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Abstract1

Graph Neural Networks (GNNs) have achieved remarkable performance in mod-2

eling graphs for various applications. However, most existing GNNs assume the3

graphs exhibit strong homophily in node labels, i.e., nodes with similar labels4

are connected in the graphs. They fail to generalize to heterophilic graphs where5

linked nodes may have dissimilar labels and attributes. Therefore, in this pa-6

per, we investigate a novel framework that performs well on graphs with either7

homophily or heterophily. More specifically, we propose a label-wise message8

passing mechanism to avoid the negative effects caused by aggregating dissimilar9

node representations and preserve the heterophilic contexts for representation learn-10

ing. We further propose a bi-level optimization method to automatically select the11

model for graphs with homophily/heterophily. Theoretical analysis and extensive12

experiments demonstrate the effectiveness of our proposed framework for node13

classification on both homophilic and heterophilic graphs.14

1 Introduction15

Graph-structured data is very pervasive in the real-world such as knowledge graphs, traffic networks,16

and social networks. Therefore, it is important to model graphs for downstream tasks such as traffic17

prediction [39], recommendation system [14] and drug generation [3]. To capture the topology18

information in graph-structured data, Graph Neural Networks (GNNs) [36] adopt a message-passing19

mechanism which learns a node’s representation by iteratively aggregating the representations of its20

neighbors. This can enrich the node features and preserve the node attributes and local topology for21

various downstream tasks.22

Despite the great success of GNNs in modeling graphs, there is a concern in processing heterophilic23

graphs where edges often link nodes dissimilar in attributes or labels. Specifically, existing works [42,24

9] find that GNNs could fail to generalize to graphs with heterophily due to their implicit/explicit25

homophily assumption. For example, Graph Convolutional Network (GCNs) is even outperformed26

by MLP that ignores the graph structure on heterophilic website datasets [42]. However, a recent27

work [26] argues that homophily assumption is not a necessity for GNNs. They show that GCN28

can work well on dense heterophilic graphs whose neighborhood patterns of different classes are29

distinguishable. But their analysis and conclusion is limited to the heterophilic graphs under strict30

conditions, and fails to show the relation between heterophily levels and performance of GNNs. Thus,31

in Sec. 3, we conduct thoroughly theoretical and empirical analysis on GCN to investigate the impacts32

of heterophily levels, which cover all the aforementioned observations. As the Theorem 1 and Fig. 133

show, the performance of GCN will firstly decrease then increase with the increment of heterophily34

levels. And the aggregation in GCN could even lead to non-discriminative representations under35

certain conditions.36

Though heterophilic graphs challenge existing GNNs, the heterophilic neighborhood context itself37

provides useful information [26, 6]. Generally, two nodes of the same class tend to have similar38

heterophilic neighborhood contexts; while two nodes of different classes are more likely to have39

different heterophilic neighborhood contexts, which is verified in Appendix F. Thus, a heterophilic40

context-preserving mechanism can lead to more discriminative representations. One promising way41
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to preserve the heterophilic context is to conduct label-wise aggregation, i.e., separately aggregate42

neighbors in each class. In this way, we can summarize the heterophilic neighbors belonging to43

each class to an embedding to preserve the local context information for representation learning. As44

shown in the example in Fig. 2, for node vA, with label-wise aggregation, vA will be represented45

as [1.0, 5.5, 2.0, non-existence], in the order of vA’s attribute, blue, green, and orange neighbors,46

respectively. Compared with vB , vA’s representations of central node and neighborhood context47

differ significantly with vB . While for the aggregation in GCN, the obtained representations are48

rather similar for two nodes. In other words, we obtain more discriminative features on heterophilic49

graphs with label-wise aggregation, which is also verified by our analysis in Theorem 2. Though50

promising, there is no existing work on exploring label-wise message passing to address the challenge51

of heterophilic graphs.52

Therefore, in this paper, we investigate novel label-wise aggregation for graph convolution to facilitate53

the node classification on heterophilic graphs. In essence, we are faced with two challenges: (i)54

the label-wise aggregation needs the label of each node; while for node classification, we are only55

given a small set of labeled nodes. How to adopt label-wise graph convolution on sparsely labeled56

heterophilic graphs to facilitate node classification? (ii) In practice, the homophily levels of the57

given graphs can be various and are often unknown. For homophily graphs, the label-wise graph58

convolution might not work as well as previous GNNs embedded with homophily assumption. How59

to ensure the performance on both heterophilic and homophilic graphs? In an attempt to address these60

challenges, we propose a novel framework Label-Wise GCN (LW-GCN). LW-GCN adopts a pseudo61

label predictor to predict pseudo labels and designs a novel label-wise message passing to preserve62

the heterophilic contexts with pseudo labels. To handle both heterophilic and homophilic graphs,63

apart from label-wise message passing GNN, LW-GCN also utilizes a GNN for homophilic graphs,64

and adopts bi-level optimization on the validation data to automatically select the better model for the65

given graph. The main contributions are:66

• We theoretically show impacts of heterophily levels to GCN and demonstrate the potential limita-67

tions of GCN in learning on heterophilic graphs;68

• We design a label-wise graph convolution to preserve the local context in heterophilic graphs,69

which is also proven by our theoretical and empirical analysis;70

• We propose a novel framework LW-GCN, which deploys a pseudo label predictor and an automatic71

model selection module to achieve label-wise aggregation on sparsely labeled graphs and ensure72

the performance on both heterophilic and homophilic graphs; and73

• Extensive experiments on real-world graphs with heterophily and homophily are conducted to74

demonstrate the effectiveness of LW-GCN.75

2 Related Work76

Graph neural networks (GNNs) have shown great success for various applications such as social77

networks [14, 10], financial transaction networks [34, 12] and traffic networks [39, 40]. Based on78

the definition of the graph convolution, GNNs can be categorized into two categories, i.e., spectral-79

based [4, 11, 19, 21] and spatial-based [33, 37, 1]. Spectral-based GNN models are defined according80

to spectral graph theory. Bruna et al. [4] firstly generalize convolution operation to graph-structured81

data from spectral domain. GCN [19] simplifies the graph convolution by first-order approximation.82

For spatial-based graph convolution, it aggregates the information of the neighbors nodes [27, 14, 7].83

For instance, spatial graph convolution that incorporates the attention mechanism is applied in84

GAT [33] to facilitate the information aggregation. Recently, to learn better node representations,85

deep graph neural networks [8, 20, 22] and self-supervised learning methods [32, 18, 43, 30, 38]86

have been investigated.87

However, the aforementioned methods are generally designed based on the homophily assumption of88

the graph. Low homophily level in some real-word graphs can largely degrade their performance [42].89

Some efforts [28, 2, 16, 42, 41, 9, 15, 24, 23] have been taken to address the problem of heterophilic90

graphs. For example, H2GCN [42] investigates three key designs for GNNs on heterophilic graphs.91

SimP-GCN [16] adopts a node similarity preserving mechanism to handle graphs with heterophiliy.92

FAGCN [2] adaptively aggregates low-frequency and high-frequency signals from neighbors to learn93

representations for graphs with heterophily. GPR-GNN [9] proposes a generalized PageRank GNN94

architecture that can learn positive/negative weights for the representations after different steps of95

propagation to mitigate the graph heterophily issue. Recently, BM-GCN [15] proposes to utilize96
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pseudo labels in the convolutional operation. Specifically, the pseudo labels are used to obtain a97

block similarity matrix to re-weight the edges in heterophilic graphs. Then, node pairs belonging to98

different label combinations could have different information exchange. Our LW-GCN is inherently99

different from these methods: (i) We propose a novel label-wise graph convolution to better capture100

the neighbors’ information in heterophilic graphs; and (ii) Automatic model selection is deployed to101

achieve state-of-the-art performance on both homophilic and heterophilic graphs.102

3 Preliminaries103

In this section, we first present the notations and definition followed by the introduction of the GCN’s104

design. We then conduct the theoretical analysis to investigate the impacts of heterophily to GCN.105

