
A Proof of Theorem 2

We prove the universal approximation theorem by showing the equivalence of TFN and our model.
Complex spherical harmonics are related to Clebsch-Gordan coefficients via [51, 3.7.72]
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We now use the fact that multiplying a learnable function with a unitary matrix or a scalar does not
change the resulting function space. We can therefore adapt Eq. (2) by substituting
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without impacting model expressivity. Since real spherical harmonics and complex (conjugate)
spherical harmonics cover the same function space, we can furthermore substitute the filter with
F
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m (x̂). Using the spherical harmonics expansion we therefore obtain
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These functions rely on complex-valued representations, while the output and SO(3) representations
are real-valued. However, we can restrict the representations to real values without changing the
resulting function space. To see this, we look at the result’s real component

<[H̃ ′a(X,H ′)(r̂)] = θ<[H ′a(r̂)] +
∑
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<[F ′(xba, r̂)H ′b(r̂)]
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∑
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(<[F ′(xba, r̂)]<[H ′b(r̂)]−=[F ′(xba, r̂)]=[H ′b(r̂)]).

(15)

The function space covered by <[F ′(x, r̂)], and thus <[H ′(r̂)], is the same as =[F ′(x, r̂)], and
thus =[H ′(r̂)]. We can therefore simply remove the imaginary part without changing the resulting
function space, obtaining

H̃ sphere
a (X,H)(r̂) = θHa(r̂) +

∑
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<[F ′(xba, r̂)]Hb(r̂)

= θHa(r̂) +
∑
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Fsphere(xba, r̂)Hb(r̂).
(16)

F sphere
feat (D) thus spans the exact same space of embedding functions as FTFN

feat (D), despite only using
real functions on the S2 sphere. However, we cannot span the full space of rotationally equivariant
linear pooling functions, since equivariant linear functions on the S2 sphere are limited to convolutions
with zonal filters [21]. Fortunately, scalar pooling functions are limited to linear functions of the
constant l = 0 part. This is equivalent to integrating over the real-space spherical representation, as
done in F sphere

pool .
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B Proof of Theorem 3

To prove this theorem we first introduce a proposition by Villar et al. [57].
Proposition A (Villar et al. [57]). If h is an SO(d)-equivariant function Rd×n → Rd of n vector
inputs x1,x2, . . . ,xn, then there are n SO(d)-invariant functions fc : Rd×n → R such that

h(x1,x2, . . . ,xn) =

n∑
c=1

f (c)(x1,x2, . . . ,xn)xc, (17)

except when x1,x2, . . . ,xn span a (d−1)-dimensional space. In that case, there exist O(d)-invariant
functions fc : Rd×n → R such that

h(x1,x2, . . . ,xn) =

n∑
c=1

f (c)(x1,x2, . . . ,xn)xc +
∑

S∈( [n]
d−1)

f (S)(x1,x2, . . . ,xn)xS , (18)

where [n] := {1, . . . , n},
(

[n]
d−1
)

is the set of all (d − 1)-subsets of [n], and xS is the generalized
cross product of vectors xi with i ∈ S (taken in ascending order).

To extend Prop. A to our case, we need to restrict the functions to being translation-invariant and
permutation-equivariant. We will only concern ourselves with the case where the vectors do not span
a (d− 1)-dimensional space. We start by considering translation-invariant functions, following the
proof idea of Villar et al. [57, Lemma 7].
Lemma A. Let h be a translation-invariant and SO(d)-equivariant function Rd×n → Rd of n vector
inputs x1,x2, . . . ,xn. Let x2 − x1, . . . ,xn − x1 not span a (d− 1)-dimensional space. Then there
are n− 1 translation- and SO(d)-invariant functions fc : Rd×n → R such that

h(x1,x2, . . . ,xn) =

n∑
c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (19)

Proof. Consider the SO(d)-equivariant function h̃ : Rd×(n−1) → Rd with

h(x1,x2, . . . ,xn) = h(0,x2 − x1, . . . ,xn − x1) = h̃(x2 − x1, . . . ,xn − x1). (20)

Due to Prop. A we have

h̃(x2 − x1, . . . ,xn − x1) =

n∑
c=2

f̃ (c)(x2 − x1, . . . ,xn − x1)(xc − x1), (21)

with the SO(d)-equivariant function f̃ (c). If we now substitute f̃ (c) with the SO(d)-equivariant and
translation-invariant function f (c), i.e.

f̃ (c)(x2 − x1, . . . ,xn − x1) = f (c)(0,x2 − x1, . . . ,xn − x1) = f (c)(x1,x2, . . . ,xn), (22)

we obtain

h(x1,x2, . . . ,xn) =

n∑
c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (23)

