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Figure 9. Adroit. Success rate across each of the three sparse-reward Adroit dexterous manipulation
tasks. Tasks are visualized in Figure 13. Mean of 5 seeds; shaded area is 95% CIs.
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Figure 10. DMControl. Episode return across each of the three DMControl locomotion tasks.
Quadruped Run and Humanoid Walk are visualized in Figure 13. See Tassa et al. (2018) for task
details. Mean of 5 seeds; shaded area is 95% CIs.

A ADDITIONAL RESULTS

Aggregate results for each of the three domains considered are shown in Figure 4. We additionally
provide all individual task results for Adroit tasks in Figure 9, for Meta-World in Figure 5, and
for DMControl in Figure 10. Note that Adroit and Meta-World tasks use sparse rewards, whereas
DMControl tasks use dense rewards. We also provide additional comparisons to FERM (model-free
method that uses demonstrations) and a simpler instantiation of our framework that simply adds
demonstrations to TD-MPC (model-based method) across all three domains; see Figure 11. We
emphasize that the TD-MPC with demonstrations result is equivalent to the None ablation in Figure 6.
We find that both aspects of our framework (model learning, and leveraging demonstrations via each
of our three phases) are crucial to the performance of MoDem, both in sparse (Adroit, Meta-World)
and dense (DMControl) reward domains.

B THE EXPLORATION BOTTLENECK VS. ALGORITHMIC PROPERTIES

We compare three model-based methods, Dreamer-V2 (Hafner et al., 2020), MWM (Seo et al., 2022),
and TD-MPC (Hansen et al., 2022) on two benchmarks, Meta-World (Yu et al., 2019) and DMControl
(Tassa et al., 2018), following the experimental setups of Seo et al. (2022) and Hafner et al. (2020) for
the two benchmarks, respectively. All results except for TD-MPC (Meta-World) are obtained from
the respective papers and/or by correspondence with the authors; we ran TD-MPC in Meta-World
ourselves by closely following the experimental setup of Seo et al. (2022) for an apples-to-apples
comparison. Results are shown in Figure 12. Note that we only visualize success rates up to the 100K
step mark since we are interested in the low-data regime, and that the experimental setup of Seo et al.
(2022) uses shaped rewards (as opposed to our main results that use sparse rewards). We observe that
all three methods perform strikingly similar across Meta-World tasks, which suggests that they are
all bottlenecked by exploration rather than their individual algorithmic properties. We can therefore
expect other model-based methods (besides our algorithm of choice, TD-MPC) to benefit equally
well from MoDem. However, we pick TD-MPC as our backbone model and learning algorithm due
to its simplicity and generally strong empirical performance as evidenced by the DMControl results
shown in Figure 12 (right).
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Figure 11. Ours vs. appending demonstrations to buffer. Success rate and episode return as a
function of interaction steps on all 21 tasks across each of the three domains that we consider (Adroit,
Meta-World, DMControl). Mean of 5 seeds; shaded area indicates 95% CIs. We find that both (i)
using a model-based method, and (ii) leveraging demonstrations via our three-phase framework vs.
simply appending demonstrations to the interaction buffer is crucial to the performance of MoDem.
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Figure 12. Comparison of model-based methods: Dreamer-V2 (Hafner et al., 2020), MWM (Seo
et al., 2022), and TD-MPC (Hansen et al., 2022) in a limited data setting on the Meta-World (21 tasks)
and DMControl (12 tasks) benchmarks. Results are obtained from Hafner et al. (2020); Seo et al.
(2022); Hansen et al. (2022), except TD-MPC results for Meta-World which are run by following the
experimental setup of Seo et al. (2022) for an apples-to-apples comparison. Mean of 3 seeds; shaded
area is 95% CIs.

C WALL-TIME

Table 3. Wall-time for each of
the three phases of MoDem.

Phase Duration

1 5m
2 34m
3 6h3m

While we are primarily concerned with sample-efficiency (i.e., num-
ber of environment interactions required to learn a given task), we
here break down the computational cost of each phase of our frame-
work. Wall-times are shown in Table 3. We emphasize that our
framework adds no significant overhead to phase 2 (seeding) and
3 (interactive learning), i.e., running our baseline TD-MPC takes
equally much time for those two phases; the only overhead intro-
duced by our framework is the 5 minute BC pretraining of phase
1. Lastly, we remark that wall-time can be reduced significantly by
resizing image observations to a smaller resolution for applications
that are sensitive to computational cost.

D EXTENDED EXPERIMENTAL SETUP

We evaluate methods extensively across three domains: Adroit (Rajeswaran et al., 2018), Meta-World
(Yu et al., 2019), and DMControl (Tassa et al., 2018). See Figure 13 for task visualizations. In this
section, we provide further details on our experimental setup for each domain.