3.1 Notations and Definition106

Let G = (V, E ,X) be an attributed graph, where V = {v1, ..., vN} is the set of N nodes, E ⊆ V × V107

is the set of edges, and X = {x1, ...,xN} is the set of node attributes. A ∈ RN×N represents108

the adjacency matrix of the graph G, where Aij = 1 indicates an edge between nodes vi and vj ;109

otherwise, Aij = 0. In the node classification task, each node belongs to one of C classes. We use yi110

to denote label of node vi. Graphs can be split into homophilic and heterophilic graphs based on how111

likely edges link nodes in the same class. The homophily level is measured by the homophily ratio:112

Definition 1 (Homophily Ratio) It is the fraction of edges in a graph that connect nodes of the113

same class. The homophily ratio h is calculated as h =
|{(vi,vj)∈E:yi=yj}|

|E| .114

When the homophily ratio is small, most of the edges will link nodes from different classes, which115

indicates a heterophilic graph. In homophilic graphs, connected nodes are more likely to belong to116

the same class, which will lead to a homophily ratio close to 1.117

3.2 How does the Heterophily Affect the GCN?118

GCN [19] is one of the most widely used graph neural networks. The operation in each layer of GCN119

can be written as:120

H(k+1) = σ(ÃH(k)W(k)), (1)

where H(k) is the node representation matrix of the output of the k-th layer and Ã is the normalized121

adjacency matrix. Generally, the symmetric normalized form D− 1
2AD− 1

2 or D−1A is used as Ã,122

where D is a diagonal matrix with Dii =
∑

i Aij . The adjacency matrix can be augmented with123

a self-loop. σ is an activation function such as ReLU. In a single layer of GCN, the process can124

be split into two steps. First, GCN layer averages the neighbor features with Z = ÃX. Then, a125

non-linear transformation σ(ZW) is applied to obtain intermediate features or final predictions. The126

step of averaging the neighbor features can benefit the node classification when the neighbors have127

similar features. However, for heterophilic graphs, mixing neighbors that possess different features128

may result in poor representations for node classification. This could be justified by the following129

theorem, which thoroughly analyzes the impacts of the heterophily level to the linear separability of130

the representations after one step aggregation in GCN.131

Assumptions. We first discuss the assumptions of the heterophilic graphs: (i) Following previous132

works [42], the graph G is considered as a d-regular graph, i.e., each node has d neighbors; For133

each node v, the label distribution of its neighbor node u ∈ N (v) follows P (yu = yv|yv) =134

h, P (yu = y|yv) = 1−h
C−1 ,∀y ̸= yv. (ii) For nodes in different classes, their heterophilic neighbors’135

features follow different distributions and dimensions of features are independent to each other.136

Specifically, let Nk(v) denote node v’s neighbors of class k. For two nodes v and s in classes i and j137

(i ̸= j), the features of their heterophilic neighbors Nk(v) and Nk(s) in class k ∈ {1, ..., C} follow138

two different normal distributions N(µik,σik) and N(µjk,σjk), where µik and µjk represent139

the means, σik and σik denote the standard deviations. Intuitively, though nodes in Nk(v) and140

Nk(s) belong to the same class k, they are connected to nodes of different classes because of141

their different properties. For example, in the molecule, the atom in the same class will exhibit142

different features, when they are linked to different atoms. Therefore, this assumption is valid. And143

it is also verified by the empirical analysis on large real-world heterophilic graphs in Appendix F.144

Let σi =
√

1
C

∑C
k=1(µik − µ̄i)

⊙
(µik − µ̄i), where µ̄i = 1

C

∑C
k=1 µik and

⊙
represents the145

element-wise product. We can have the following theorem.146

3



Label-Wise Graph Convolutional Network for Heterophilic Graphs

Theorem 1 For an attributed graph G = (V, E ,X) that follows the above assumptions in Sec. 3.2,147

if |µii − µjj | > |µik − µjk| and σi > σii, ∀k ∈ {1, . . . C}, as the decrease of homophily ratio148

h, the discriminability of representations obtained by the averaging process in GCN layer, i.e.149

Z = D−1AX, will firstly decrease until h = 1
C then increase. When h = 1

C and d <
σ2

i

|µik−µjk|2
,150

the representations after averaging process will be nearly non-discriminative.151

The detailed proof can be found in Appendix C. The conditions in this theorem generally hold. Since152

the intra-class distance is often much smaller than inter-calss distance, |µii − µjj | > |µik − µjk| is153

generally meet in real-world graphs. As for σi, it computes the standard deviations of mean neighbor154

features in different classes. As a result, σi is usually much larger than the σii and |µik − µjk|.155

Therefore, the Theorem 1 generally holds for the real-world graphs. And we can observe from156

Theorem 1 that (i) heterophily level in a certain range will largely degrade the performance of157

GCN; (ii) GCN will be more negatively affected by the heterophilic graphs with lower node degrees.158

Though our analysis is based on GCN, it can be easily extended to GNNs that average neighbor159

representations in the aggregation (e.g. GraphSage [14], APPNP [20], and SGC [35]). For the160

extension of the analysis on more complex message-passing mechanism, we leave it as future work.161

Figure 1: Impacts of the het-
erophily levels to GCN and GAT.

To empirically verify the above theoretical analysis, we synthe-162

size graphs with different homophily ratios and node degrees163

by deleting/adding edges in the crocodile graph following Ap-164

pendix E.1. The results of GCN and GAT [33] on graphs with165

various node degrees are shown in Fig. 1. We can observe that166

(i) as the homophily ratio decreases the performance of GCN167

will keep decreasing until h is around 0.2 (h ≈ 1
C ), then the168

performance will start increase;(ii) when h is around 1
C , the169

performance can be very poor and even much worse than MLP170

on the graph with low node degrees. The observations are in171

consistent with our Theorem 1, which further demonstrates the172

general limitations of current GNN models in learning on graphs with heterophily. This trend has173

also be reported in [42, 26, 25]. Moreover, theoretical analysis is conducted in [26] to prove the174

effectiveness of GCN on heterophilic graphs with discriminative neighborhoods. However, it can175

only explain the observation when h < 1
C . By contrast, our theoretical analysis can well explain176

the whole trend of GCN performance w.r.t the homophily ratio. A similar conclusion is made with177

the theoretical analysis in [25], but node features are not incorporated and are replaced by label178

embedding vectors in their analysis.179

3.3 Problem Definition180

Based on the analysis above, we can infer that current GNNs are effective on graphs with high181

homophily; while they are challenged by the graphs with heterophily. In real world, we are usually182

given graphs with various homophily levels. In addition, the graphs are often sparsely labeled. And183

due to the lack of labels, the homophily ratio of the given graph is generally unknown. Thus, we184

aim to develop a framework that works for semi-supervised node classification on graphs with any185

homophily level. The problem is defined as:186

Problem 1 Given an attributed graph G = (V, E ,X) with a set of labels YL for node set VL ⊂ V ,187

the homophily ratio h of G is unknown, we aim to learn a GNN which accurately predicts the labels188

of the unlabeled nodes, i.e., f(G,YL) → ŶU , where f is the function we aim to learn and ŶU is the189

set of predicted labels for unlabeled nodes.190

4 Methodology191

As the analysis in Sec. 3 shows, the aggregation process in GCN will mix the neighbors in various192

labels/distributions in heterophilic graphs, resulting in non-discriminative representations for local193

context. Based on this motivation, we propose to adopt label-wise aggregation in graph convolution,194

i.e., neighbors in the same class are separately aggregated, to preserve the heterophilic context. Next,195

we give the details of the label-wise aggregation along with the theoretical analysis that verifies its196

capability in obtaining distinguishable representations for heterophilic context. Then, we present how197

to apply label-wise graph convolution on sparsely labeled graphs and how to ensure performance on198

both heterophilic and homophilic graphs.199
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Figure 2: The illustration of label wise aggregation and overall framework of our LW-GCN.