Next, we extend this result to permutation-equivariant functions.
Lemma B. Let h be a translation-invariant, and permutation and SO(d)-equivariant function
Rd×n → Rd×n of n vector inputs x1,x2, . . . ,xn. Let x2 − x1, . . . ,xn − x1 not span a (d − 1)-
dimensional space. Then there are n − 1 translation- and SO(d)-invariant, and permutation-
equivariant functions fc : Rd×n → Rn such that

h(x1,x2, . . . ,xn) =

n∑
c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (24)

15



Proof. Permutation equivariance implies that for all s and t (w.l.o.g. s < t)

hs(. . . ,xs, . . . ,xt, . . .) = ht(. . . ,xt, . . . ,xs, . . .). (25)

Due to Lemma A we have

hs(. . . ,xs, . . . ,xt, . . .) =

n∑
c=2

f (c)s (. . . ,xs, . . . ,xt, . . .)(xc − x1), (26)

= ht(. . . ,xt, . . . ,xs, . . .) =

n∑
c=2

f
(c)
t (. . . ,xt, . . . ,xs, . . .)(xc − x1), (27)

with n− 1 SO(d)- and translation-invariant functions f (c) : Rd×n → Rn. We can solve this equation
by choosing

f (c)s (. . . ,xs, . . . ,xt, . . .) = f
(c)
t (. . . ,xt, . . . ,xs, . . .), (28)

i.e. permutation-equivariant functions f (c).

Finally, to bring Lemma B to the form presented in the theorem, we first observe that adding scalar
inputs H does not affect the proofs in this section. Second, we observe that subtracting by x1 in
Eq. (20) is arbitrary. To bring this more in line with GNNs we can instead subtract the input of each
ha by xa. This yields

ha(X,H) =

n∑
c=1
c6=a

f (c)a (X,H)(xc − xa). (29)

C Proof of Lemma 1

Using the fact that the Wigner-D matrix is unitary, we obtain for any rotation matrix R:
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D Efficient message passing

For clarity we demonstrate how to optimize the summation order using the simpler one-hop message
passing. For a regular Hadamard product we reorder the sums as
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(31)
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For a bilinear layer we use
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(32)

Note that since W (1) is shared across layers we only need to calculate the sum over n once.

E Variance after message passing

The layer-wise variance after sum aggregation is

Vari

[ ∑
b∈Na

m(ba)i

]
=
∑
b∈Na

Vari[m(ba)i] +
∑
b∈Na

∑
c∈Na\{b}

Covi[m(ba)i,m(ca)i]. (33)

This variance depends on the number of neighbors in Na. However, we consistently found that
rescaling the output depending on Na has negative effects on the accuracy. The likely reason for this
is that atomic interactions scale roughly linearly with neighborhood size. Moreover, the covariance
in Eq. (33) is not zero since all messages mba are transformed using the same weight matrices. We
therefore best estimate this variance empirically.

For a Hadamard product-based message passing filter (and analogously for a bilinear layer) we have

Vari[Fimi] = Covi[F
2
i ,m

2
i ] + (Vari[Fi] + Ei[Fi]2)(Vari[mi] + Ei[mi]

2)− (Covi[Fi,mi] + Ei[Fi]Ei[mi])
2.

(34)

The main problem with this covariance is the non-zero quadratic covariance Covi[F
2
i ,m

2
i ]. We again

estimate this variance empirically based on a data sample.
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Figure 3: Layer-wise activation variance. GemNet’s variance varies strongly between layers and
increases significantly after each block without scaling factors (top). Introducing scaling factors
successfully stabilizes the variance (bottom).

F GemNet architecture

We use 4 stacked interaction blocks and an embedding size of 128 throughout the model. For the
basis functions we choose NSHBF = NCHBF = 7 and NSRBF = NCRBF = NRBF = 6. For the weight
tensor of the bilinear layer in the interaction block we use Nbilinear,SBF = 32 and Nbilinear,CBF = 64.
We found that sharing the first weight matrix in Eq. (11), the down projection, resulted in the same
validation loss but reduced the training time by up to 15 %. The down projection size was chosen as
16 for the radial and circular basis and 32 for the spherical basis.
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Figure 4: The full GemNet architecture. � denotes the layer’s input, ‖ concatenation, σ a non-linearity
(we use SiLU in this work [20]), and orange a layer with weights shared across interaction blocks.
Differences between two-hop message passing (Q-MP) and one-hop message passing (T-MP) are
denoted by dashed lines. Numbers next to connecting lines denote embedding sizes.