D.1 ADROIT

We consider three tasks from Adroit: Door, Hammer, Pen. Our experimental setup for Adroit closely
follows Nair et al. (2022); we use 224× 224 RGB frames and proprioceptive information as input,
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Table 4. Meta-World tasks. We select 15 tasks from Meta-World based on task difficulty following
the categorization of Seo et al. (2022). We experiment with all tasks from the medium, hard, and very
hard categories that we are able to solve using MPC with a ground-truth model and a computational
budget of 12 hours per demonstration. Note that the majority of Meta-World tasks are categorized as
easy.

Difficulty Tasks

easy −
medium Basketball, Box Close, Coffee Push, Peg Insert Side, Push Wall, Soccer, Sweep, Sweep Into
hard Assembly, Hand Insert, Pick Place, Push
very hard Stick Pull, Stick Push, Pick Place Wall

adopt their proposed view_1 viewpoint in all three tasks, and use episode lengths of 200 for Door,
250 for Hammer, and 100 for Pen. We use an action repeat of 2 for all tasks and methods, which we
find to improve sample-efficiency slightly across the board. Our evaluation constrains the sample
budget to 5 demonstrations and 100K interaction steps (equivalent to 200K environment steps),
whereas prior work commonly use 25-100 demonstrations (Parisi et al., 2022; Nair et al., 2022)
and/or 4M environment steps (Rajeswaran et al., 2018; Shah & Kumar, 2021; Wang et al., 2022). To
construct a sparse reward signal for the Adroit tasks, we provide a per-step reward of 1 when the task
is solved and 0 otherwise. For Pen we use the same success criterion as in Rajeswaran et al. (2018);
for Door and Hammer we relax the success criteria to the second-to-last reward stage since we find
that less than 5 of the human demonstrations achieve success within the given episode length using
the stricter success criteria. We use these success criteria across all methods for a fair comparison.

D.2 META-WORLD

We consider a total of 15 tasks from Meta-World. Tasks are selected based on their difficulty according
to Seo et al. (2022), which categorize tasks into easy, medium, hard, and very hard categories; we
discard easy tasks and select all tasks from the remaining 3 categories that we are able to generate
demonstrations for using MPC with a ground-truth model and a computational budget of 12 hours
per demonstration. This procedure yields the task set shown in Table 4. We follow the experimental
setup of Seo et al. (2022) and use the same camera across all tasks: a modified corner_2 camera
where the position is adjusted with env.model.cam pos[2] = [0.75, 0.075, 0.7] as
in prior work. We adopt the same action repeat (2) in all tasks, and use an episode length of 200 as
we find that all of our considered tasks are solved within this time frame. Unlike Seo et al. (2022)
that uses only RGB frames as input, we also provide proprioceptive state information (end-effector
position and gripper openness) since it is readily available and requires minimal architectural changes.
To construct a sparse reward signal for the Meta-World tasks, we provide a per-step reward of 1
when the task is solved according to the success criteria of Yu et al. (2019) and 0 otherwise. For
completeness, we also provide an apples-to-apples comparison to Dreamer-V2 (Hafner et al., 2020)
and MWM (Seo et al., 2022) by evaluating TD-MPC following their exact experimental setup; results
are shown in Figure 12. We observe that all three methods perform equally well in Meta-World
in a low-data setting with shaped rewards and image observations, which suggests that they are
bottlenecked by exploration rather than algorithmic innovations – even when trained using shaped
rewards.

D.3 DMCONTROL

We consider a total of 3 locomotion tasks from DMControl: Walker Run, Quadruped Run, Humanoid
Walk. We select tasks based on diversity in embodiments and task difficulty: Walker Run and
Quadruped Run are categorized as medium difficulty tasks, and Humanoid Walk as hard difficulty
according to Yarats et al. (2021a). We follow the experimental setup of Hansen et al. (2022) for
DMControl experiments and adopt both camera settings, hyperparameters, and their action repeat of
2 in all tasks. To be consistent across all three domains, observations include 224× 224 RGB frames
as well as proprioceptive state features provided by DMControl. Since rewards are only a function of
the proprioceptive state in locomotion tasks, we evaluate DMControl tasks using the default, shaped
rewards proposed by Tassa et al. (2018). We observe that TD-MPC generally performs slightly better
than Dreamer-V2 on DMControl in the low data regime – see Figure 12 for a comparison.

15



Under review as a conference paper at ICLR 2023

Table 5. MoDem hyperparameters. We list all relevant hy-
perparameters for our proposed method below. Highlighted
rows are unique to MoDem, whereas the remainder are in-
herited from TD-MPC but included for completeness.