4.1 Label-Wise Graph Convolution200

In heterophilic graphs, we observe that the heterophilic neighbor context itself provides useful201

information. Let Nk(v) denote node v’s neighbors of label class k. As shown in Appendix F, for two202

nodes u and v of the same class, i.e., yu = yv , the features of nodes in Nk(u) are likely to be similar203

to that of nodes in Nk(v); while for nodes u and s with yu ̸= ys, the features of nodes in Nk(u) are204

likely to be different from that in Nk(s). Therefore, for each node v ∈ V , we propose to summarize205

the information of Nk(v) by label-wise aggregation to capture the useful heterophilic context. Let206

av,k be the aggregated representation of neighbors in class k, the process of obtaining representation207

for heterophilic context with the label-wise aggregation can be formally written as:208

av,k =
∑

u∈Nk(v)

1

|Nk(v)|
xu, hc

v = CONCAT(av,1, . . . ,av,C), (2)

where C is the number of classes. hc
v denotes the representation of the neighborhood context. As209

it is shown in Eq.(2), concatenation is applied to obtain representation of context to preserve the210

heterophilic context. When there is no neighbor of v belonging to class k, zero embedding is211

assigned for class k. We then can augment the representation of the centered node with the context212

representation as the general design of GNNs. Specifically, we concatenate the context representation213

hc
v and centered node representation xv followed by the non-linear transformation:214

hv = σ(W · CONCAT(xv,h
c
v)), (3)

where W denotes the learnable parameters in the label-wise graph convolution and σ denotes the215

activation function such as ReLU.216

In this section, we further prove the superiority of label-wise graph convolution in learning discrima-217

tive representations for heterophilic context by the following theorem.218

Theorem 2 We consider an attributed graph G = (V, E ,X) that follows the aforementioned assump-219

tions in Sec. 3.2. If |µik −µjk| >
√

C
d σik,∀k ∈ {1, . . . , C}, the heterophilic context representation220

hc
v that is obtained by the label-wise aggregation with Eq.(2) will keep its discriminability regardless221

the value of homophily ratio h.222

The detailed proof is presented in Appendix D. The difference between the groups of neighbors is223

naturally larger than the intra-group variance. Since
√

C
d is usually small (e.g. around 1.8 in the224

Texas graph), the condition |µik − µjk| >
√

C
d σik is generally satisfied in real-world scenarios. We225

also adopt the label-wise graph convolution on the synthetic graphs with different homophily ratios226

to empirically show its effectiveness. The results can be found in Appendix E.2.227

4.2 LW-GCN: A Unified Framework for Graphs with Homophily or Heterophily228

Though the analysis in Sec.3.1 proves the effectiveness of label-wise graph convolution in processing229

graphs with heterophily, there are still two major challenges for semi-supervised node classification230

on graphs with any heterophily levels: (i) how to conduct label-wise graph convolution on heterophilic231

graphs with a small number of labeled nodes; and (ii) how to make it work for both heterophilic232

and homophilic graphs. To address these challenges, we propose a novel framework LW-GCN,233

which is illustrated in Fig. 2. LW-GCN is composed of an MLP-based pseudo label predictor fP ,234

a GNN fC using label-wise graph convolution, a GNN fG for homophilic graph, and an automatic235
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model selection module. The predictor fP takes the node attributes as input to give pseudo labels.236

fC utilizes the estimated pseudo labels from fP to conduct label-wise graph convolution on G for237

node classification. To ensure the performance on graphs with any homophily level, LW-GCN also238

trains fG, i.e., a GNN for homophilic graphs, and can automatically select the model for graphs with239

unknown homophily ratios. For the model selection module, a bi-level optimization on validation set240

is applied to learn the weights for model selection. Next,we give the details of each component.241

4.2.1 Pseudo Label Prediction.242

In label-wise graph convolution, neighbors in different classes are separately aggregated to update243

node representations. However, only a small number of nodes are provided with labels. Thus, a244

pseudo label predictor fP is deployed to estimate labels for label-wise aggregation. Specifically, a245

MLP is utilized to obtain pseudo label of node v as ŷP
v = MLP(xv), where xv is the attributes of246

node v. Note that, we use MLP as the predictor because message passing of the GNNs may lead to247

poor predictions on heterophilic graphs. The loss function for training fP is:248

min
θP

LP =
1

|Vtrain|
∑

v∈Vtrain

l(ŷP
v , yv), (4)

where Vtrain is the set of labeled nodes in the training set, yv denote the true label of node v, θP249

represents the parameters of the predictor fP ,and l(·) is the cross entropy loss.250

4.2.2 Architecture of LW-GCN for Heterophilic Graphs.251

With fP , we can get pseudo labels ŶP
U for unlabeled nodes VU = V\VL. Combining it with the252

provided YL, we have labels YP ∈ (ŶP
U ∪ YL) necessary for label-wise aggregation in Eq.(2). Then,253

node representations can be updated with the heterophilic context by Eq.(3). Multiple layers of254

label-wise graph convolution can be applied to incorporate more hops of neighbors in representation255

learning. The process of one layer label-wise graph convolution with pseudo labels can be rewritten256

as:257

a
(l)
v,k =

∑
u∈NP

k
(v)

1

|NP
k (v)|

h(l)
u , hl+1

v = σ
(
W(l) · CONCAT(h(l)

v , a
(l)
v,1, . . . , a

(l)
v,C)

)
, (5)

where NP
k (v) = {u : (v, u) ∈ E ∧ ŷPu = k} stands for node v’s neighbors with estimated label k.258

h
(l)
v is the representation of node v at the l-th layer label-wise graph convolution with h

(0)
v = xv . In259

heterophilic graphs, different hops of neighbors may exhibit different distributions which can provide260

useful information for node classification. Therefore, the final node prediction can be conducted by261

combining the intermediate representations of the model with K layers:262

ŷC
v = softmax

(
WC · COMBINE(h(1)

v , ...,h(K)
v )

)
, (6)

where WC is a learnable weight matrix, ŷC
v is predicted label probabilities of node v. Various263

operations such as max-pooling and concatenation [37] can be applied as the COMBINE function.264

4.2.3 Automatic Model Selection265

In heterophilic graphs, the homophily ratio is very small and even can be around 0.2 [28]. With a266

reasonable pseudo label predictor, the label-wise aggregation with pseudo labels will mix much less267

noise than the general GNN aggregation. In contrast, for homophilic graphs such as citation networks,268

their homophily ratios are close to 1. In this situation, directly aggregating all the neighbors may269

introduce less noise in representations than aggregating label-wisely as the pseudo-labels contain270

noises. Therefore, it is necessary to determine whether to apply the label-wise graph convolution or271

the state-of-the-art GNN for homophilic graphs. One straightforward way is to select the model based272

on the homophily ratio. However, graphs are generally sparsely labeled which makes it difficult to273

estimate the real homophily ratio. To address this problem, we propose to utilize the validation set to274

automatically select the model.275

In the model selection module, we combine predictions of the label-wise aggregation model for276

heterophilic graphs and traditional GNN models for homophilic graphs. Predictions from the GNN277

fG for homophilic graphs are given by ŶG = GNN(A,X), where the GNN is flexible to various278

models for homophilic graphs. Here, we select GCNII [8] which achieves state-of-the-art results279
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on homophilic graphs. The model selection can be achieved by assigning higher weight to the280

corresponding model prediction. The combined prediction is given as:281

ŷv =
exp (ϕ1)∑2
i=1 exp (ϕi)

ŷC
v +

exp (ϕ2)∑2
i=1 exp (ϕi)

ŷG
v , (7)

where ŷG
v ∈ ŶG is the prediction of node v from fG. ϕ1 and ϕ2 are the learnable weights to control282

the contributions of two models in final prediction. ϕ1 and ϕ2 can be obtained by finding the values283

that lead to good performance on validation set. More specifically, this goal can be formulated as the284

following bi-level optimization problem:285

min
ϕ1,ϕ2

Lval(θ
∗
C(ϕ1, ϕ2), θ

∗
G(ϕ1, ϕ2), ϕ1, ϕ2) s.t. θ∗C , θ

∗
G = arg min

θC ,θG
Ltrain(θC , θG, ϕ1, ϕ2)