G Training and hyperparameters

Table 6: Model and training hyperparameters.
Hyperparameters
Interaction cutoff cint 10 Å
Embedding cutoff cemb 5 Å
Learning rate 1× 10−3

EMA decay 0.999
Weight decay 2× 10−6

Decay epochs 1200
Decay rate 0.01
Decay factor on plateau 0.5
Gradient clipping threshold 10.0
Envelope exponent 5
Force weighting factor ρ 0.999

MD17 MD17@CCSD(T) Coll
Train set size 1000 950 120 000
Val. set size 1000 50 10 000
Max epochs 2000 2000 400
Evaluation interval (epochs) 10 10 2
Decay on plateau patience (epochs) 50 50 10
Decay on plateau cooldown (epochs) 50 50 10
Warm-up epochs 10 10 1
Batch size 1 1 32

We subtract the mean energy from each molecule in MD17 to obtain a training target similar to
atomization energy. We train on eV for energies and eV Å−1 for forces. As a training objective we
use the weighted loss function

LMD(X, z) = (1− ρ)
∣∣fθ(X, z)− t̂(X, z)

∣∣+
ρ

N

N∑
i=1

√√√√ 3∑
α=1

(
−∂fθ(X, z)

∂xiα
− F̂iα(X, z)

)2

,

(35)

with force weighting factor ρ = 0.999. We found the selection of the batch size to be of great
influence on the model’s performance for the MD17(@CCSD) dataset. Changing the batch size from
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32 to 1 resulted in an approx. 25 % lower validation MAE. The learning rate of 1 × 10−3 and the
selection of the embedding cutoff cemb = 5 Å and interaction cutoff cint = 10 Å are rather important
hyperparameters as well, see Table 8. We optimized the model using AMSGrad [50] with weight
decay [40] in combination with a linear learning rate warm-up, exponential decay and decay on
plateau. However, we did not apply the weight decay for the initial atom embeddings, biases and
frequencies (used in the radial basis). Without weight decay the force MAE was around 3 % higher
on COLL (not on OC20). Gradient clipping and early stopping on the validation loss were used
as well. In addition, we divided the gradients of weights that are shared across multiple blocks by
the number of blocks the weights are shared for, which resulted in a small gain in accuracy. The
model weights for validation and test were obtained using an exponential moving average (EMA)
with decay rate 0.999. The used hyperparameters can be found in Table 6. The combined model on
revised MD17 was trained with a batch size of 10.

We used a slightly adapted model for the OC20 dataset. It uses 128 Gaussian radial basis functions
instead of spherical Bessel functions, which do not depend on the degree l of the spherical harmonic.
We furthermore used only three interaction blocks, an atom and edge embedding size of 512, an
embedding cutoff of 6 Å, a learning rate of 5× 10−4, no weight decay, only learning rate decay on
plateau with a patience of 15 000 steps and a factor of 0.8 (no warm-up or exponential decay), and a
batch size of 2048.

H Additional experimental results

Table 7: MAE for direct force predictions on MD17 in meV/Å. The
increased speed of direct force predictions comes at a significant cost
of accuracy. Note that the direct models are still more accurate than
many previous models.

GemNet-Q GemNet-T GemNet-dQ GemNet-dT
Aspirin 9.4 9.5 17.8 18.0
Benzene[9] 6.3 6.3 8.5 8.0
Benzene[10] 1.5 1.4 2.5 2.3
Ethanol 3.8 3.7 6.4 6.8
Malonaldehyde 6.9 6.7 11.5 12.5
Naphthalene 2.2 2.4 5.2 5.9
Salicylic acid 5.4 5.5 12.9 13.2
Toluene 2.6 2.6 6.1 5.7
Uracil 4.5 4.2 11.7 10.9

Table 8: Impact of the cut-
off on force MAE on COLL.
Results reported in meV/Å af-
ter 500 000 training steps. In-
creasing the interaction cutoff
to 10 Å slightly reduces the
error. Decreasing the embed-
ding cutoff to 3 Å significantly
increases the error.
cemb/Å cint/Å MAE

5 10 27.0
5 5 28.2
3 10 33.4
3 5 35.3

Table 9: Force MAE for MD17 in meV/Å. GemNet
using 1000 training samples compared to SchNet using
50 000 samples. GemNet outperforms SchNet on six out
of eight molecules – despite using 50x fewer samples.

SchNet 50k GemNet-Q GemNet-T
Aspirin 14.3 9.4 9.5
Benzene[9] 7.4 6.3 6.3
Benzene[10] - 1.5 1.4
Ethanol 2.2 3.8 3.7
Malonaldehyde 3.5 6.9 6.7
Naphthalene 4.8 2.2 2.4
Salicylic acid 8.2 5.4 5.5
Toluene 3.9 2.6 2.6
Uracil 4.8 4.5 4.2

Table 10: Effect of adding our independent
improvements to DimeNet++ on force
MAE for COLL in meV/Å. In this exper-
iment we increased the basis embedding
size of DimeNet++ from 8 to 16 to elim-
inate this bottleneck. All improvements
have a significant effect.
Model Forces
DimeNet++ 41.1
with symmetric message passing 37.5
with bilinear layer 38.6
with scaling factors 40.0

20



Table 11: Force MAE for the revised MD17 dataset [11] in meV/Å. On average, GemNet outperforms
FCHL19 by 52 % and even UNiTE by 5 %, which is a ∆-ML approach based on quantum mechanical
features [49].

