional ablation studies on HiSSD. We report average test win rates of the best policies
over five random seeds in the task set Marine-Hard with different data qualities.

Data Qualities w/o Specific BC-best HiSSD

Source Tasks

Expert 85.9±16.4 81.1±21.8 84.5±17.1
Medium 53.1±20.0 50.3±20.1 55.9±19.2
Medium-Expert 63.5±26.1 41.7±18.5 64.2±23.5
Medium-Replay 47.7±25.1 46.5±26.7 51.9±24.0

Target Tasks

Expert 55.0±37.4 46.8±36.8 61.2±37.4
Medium 37.6±34.2 25.6±26.8 48.6±40.1
Medium-Expert 51.2±34.3 38.8±33.0 57.6±37.5
Medium-Replay 42.8±36.2 41.2±33.7 48.7±39.0
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