Hyperparameter Value

Discount factor (γ) 0.99
Image resolution 224× 224
Frame stack 2
Data augmentation ±10 pixel image shifts
Action repeat 2
Seed steps 5, 000
Pretraining objective Behavior cloning
Seeding policy Behavior cloning
Number of demos 5
Demo sampling ratio 75%→ 25% (100K steps)
Replay buffer size Unlimited
Sampling technique PER (α = 0.6, β = 0.4)
Planning horizon (H) 5
Initial parameters (µ0, σ0) (0, 2)
Population size 512
Elite fraction 64
Iterations 8 (Humanoid, Adroit)

4 (Meta-World)
6 (otherwise)

Policy fraction 5%
Number of particles 1
Momentum coefficient 0.1
Temperature (τ ) 0.5
MLP hidden size 512
MLP activation ELU
Latent dimension 100 (Humanoid)

50 (otherwise)
Learning rate 3e-4
Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)
Temporal coefficient (λ) 0.5
Reward loss coefficient (c1) 0.5
Value loss coefficient (c2) 0.1
Consistency loss coefficient (c3) 2
Exploration schedule (ϵ) 0.1→ 0.05 (25k steps)
Batch size 256
Momentum coefficient (ζ) 0.99
Steps per gradient update 1
θ̄ update frequency 2
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E IMPLEMENTATION DETAILS

Environment and hyperparameters. Human demonstrations for Adroit are sourced from Ra-
jeswaran et al. (2018) which recorded them via teleoperation. In lieu of human demonstrations for
Meta-World and DMControl, we collect demonstrations for those tasks using MPC with a ground-
truth model. We follow the experimental setup of Nair et al. (2022) for Adroit, Seo et al. (2022) for
Meta-World, and Yarats et al. (2021a) for DMControl when applicable, but choose to use a unified
multi-modal observation space across all domains. Observations are a stack of the two most recent
224 × 224 RGB images from a third-person camera, and also include proprioceptive information
(Adroit: finger joint positions, Meta-World: end-effector position and gripper openness, DMControl:
state features) as it can be assumed readily available even in real-world robotics applications. Demon-
strations are of the same length as episodes during interaction and include observations, actions, and
rewards for each step. We consider only sparse reward variants of Adroit and Meta-World tasks since
dense rewards are typically impractical to obtain for real-world manipulation tasks, and consider
dense rewards in DMControl locomotion tasks where reward is only a function of the robot state. We
use an action repeat of 2 in all tasks (i.e., 100K interactions = 200K environment steps). Following
Hansen et al. (2022) we apply image shift augmentation (Kostrikov et al., 2020) to all observations.
As observations are 224× 224 as opposed to 84× 84 as used in prior work, we shift images by ±10
pixels to maintain the same ratio. Table 5 lists all relevant hyperparameters. We closely follow the
original hyperparameters of TD-MPC and emphasize that we use the same hyperparameters across
nearly all tasks, but list them for completeness; hyperparameters specific to MoDem are highlighted.

Network architecture. We adopt the network architecture of TD-MPC but modify the encoder
to accommodate high-resolution images and proprioceptive state information as input. Specifically,
we modify the encoder hθ to consist of three components: an image encoder, a proprioceptive state
encoder, and a modality fusion module. We embed image and proprioceptive state into separate
feature vectors, sum them element-wise, and project them into the latent representation z using a
2-layer MLP. Total parameter count of model and policy is 1.6M. We provide a PyTorch-like overview
of our architecture below. We here denote the latent state dimension as Z, the proprioceptive state
dimension as Q, and the action dimension as A for simplicity. As in Hansen et al. (2022), the
Q-function is implemented using clipped double Q-learning (Fujimoto et al., 2018).

Total parameters: approx. 1.6M
(h):

(image): Sequential(
(0): Conv2d(kernel_size=(7,7), stride=2)
(1): ReLU()
(2): Conv2d(kernel_size=(5,5), stride=2)
(3): ReLU()
(4): Conv2d(kernel_size=(3,3), stride=2)
(5): ReLU()
(6): Conv2d(kernel_size=(3,3), stride=2)
(7): ReLU()
(8): Conv2d(kernel_size=(3,3), stride=2)
(9): ReLU()
(10): Conv2d(kernel_size=(3,3), stride=2)
(11): ReLU()
(12): Linear(in_features=128, out_features=Z))

(prop_state): Sequential(
(0): Linear(in_features=Q, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))

(fuse): Sequential(
(0): Linear(in_features=Z, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z)

(d): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=Z))

(R): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=1))

(pi): Sequential(
(0): Linear(in_features=Z, out_features=512)
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(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=A))

(Q1): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,))
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)
(5): Linear(in_features=512, out_features=1))

(Q2): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,))
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)

F TASK VISUALIZATIONS

We visualize demonstration trajectories in Figure 13 for 8 of the tasks that we consider. Each frame
corresponds to raw 224× 224 RGB image observations that our model takes as input together with
proprioceptive information. Adroit human demonstrations are visualized at key time steps, whereas
Meta-World and DMControl demonstrations are shown at regular intervals of 20 interaction steps
starting from a (randomized) initial state.

Visualizations are shown on the following page ↓
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Figure 13. Task visualizations. We visualize demonstration trajectories for 8 of the total of 21 tasks
that we consider. The raw 224× 224 RGB image observations that our model takes as input together
with proprioceptive information are shown; Adroit human demonstrations are visualized at key time
steps, whereas Meta-World and DMControl observations are visualized at equal time intervals of 20
interaction steps, starting at a random initial state. Actual episode lengths are 100 for Adroit Pen, 200
for Adroit Door, 250 for Adroit Hammer, 200 for Meta-World tasks, and 1000 for DMControl.
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