(8)
where Lval and Ltrain are the average cross entropy loss of the combined predictions {ŷv : v ∈ Vval}286

and {ŷv : v ∈ Vtrain} on validation set and training set, respectively.287

4.3 An Optimization Algorithm of LW-GCN288

Computing the gradients for ϕ1 and ϕ2 is expensive in both computational cost and memory. To289

alleviate this issue, we use an alternating optimization schema to iteratively update the model290

parameters and the model selection weights.291

Updating Lower Level θC and θG. Instead of calculating θ∗C and θ∗G per outer iteration, we fix ϕ1292

and ϕ2 and update the mode parameters θG and θC for T steps by:293

θt+1
C = θtC − αC∇θCLtrain(θ

t
C , θ

t
G, ϕ1, ϕ2), θt+1

G = θtG − αG∇θGLtrain(θ
t
C , θ

t
G, ϕ1, ϕ2), (9)

where θtC and θtG are model parameters after updating t steps. αC and αG are the learning rates for294

θC and θG.295

Updating Upper Level ϕ1 and ϕ2. Here, we use the updated model parameters θTC and θTG to296

approximate θ∗C and θ∗G. Moreover, to further speed up the optimization, we apply first-order297

approximation [13] to compute the gradients of ϕ1 and ϕ2:298

ϕk+1
1 = ϕk

1 − αϕ∇ϕ1Lval(θ̄
T
C , θ̄

T
G, ϕ

k
1 , ϕ

k
2), ϕk+1

2 = ϕk
2 − αϕ∇ϕ2Lval(θ̄

T
C , θ̄

T
G, ϕ

k
1 , ϕ

k
2), (10)

where θ̄TC and θ̄TG means stopping the gradient. αϕ is the learning rate for ϕ1 and ϕ2.299

More details of the training algorithm are in Appendix A.300

5 Experiments301

In this section, we conduct experiments to demonstrate the effectiveness of LW-GCN. In particular,302

we aim to answer the following research questions:303

• RQ1 Is our LW-GCN effective in node classification on both homophilic and heterophilic graphs?304

• RQ2 Can label-wise aggregation learn representations that well capture information for prediction?305

• RQ3 How do the quality of pseudo labels and the automatic model selection affect LW-GCN?306

5.1 Experimental Settings307

Datasets. For homophilic graphs, we choose the widely used benchmark datasets, Cora, Citeseer,308

and Pubmed [19]. The dataset splits of homophilic graphs are the same as the cited paper. As for309

heterophilic graphs, we use three webpage datasets Texas, Cornell, and Wisconsin [28], and three310

subgraphs of wiki, i.e., Squirrel, Chameleon, and Crocodile [31]. Following [42], 10 dataset splits311

are used in each heterophilic graph for evaluation. In addition, we also use a large scale heterophilc312

citation network, i.e., arxiv-year [24]. 5 public splits of arxiv-year are used for evaluation. The313

statistics of the datasets are presented in Table 3 in the Appendix.314

Compared Methods. We compare LW-GCN with state-of-the-art GNNs, which includes GCN [19],315

MixHop [18], SuperGAT [17], and GCNII [8]. We also compare with the following state-of-the-art316

models designed for heterophilic graphs: FAGCN [2], SimP-GCN [16], H2GCN [42], GRP-GNN [9],317

BM-GCN [15], ASGC [5], LINKX [24] and GloGNN++ [23]. In addition, the MLP are evaluated on318

the datasets for reference. The details of these compared methods can be found in Appendix B.2.319
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Table 1: Node classification results (Accuracy(%) ± Std.) on homophilic/heterophilic graphs.

Dataset Wisconsin Texas Chameleon Squirrel Crocodile arxiv-year Cora Pubmed

Ave. Degree 2.05 1.69 15.85 41.74 30.96 6.9 4.01 4.50
Homo. Ratio 0.20 0.11 0.24 0.22 0.25 0.22 0.81 0.8

MLP 83.5 ±4.9 78.1 ±6.0 48.0 ±1.5 32.3 ±1.8 65.8 ±0.7 36.7 ±0.2 58.6 ±0.5 72.7 ±0.4
GCN 53.1 ±5.8 57.6 ±5.9 63.5 ±2.5 46.7 ±1.5 66.7 ±1.0 46.0 ±0.3 81.6 ±0.7 78.4 ±1.1
MixHop 70.2 ±4.8 60.6 ±7.7 61.2 ±2.2 44.1 ±1.1 67.6 ±1.3 46.1 ±0.5 80.6 ±0.2 78.9 ±0.5
SuperGAT 53.7 ±5.7 58.6 ±7.7 59.4 ±2.5 38.9 ±1.5 62.6 ±0.9 38.1 ±0.1 82.7 ±0.4 78.4 ±0.5
GCNII 82.1 ±3.9 68.6 ±9.8 63.5 ±2.5 49.4 ±1.7 69.0 ±0.7 47.2 ±0.3 84.2 ±0.5 80.2 ±0.2

FAGCN 83.3 ±3.7 79.5 ±4.8 63.9 ±2.2 43.3 ±2.5 67.1 ±0.9 40.6 ±0.4 83.1 ±0.6 78.8 ±0.3
SimP-GCN 85.5 ±4.7 80.5 ±5.9 63.7 ±2.3 42.8 ±1.4 63.7 ±2.3 OOM 82.8 ±0.1 80.3 ±0.2
H2GCN 84.7 ±3.9 83.7 ±6.0 54.2 ±2.3 36.0 ±1.1 66.7 ±0.5 49.1 ±0.1 81.6 ±0.4 79.5 ±0.2
GPRGNN 78.2 ±4.4 77.0 ±6.4 70.6 ±2.1 50.8 ±1.4 65.6 ±0.9 45.1 ±0.2 83.8 ±0.6 79.9 ±0.1
BM-GCN 77.6 ±5.9 81.9 ±5.4 69.4 ±1.7 53.1 ±1.8 64.3 ±1.1 OOM 81.5 ±0.5 77.9±0.4
ASGC 84.3 ±2.6 85.9 ±4.7 68.8 ±1.6 54.5 ±1.6 66.4 ±0.7 39.2 ±0.1 76.8 ±0.2 74.4 ±0.1
LINKX 75.5 ±5.7 74.6 ±8.4 68.4 ±1.4 61.8 ±1.8 79.4 ±0.6 56.0 ±1.3 64.7 ±0.4 70.4 ±0.7
GloGNN++ 88.0 ±3.2 83.2 ±4.3 71.2 ±2.5 57.9 ±2.0 78.4 ±0.9 54.8 ±0.3 66.7 ±1.9 78.1 ±0.2

LW-GCN 86.9 ±2.2 86.2 ±5.8 74.4 ±1.4 62.6 ±1.6 86.5 ±0.4 56.5 ±0.2 84.3 ±0.3 80.4 ±0.3
Weight for fC 0.981 0.960 0.986 0.987 0.999 0.942 0.001 0.006

Settings of LW-GCN. For the label predictor fP , we adopt a MLP with one-hidden layer. The320

dimension of the hidden layer in MLP is set as 64. As for the fC , we adopt two layers of label-wise321

message passing on all the datasets. More discussion about the impacts of the depth on LW-GCN is322

given in Sec. I. The other hyperparameters such as hidden dimension and weight decay are tuned323

based on the validation set. See Appendix B.1 for more details.324

5.2 Node Classification Performance325

To answer RQ1, we conduct experiments on both heterophilic graphs and homophilic graphs. The326

average accuracy and standard deviations on homophilic/heterophilic graphs are reported in Table 1.327

Additional results on Cornell and Citeseer datasets are presented in Appendix H. The model selection328

weight for label-wise aggregation GNN fC is shown along with the results of LW-GCN. Note that this329

model selection weight ranges from 0 to 1. When the weight is close to 1, the label-wise aggregation330

model is selected. When the weight for fC is close to 0, the GNN fG for homophilic graph is selected.331

Performance on Heterophilic Graphs. We conduct experiments on 10 dataset splits on each332

heterophilic graph. From the results on heterophilic graphs, we can have following observations:333

• MLP outperforms GCN and other GNNs for homophilic graphs by a large margin on Texas and334

Wisconsin; while GCN can achieve relatively good performance on dense heterophilic graphs335

such as Chameleon. This empirical result is consistent with our analysis in Theorem 1 that the336

heterophily will especially degrade the performance of GCN on graphs with low degrees.337