FCHL19 UNiTE GemNet-Q GemNet-T
Aspirin 20.9 7.8 9.7 9.5
Benzene 2.6 0.7 0.7 0.5
Ethanol 6.2 4.2 3.6 3.6
Malonaldehyde 10.3 7.1 6.7 6.6
Naphthalene 6.5 2.4 1.9 2.1
Salicylic acid 9.5 4.1 5.3 5.5
Toluene 8.8 2.9 2.3 2.2
Uracil 4.2 3.8 4.1 3.8

Table 12: Force MAE of different models (number of parameters in parentheses) for the MD17
dataset in meV/Å. GemNet performs worse with an embedding size of 64, but still substantially
better than previous models with more parameters.

PaiNN (600k) DimeNet (1.9M) GemNet-T 64 (490k) GemNet-T (1.9M)
Aspirin 14.7 21.6 11.2 9.5
Benzene[9] - 8.1 - 6.3
Benzene[10] - - 1.1 1.4
Ethanol 9.7 10.0 5.1 3.7
Malonaldehyde 14.9 16.6 7.8 6.7
Naphthalene 3.3 9.3 3.3 2.4
Salicylic acid 8.5 16.2 6.9 5.5
Toluene 4.1 9.4 3.3 2.6
Uracil 6.0 13.1 5.3 4.2

Table 13: Force MAE of GemNet on the revised MD17 dataset [11] in meV/Å when using individual
models for each molecule (“Individual”) versus a single model for all molecules (“Combined”). The
combined setting is harder to learn, leading to a higher error in most cases. GemNet-Q performs
better than GemNet-T in this setting.

GemNet-Q GemNet-T
Individual Combined Individual Combined

Aspirin 9.7 10.0 9.5 9.9
Benzene 0.7 0.5 0.5 0.6
Ethanol 3.6 4.4 3.6 4.9
Malonaldehyde 6.7 7.7 6.6 8.3
Naphthalene 1.9 1.9 2.1 2.2
Salicylic acid 5.3 4.6 5.5 5.0
Toluene 2.3 2.2 2.2 2.5
Uracil 4.1 4.1 3.8 4.3

I Computation time

The models were trained primarily using Nvidia GeForce GTX 1080Ti GPUs. For MD17 and
MD17@CCSD training the direct force prediction variants took less than two days, GemNet-Q and
GemNet-T took around 6 days per molecule but with very little progress after the 100 hour mark.
However, thanks to the memory efficient implementation and the low batch size used, several models
were trained in parallel on a single GPU. On the COLL dataset training the direct force prediction
variants took around 24 hours each. GemNet-T trained for 60 hours, while GemNet-Q took 6 days.
However, after 60 hours GemNet-Q is already within 5 % of its final validation error and outperforms
GemNet-T by a large margin. Note that the training time reduces dramatically when using a larger
batch size, at the cost of a slightly higher MAE on MD17.
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Table 14: Runtime per batch of Toluene molecules on an Nvidia GeForce GTX 1080Ti in seconds.
GemNet-T is comparably fast to previous methods. Note that NequIP requires roughly 10x more
training epochs than GemNet for convergence [4]. Using direct force predictions and only one-hop
message passing significantly accelerates training and inference (GemNet-dT). Efficient aggregation
allows for the usage of a bilinear layer instead of a Hadamard product at no additional cost (GemNet-Q
vs. Hadamard-Eff) and enables training with higher batch sizes (Hadamard-Eff vs. Hadamard-NonEff).
Note that our implementation does not focus on runtime and can likely be significantly optimized.

batch size 32 batch size 4
Training Inference Training Inference

DimeNet++ 0.357 0.065 0.283 0.031
NequIP (l=1) 0.066 0.042 0.070 0.044
NequIP (l=3, reflections) 0.336 0.206 0.327 0.197
GemNet-Q 1.067 0.376 0.628 0.099
GemNet-T 0.397 0.088 0.299 0.038
GemNet-dQ 0.369 0.264 0.106 0.052
GemNet-dT 0.134 0.067 0.065 0.020
Hadamard-Eff 1.077 0.392 0.632 0.103
Hadamard-NonEff OOM 0.378 0.633 0.103
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