• Though GCN and other GNNs designed for homophilic graphs can give relatively good performance338

on dense heterophilic graphs, our LW-GCN bring significant improvement by adopting label-wise339

aggregation. In addition, LW-GCN outperforms baselines on heterophilic graphs with low node340

degrees. This proves the superiority of label-wise aggregation in preserving heterophilic context.341

• The model selection weight for fC is close to 1 for heterophilic graphs, which verifies that the342

proposed LW-GCN can correctly select the label-wise aggregation GNN fC for heterophilic graphs.343

• Compared with SimP-GCN which also aims to preserve node features, our LW-GCN performs344

significantly better on heterophilic graphs. This is because SimP-GCN only focuses on the similarity345

of central node attributes. In contrast, our label-wise aggregation can preserve both the central node346

features and the heterophilic local context for node classification. LW-GCN also outperforms the347

other GNNs that adopt message-passing mechanism designed for heterophilic graphs by a large348

margin. This further demonstrates the effectiveness of label-wise aggregation.349

Performance on Homophilic Graphs. The average results and standard deviations of 5 runs on350

homophilic graphs, i.e., Cora, Citeseer, and Pubmed, are also reported in Table 1 and Appendix H.351

From the results, we can observe that existing GNNs for heterophilic graphs generally perform worse352

than state-of-the-art GNNs on homophilic graphs such as GCNII. In contrast, LW-GCN achieves353

comparable results with the the best model on homophilic graphs. This is because LW-GCN combines354

the GNN using label-wise message passing and a state-of-the-art GNN for homophilic graph. And it355

can automatically select the right model for the given homophilic graph.356

8



Label-Wise Graph Convolutional Network for Heterophilic Graphs

Table 2: Ablation Study

Dataset MLP GCN GCNII LW-GCN\P LW-GCN\G LW-GCNGCN LW-GCN

Cora 58.7 ±0.5 81.6 ±0.7 84.2 ±0.5 84.2 ±0.3 75.3 ±0.4 81.9 ±0.2 84.3 ±0.3
Citeseer 60.3 ±0.4 71.3 ±0.3 72.0 ±0.8 72.3 ±0.5 65.1 ±0.5 71.6 ±0.3 72.3 ±0.4

Texas 78.1 ±6.0 57.6 ±5.9 68.6 ±9.8 82.4 ±5.2 85.9 ±5.6 85.4 ±6.3 86.2 ±5.8
Crocodile 65.8 ±0.7 66.7 ±1.0 69.0 ±0.7 84.6 ±2.4 85.8 ±0.9 84.7 ±0.9 86.5 ±0.5

5.3 Analysis of Node Representations357

(a) GCN (b) LW-GCN

Figure 3: Representation similarity dis-
tributions on Texas Graphs.

To answer RQ2, we compare the representation similarity358

of intra-class node pairs and inter-class node pairs on a359

sparse heterophilic graph in Fig. 3. For both GCN and360

LW-GCN, representations learned by the last layer are361

used for analysis. we can observe that the learned rep-362

resentations of GCN are very similar for both intra-class363

pairs and inter-class pairs. This verifies that simply aggre-364

gating the neighbors will make the node representations365

less discrimative. With label-wise aggregation, the sim-366

ilarity scores of intra-class pairs are significantly higher367

than inter-class node pairs. This demonstrates that the368

representations learned by label-wise message passing can well preserve the target nodes’ features369

and their contextual information.370

5.4 Ablation Study371

To answer RQ3, we conduct ablation studies to understand the contributions of each component to372

LW-GCN. To investigate how the quality of pseudo labels can affect LW-GCN, we train a variant LW-373

GCN\P by replacing the MLP-based label predictor with a GCN model. To show the importance of374

the automatic model selection, we train a variant LW-GCN\G which removes the GNN for homophilic375

graphs and only uses label-wise aggregation GNN. Finally, we replace the GCNII backbone of fG376

to GCN, denoted as LW-GCNGCN , to show LW-GCN is flexible to adopt various GNNs for fG.377

Experiments are conducted on both homophilic and heterophilic graphs. The results are shown in378

Table 2 and ablation studies on the rest datasets are shown in Appendix G. We can observe that:379

• On homophilic graphs, LW-GCN\P shows comparable results with LW-GCN, because GCNII380

will be selected given a homophilic graph. On the heterophilic graph Texas, the performance of381

LW-GCN\P is significantly worse than LW-GCN. This is because GNNs can produce poor pseudo382

labels on heterophilic graph, which degrades the label-wise message passing.383

• LW-GCN\G performs much better than MLP. This shows label-wise graph convolution can capture384

structure information. However, LW-GCN\G performs worse than GCNII and LW-GCN on385

homophilic graphs, which indicates the necessity of combining GNN for homophilic graphs.386

• LW-GCNGCN achieves comparable results with GCN on homophilic graphs. On heterophilic387

graphs, LW-GCNGCN performs similarly with LW-GCN. This shows the flexibility of LW-GCN in388

adopting traditional GNN models designed for homophilic graphs.389

6 Conclusion and Future Work390

In this paper, we analyze the impacts of the heterophily levels to GCN model and demonstrate its391

limitations. We develop a novel label-wise graph convolution to learn representations that preserve the392

node features and their heterophilic neighbors’ information. An automatic model selection module393

is applied to ensure the performance of the proposed framework on graphs with any homophily394

ratio. Theoretical and empirical analysis demonstrates the effectiveness of the label-wise aggregation.395

Extensive experiments shows that our proposed LW-GCN can achieve sate-of-the-art results on both396

homophilic and heterophilic graphs. There are several interesting directions need further investigation.397

First, since better pseudo labels will benefit the label-wise message passing, it is promising to398

incorporate the predictions of LW-GCN in label-wise message passing. Second, in some applications399

such as link prediction, labels are not available. Therefore, we will investigate how to generate useful400

pseudo labels for label-wise aggregation for applications where no labeled nodes are provided.401
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Algorithm 1 Training Algorithm of LW-GCN

Input: G = (V, E , X), YL, p, αC , αG, αϕ and T
Output: fP , fC , fG, ϕ1 and ϕ2

1: Train fP by optimizing Eq.(4) w.r.t θP
2: Obtain pseudo labels ŶP with fP
3: repeat
4: Get combined predictions of fC and fG on Vval

5: Calculate the upper level loss Lval

6: Update ϕ1 and ϕ2 according to Eq.(10)
7: for t = 1 to T do
8: Obtain the lower level loss Ltrain

9: Update θC and θG by Eq.(9)
10: end for
11: until convergence

Table 3: The statistics of datasets.

Dataset Nodes Edges Classes Hom. Ratio

Wisconsin 251 515 5 0.20
Texas 183 309 5 0.11
Cornell 183 280 5 0.30
Chameleon 2,277 36,101 5 0.24
Squirrel 5,201 217,073 5 0.22
Crocodile 11,631 360,040 5 0.25
arxiv-year 169,343 1,166,243 5 0.22

Cora 2,708 5,429 6 0.81
Citeseer 3,327 4,732 7 0.74
Pubmed 19,717 44,338 3 0.8

A Training Algorithm of LW-GCN513

The training algorithm of LW-GCN is shown in Algorithm 1. In line 1 and 2, we firstly train the fP514

to obtain the required pseudo labels for label-wise message passing. From line 4 to 6, we get the515

combined predictions from fC and fG and update the model selection weights with Eq.(10). From line516

7 to 10, we update the model parameters θC and θG by minimizing Ltrain with Eq.(9). The updating517

of model selection weights and model parameters are conducted iteratively until convenience.518

B Additional Details of Experimental Settings519

B.1 Implementation Details of LW-GCN520

For experiments on each heterophilic graph, we report the results on the 10 public dataset splits.521

For homophily graphs, we run each experiment 5 times on the provided public dataset split. The522

hidden dimension of fP is fixed as 64 for all graphs. For the fC on Texas and Wisconsin, a linear523

layer is firstly applied to transform the features followed by the label-wise graph convolutional layer.524

As for the other graphs, the label-wise graph convolutional layer is directly applied to the node525

features. The hidden layer dimension and weight decay rate are tuned based on the validation set526

by grid search. Specifically, we vary the hidden dimension and weight decay in {32, 64, 128, 256}527

and {0.05, 0.005, 0.0005, 0.00005}, respectively . As for the fG which deploys GCNII [8] as the528

backbone, the hyperparameter settings are the same as the cited paper. During the training phase, the529

learning rate is set as 0.01 for all the parameters and model selection weights. The inner iteration step530

T is set as 1. Our machine uses an Intel i7-9700k CPU with 64GB RAM. A Nvidia 2080Ti GPU is531

used to run all the experiments.532

B.2 Implementation Details of Compared Methods533

We adopt a two-layer MLP model on the datasets as baslines to show the effects of the graph structure534

and local context of the graphs. The hidden dimension is set the same as our LW-GCN. Apart535
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from MLP, we compare LW-GCN with the following representative and state-of-the-art GNNs that536

originally designed for graphs with homophily:537

• GCN [19]: This is a popular spectral-based Graph Convolutional Network, which aggregates the538

neighbor information and the centered node by averaging their representations. We apply the539

official code in https://github.com/tkipf/pygcn.540

• MixHop [1]: It adopts a graph convolutional layer with powers of the adjacency matrix. The541

official code in https://github.com/samihaija/mixhop is implemented for comparsion.542

• SuperGAT [17]: This is a GAT model augmented by the self-supervision. In SuperGAT, apart543

from the classification loss on provided labels, a self-supervised learning task is deployed to further544

guide the learning of attention for better information propagation based on GAT [33]. The official545

code from the authors in https://github.com/dongkwan-kim/SuperGAT is used.546

• GCNII [8]: Based on GCN, residual connection and identity mapping are applied in GCNII to547

have a deep GNN for better performance. The experiments are run with the official implementation548

in https://github.com/chennnM/GCNII.549

We also compare LW-GCN with the following baseline GNN models for heterophilic graphs:550

• FAGCN [2]: FAGCN adaptively aggregates low-frequency and high-frequency signals from551

neighbors to improve the performance on heterophilic graphs. The implementation from authors in552

https://github.com/bdy9527/FAGCN is applied in our experiments.553

• SimP-GCN [16]: A feature similarity preserving aggregation is applied to facilitate the repre-554

sentation learning on graphs with homophily and heterophily. We utilize the official code in555

https://github.com/ChandlerBang/SimP-GCN.556

• H2GCN [42]: H2GCN investigates the limitations of GCN on graphs with heterophily. And it557

accordingly adopts three key designs for node classification on heterophilic graphs. We conduct558

experiments with the official code from authors in https://github.com/GemsLab/H2GCN.559

• GPR-GNN [9]: This method introduces a new Generalized PageRank (GPR) GNN to adaptively560

learn the GPR weights that combine the aggregated representations in different orders. The561

learned GPR weights can be either positive or negative, which allows the GPR-GNN handle562

both heterophilic and homophilic graphs. We adopt the official code from authors in https:563

//github.com/jianhao2016/GPRGNN.564

• BM-GCN [15]: This is one of the most recent methods designed for graphs with heterophily,565

which achieves state-of-the-art results on heterophilic graphs. A block-modeling is adopted to566

GCN to aggregate information from homophilic and heterophilic neighbors discrimatively. More567

specifically, the link between two nodes will be re-weighted based on the soft labels of two nodes568

and the block-similarity matrix. The training and evaluation process is based on the official code in569

https://github.com/hedongxiao-tju/BM-GCN.570

• ASGC [5]: This method replaces the fixed feature propagation step of SGC [35] with an adaptive571

propagation, which can be effective for both homophilic graphs and heterophilic graphs. We use572

the official code released in https://openreview.net/forum?id=jRrpiqxtrWm.573

• LINKX [24]: This methods separately embed the adjacency matrix and node features with574

multilayer perceptrions and simple transformations. We use the official code from authors in575

https://github.com/CUAI/Non-Homophily-Large-Scale.576

• GloGNN++ [23]: This method will learn a coefficient matrix to capture the correlations between577

nodes to aggregate information from global nodes in the graph. The values of the coefficient matrix578

can be signed and are derived from the optimization. In our experiments, we use the official code579

in https://github.com/recklessronan/glognn.580

The model architecture and hyperparameters of the baselines are set according to the experimental581

settings provided by the authors for reproduction. For datasets that are not given reproduction details,582

the hyperparameters of baselines will be tuned based on the performance on validation set to make a583

fair comparison.584

C Proof of Theorem 1585

Proof 1 In this proof, we focus on nodes in class i and class j, where i ̸= j. Since dimensions of the586

node feature are independent to each other, without loss of generality, we consider one dimension of587

the feature and aggregated representation for node v, which is denoted as xv and zv. For node v in588
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class i, the aggregated representation zv in GCN layer is rewritten as:589

zv =
∑

u∈N (v)

1

|N (v)|
xu. (11)

With assumptions in Sec. 3.2, the expectation of aggregated representations of nodes in class i can be590

written as:591

E(zv|yv = i) = h · µii +
1− h

C − 1

C∑
k=1,k ̸=i

µik, (12)

Similarly, we can get the expectation of aggregated nodes representations in class j, i.e., E(zv|yv = j).592

Then, the difference between E(zv|yv = i) and E(zv|yv = j) is593

∆i,j = |E(zv|yv = i)− E(zv|yv = j)|

= |h · (µii − µjj) +
1− h

C − 1
(µij − µji) +

1− h

C − 1

C∑
k=1,k ̸=i,j

(µik − µjk)|

= |hC − 1

C − 1
(µii − µjj) +

1− h

C − 1
(

C∑
k=1

(µik − µjk))|

(13)

We firstly consider the situation of h ≥ 1
C . When h ≥ 1

C , we can infer the upper bound of ∆i,j as:594

∆i,j ≤
hC − 1

C − 1
|µii − µjj |+

1− h

C − 1

C∑
k=1

|µik − µjk|

=
hC

C − 1
(|µii − µjj | −

1

C

C∑
k=1

|µik − µjk|) +
1

C − 1
(

C∑
k=1

|µik − µjk| − |µii − µjj |),

(14)

And the lower bound of ∆i,j is:595

∆i,j ≥
hC − 1

C − 1
|µii − µjj | −

1− h

C − 1

C∑
k=1

|µik − µjk|

=
hC

C − 1
(|µii − µjj |+

1

C

C∑
k=1

|µik − µjk|)−
1

C − 1
(

C∑
k=1

|µik − µjk|+ |µii − µjj |),

(15)

Thus, when |µii − µjj | > |µik − µjk|,∀k ∈ {1, ...C} and h ≥ 1
C , both the upper bound and lower596

bound of ∆i,j will decrease with the decrease of h.597

Next, we will show that lower h under the condition of h ≥ 1
C will lead to higher variance of598

aggregated nodes. According to Eq.(11), the variance of {zv : yv = i} can be written as:599

V ar(zv|yv = i) = V ar(
∑

u∈N (v)

1

|N (v)|
xu|yv = i)

According to the assumption 1, the neighbor features are conditional independent to each other given600

the label of the center node. And for each neighbor node u ∈ N (v), we have P (yu = yv|yv) =601

h, P (yu = y|yv) = 1−h
C−1 ,∀y ̸= yv . Therefore, for neighbor node u ∈ N (v) of node v whose label is602

i, its features follow a mixed distribution:603

P (xu|yv = i)

=

C∑
k=1

P (yu = k|yv = i)P (xu|yu = k)

=h ·N(µii, σii) +
1− h

C − 1

∑
k=1,k ̸=i

N(µik, σik)

(16)
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Using the variance of mixture distribution, the variance of node v in class i can be derived as604

V ar(zv|yv = i) =
1

d
V ar(xu|yv = i)

=
1

d
(E[V ar(xu|yu, yv = i)] + V ar[E(xu|yu, yv = i)])

=
1

d

(
hσ2

ii +
1− h

C − 1

C∑
k=1,k ̸=i

σ2
ik + hµ2

ii +
1− h

C − 1

C∑
k=1,k ̸=i

µ2
ik − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2
)
(17)

Let µ̄i =
1
C

∑C
k=1 µik and σ2

i = 1
C

∑C
k=1(µik−µ̄i)

2. Then Eq.(17) can be rewritten as the following605

equation:606

V ar(zv|yv = i)

=
1

d
(
hC − 1

C − 1
σ2
ii +

C − hC

C − 1
(
1

C

C∑
k=1

σ2
ik + σ2

i )

+
hC − 1

C − 1
µ2
ii +

C − hC

C − 1
µ̄2
i − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2)

(18)

As h ≥ 1
C , we can set p = hC−1

C−1 , 0 ≤ p ≤ 1 and C−hC
C−1 = 1− p. For the last three terms of Eq.(18),607

we have:608

hC − 1

C − 1
µ2
ii +

C − hC

C − 1
µ̄2
i − (hµii +

1− h

C − 1

C∑
k=1,k ̸=i

µik)
2

= pµ2
ii + (1− p)µ̄2

i − (pµii + (1− p)µ̄i)
2

= p(1− p)(µii − µ̄i)
2 ≥ 0

(19)

Combining Eq.(18) and Eq.(19), we are able to get the lower bound of the variance as:609

V ar(zv|yv = i)

≥ hC − 1

d(C − 1)
σ2
ii +

C − hC

d(C − 1)
(
1

C

C∑
k=1

σ2
ik + σ2

i )

=
hC

d(C − 1)
(σ2

ii − σ2
i −

1

C

C∑
k=1

σ2
ik) +

1

d(C − 1)
(Cσ2

i +

C∑
k=1

σ2
ik − σ2

ii)

(20)

When σi > σii, we know that with the decrease of h, the lower bound of V ar(zv|yv = i) will610

increase. Similarly, V ar(zv|yv = j) will also increase with a lower h. Combining with |E(zv|yv =611

i) − E(zv|yv = j)| will decrease with the decrease of h, we can conclude that when h ≥ 1
C , the612

graph with lower h will lead to less discrimative aggregate representations.613

We then prove when h < 1
C , the decreasing of h will increase the discriminability of the aggregated614

representations by averaging. Specifically, with Eq.(13), we can infer that when h < 1
C the upper615

bound of ∆i,j will be:616

∆i,j ≤
1− hC

C − 1
|µii − µjj |+

1− h

C − 1

C∑
k=1

|µik − µjk|

=
−hC

C − 1
(|µii − µjj |+

1

C

C∑
k=1

|µik − µjk|) +
1

C − 1
(

C∑
k=1

|µik − µjk|+ |µii − µjj |),

(21)

And the lower bound of ∆i,j is:617

∆i,j ≥
1− hC

C − 1
|µii − µjj | −

1− h

C − 1

C∑
k=1

|µik − µjk|

=
−hC

C − 1
(|µii − µjj | −

1

C

C∑
k=1

|µik − µjk|)−
1

C − 1
(

C∑
k=1

|µik − µjk| − |µii − µjj |),

(22)
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Thus, when h < 1
C and |µii − µjj | > |µik − µjk|,∀k ∈ {1, ...C}, both the upper bound and lower618

bound of ∆i,j will increase with the decrease of h.619

For the variance of aggregated representations when h < 1
C , we can infer its folowing upper bound620

with Eq.(18):621

V ar(zv|yv = i)

≤ hC − 1

d(C − 1)
σ2
ii +

C − hC

d(C − 1)
(
1

C

C∑
k=1

σ2
ik + σ2

i )

=
hC

d(C − 1)
(σ2

ii − σ2
i −

1

C

C∑
k=1

σ2
ik) +

1

d(C − 1)
(Cσ2

i +

C∑
k=1

σ2
ik − σ2

ii)

(23)

According to the assumption that σi > σii, we know that with the decrease of h under the condition622

of h < 1
C the upper bound of the V ar(zv|yv = i) will decrease. We can have the same conlcusion623

for V ar(zv|yv = j). Combining the trend that when h < 1
C |E(zv|yv = i) − E(zv|yv = j)| will624

increase with the decrease of h, we can conclude that when h < 1
C , the graph with lower h will have625

more discriminative aggregate representations.626

When h = 1
C , we can get627

∆i,j =
1

C
|

C∑
k=1

(µik − µjk)|, (24)

628

V ar(zv|yv = i) ≥ 1

d
(
1

C

C∑
k=1

σ2
ik + σ2

i )|, (25)

If σi >
√
d|µik − µik|,∀k ∈ {1, . . . , C}, we can get V ar(zv|yv = i) > ∆2

i,j . So when h = 1
C629

and σi >
√
d|µik − µik|,∀k ∈ {1, . . . , C} , the representations after the averaging process will be630

non-discrimative.631

D Proof of Theorem 2632

Proof 2 In this proof, we also consider a center node v in class i. And we focus on one dimension633

of the node feature and aggregated representation. Specifically, for each dimension, the label-wise634

aggregation can be written as:635

av,k =
∑

u∈Nk(v)

1

|Nk(v)|
xu, (26)

where av,k denotes the aggregated feature of neighbors in class k. Since u ∈ Nk(v), we know node636

u’s features xu follows distribution as xu ∼ N(µik, σik). The mean of av,k in Eq.(26) is given as:637

E(av,k|yv = i) = µik. (27)

Then the absolute difference between E(av,k|yv = i) and E(av,k|yv = j) will be:638

∆k
i,j = |E(av,k|yv = i)− E(av,k|yv = j)| = |µik − µjk|. (28)

Given the assumption that the features are conditionally independent given the label of center node,639

the variance of av,k can be written as:640

V ar(av,k|yv = i) =

{ 1
dhσ

2
ik if k = i ;

C−1
d(1−h)σ

2
ik else, (29)

In label-wise aggregation, we generally concatenate the {av,k : k ∈ {1, . . . C}} for further classifi-641

cation. Therefore, the lower bound of discriminability can be given by the representation of the class642

that are most discriminative, which can be formally written as:643

k∗ = argmax
k

(∆k
i,j)

2

V ar(av,k|yv = i)
(30)
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When h ≥ 1
C , we can get:644

(∆k∗

i,j)
2

V ar(av,k∗ |yv = i)
≥ dh|µii − µji|2

σ2
ii

≥ d|µii − µji|2

Cσ2
ii

(31)

As for h ≤ 1
C , let k ̸= i we can infer that:645

(∆k∗

i,j)
2

V ar(av,k∗ |yv = i)
≥ d(1− h)|µik − µjk|2

(C − 1)σ2
ik

≥ d|µik − µjk|2

Cσ2
ik

(32)

Therefore, if the condition that |µik − µjk| >
√

C
d σik,∀k ∈ {1, . . . , C} is met, we can infer from646

Eq.(31) and Eq.(32) that
(∆k∗

i,j)
2

V ar(av,k∗ |yv=i) > 1 regardless the value of the homophily ratio h. This647

shows that label-wise aggregation can preserve the context and ensure the high discriminability648

regardless the homophily ratio.649

E Additional Details and Experiments on Generated Graphs650

Algorithm 2 Algorithm of Generating Graphs

Input: G = (V, E ,X), YL, target homophily ratio h, and target node degree d
Output: G′ = (V, E ′,X)

1: Split the edges E into heterophilic edges En and homophilic edges Es.
2: if |Es| ≥ hd|V| then
3: Sample hd|V| edges from Es to get E ′

s
4: else
5: Obtain hd|V| − |Es| homophilic edges by randomly link nodes in the same class
6: Combine Es with added homophilic edges to obtain E ′

s
7: end if
8: Randomly sample d(1− h)|V| edges from En as E ′

n
9: Get E ′ with E ′ = E ′

n ∪ E ′
s

E.1 Process of Graph Generation651

To verify the conclusion in Theroem 1, we generate graphs with different homophily ratios and652

average degrees on the large-scale crocodile graph. Specifically, the average node degree of the target653

generated graphs is varied by {5, 10, 20}. For each node degree, we will sample the heterophilic654

edges, i.e., edges linking nodes in different classes, and homophilic edges, i.e., edges linking nodes655

in the same class from the original crocodile graph in different ratios to obtain realistic graphs with656

different heterophily levels. The homophily ratios of the generated graphs range from 0 to 0.9 with657

a step of 0.1. Since crocodile itself is a heterophilic graph that do not contain many homophilic658

edges, there could be no enough homophilic edges to obtain a graph with high homophily and node659

degrees. In this situation, we will randomly link nodes in the same class to get the required number of660

homophilic edges for graph generation. For the train/validation/test splits of generated graphs, they661

are the same as the original crocodile graph. The algorithm of the graph generation process can be662

found in Algorithm 2.663

E.2 More Experiments on Generated Graphs664

To verify our theoretical analysis that label-wise aggregation can lead to distinguishable representa-665

tions regardless the heterophily levels under mild conditions, we also compare LW-GCN with GCN666

and GAT on the generated graphs with different homophily ratios and average node degrees. The667

label-wise aggregation is conducted with the pseudo labels and provided ground-truth labels as it is668

described in Sec.4.2.2. Since we only focus on the label-wise graph convolution in the experiments,669

the model selection module is removed here. The other settings are the same as description in670

Appendix B.1. The average results of 10 splits are shown in Fig. 4. From this figure, we can observe671

that the performance of LW-GCN is much better than the GCN and GAT when the heterophily level is672
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Figure 4: Comparisons between GCN, GAT and our LW-GCN on generated graphs. Note that model
selection module is not adopted in LW-GCN in these experiments.

high. For example, when h ≈ 0.2, both GCN and GAT can hardly outperforms MLP. By contrast, the673

accuracy of LW-GCN outperform GCN and GAT by around 10%. This demonstrates the effectiveness674

of adopting label-wise aggregation in graph convolution. In addition, we can find that only adopting675

the model with label-wise graph convolution will give slightly worse performance than GCN/GAT676

when the homophily ratio is very high. This implies the necessity of deploying a model selection677

module.678

F Analysis on Heterophilic Graphs679
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Figure 5: Similarity matrices of neighbors linked with centered nodes in different classes on
Crocodile, Squirrel, and Chameleon.

In this section, we conduct empirical analysis to verify Assumption 2 in Sec.3.2. Specifically, we680

aim to show (i) For nodes in the same class, features of their neighbors in the same class are similar;681

(ii) For nodes in different classes, features of their neighbors in the same class follow different682

distributions. Let Xik = {xu : yu = k, yv = i, u ∈ N (v), v ∈ V} be the set of neighbors which683

belong to class k and are linked by the central node in class i. For neighbors in class k, we analyze684

the average similarity scores between Xik and Xjk to investigate whether neighbors in class k that685

are linked by center nodes in different classes follow different distributions. Specifically, the average686

similarity score between Xik and Xjk is obtained by687

s(Xik,Xjk) =
1

|Xik| × |Xjk|
∑

vi∈Xik

∑
vj∈Xjk

xi · xj

∥xi∥∥xj∥
, (33)

where xi and xj are features of node vi ∈ Xik and vj ∈ Xjk, respectively. The results on Crocodile,688

Chameleon, and Squirrel for representative neighbor classes are presented in Fig. 5, where (i, j)-th689

element in the similarity matrix denotes the average node feature cosine similarity between Xik and690

Xjk. From this figure, we can observe that:691

• For Xik,∀i ∈ 1, . . . , C, its intra-group similarity score is very high. This proves that the het-692

erophilic neighbors’ features are similar when the nodes are in the same class.693

• The similarity scores between Xik and Xik are very small when i ̸= j. This indicates that for nodes694

in different classes their heterophilic neighbors belonging to the same class still differs a lot.695

With the above observations, Assumption 2 is justified.696
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G Additional Ablation Studies697

Table 4 gives additional ablation studies on Pubmed, Chameleon, and Squirrel. The observations are698

similar to that of Table 2.

Table 4: Ablation Study

Dataset MLP GCN GCNII LW-GCN\P LW-GCN\G LW-GCNGCN LW-GCN

Pubmed 72.7 ±0.4 78.4 ±1.1 80.2 ±0.2 77.6 ±0.7 72.4 ±0.6 79.2 ±0.8 80.3 ±0.3

Chameleon 48.0 ±1.5 63.5 ±2.5 63.5 ±2.5 74.7 ±1.4 74.2 ±1.8 74.3 ±2.3 74.4 ±1.2
Squirrel 32.3 ±1.8 46.7 ±1.5 49.4 ±1.7 62.3 ±2.3 62.3 ±1.3 61.9 ±1.4 62.6 ±1.6

699

H Additional Experimental Results700

The additional experimental results on Cornell and Citeseer datasets are presented in Table 5 and701

Table 6. The observations are similar to that of Table 1.702

Table 5: Additional comparisons with GNNs originally designed for graph with homophily.

Dataset MLP GCN MixHop SuperGAT GCNII LW-GCN

Cornell 79.2 ±5.7 57.3 ±5.8 79.5 ±6.3 57.3 ±4.3 80.3 ±5.3 84.3 ±5.2
Citeseer 60.3 ±0.4 71.3 ±0.3 68.7 ±0.3 72.2 ±0.8 72.0 ±0.8 72.3 ±0.4

Table 6: Additional comparisons with GNNs designed for graph with heterophily.
Dataset FAGCN SimP-GCN H2GCN GPRGNN BM-GCN ASGC LINKX GloGNN+ LW-GCN

Cornell 78.3 ±4.5 81.4 ±7.4 79.7 ±5.0 77.6 ±5.0 74.6 ±5.0 79.2 ±5.2 77.8 ±5.8 85.9 ±4.4 84.3 ±5.2
Citeseer 71.7 ±0.6 71.8 ±0.8 71.0 ±0.5 71.1 ±0.9 68.9 ±1.0 70.2 ±0.2 51.6 ±1.7 66.7 ±1.9 72.3 ±0.4

I Impacts of Label-Wise Aggregation Layers703

In this section, we explore the sensitivity of LW-GCN on the depth of fC , i.e., the number of layers704

of label-wise message passing. Since LW-GCN will not select fC for homophilic graphs. We only705

conduct the sensitivity analysis on heterophilic graphs. We vary the depth of fC as {2, 3, . . . , 6}. The706

other experimental settings are the same as that described in Sec. B.1. The results on Chameleon707

and Squirrel are shown in Fig. 6. From the figure, we find that our LW-GCN is insensitive to the708

number of layers, while the performance of GCN will drop with the increase of depth. This is because709

aggregation of LW-GCN is performed label-wisely to capture the context information. Embeddings710

of nodes in different classes will not be smoothed to similar values even after many iterations.711
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Figure 6: Classification accuracy with different model depth.

J Limitations of Our Work712

In this paper, we conduct thoroughly theoretical and empirical analysis to show the impacts of713

heterophily levels to GCN. And we demonstrate the GCN model can be largely affected by heterophily714

and give poor prediction results. To alleviate the issue brought by heterophily, we develop a novel715

label-wise graph convolutional network to preserve the heterophilic context to facilitate the node716

20



Label-Wise Graph Convolutional Network for Heterophilic Graphs

classification. However, there are some limitations of our work. First, node labels are required717

for LW-GCN to obtain pseudo labels for label-wise graph convolution. However, in some tasks718

such as link prediction, labels are not available. Therefore, we will investigate how to obtain useful719

pseudo labels for applications that do not provide node labels. Second, in our theoretical analysis,720

we make several assumptions for simplification. Concretely, we conduct analysis on the d-regular721

graph. Following [42, 25], we also make an assumption on the label distribution of neighbor nodes.722

In our analysis, the node features are simplified to normal distribution and dimensions of features723

are independent to each other. These assumptions may not hold for some real-world graphs. For724

example, node degrees of the real network can be unbalanced which will contradict the assumption725

of d-regularity. The label distributions and feature distributions of neighbor nodes can be much more726

complex. Therefore, we will investigate the theoretical analysis on more flexible assumptions in the727

future. Third, recent studies [25, 29] show that the edge homophily ratio used in this paper could728

have significant drawbacks especially when the distribution of classes is unbalanced. To address these729

drawbacks, new measures such as adjusted homophily and label informativeness are proposed [29].730

We leave the extension of our analysis on these new homophily measures as the future work.731
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