
SUPPLEMENTARY MATERIAL
Do Different Tracking Tasks Require

Different Appearance Models?

A Datasets and Evaluation Metrics

The table below summarizes the datasets (all publicly available) and evaluation metrics used in this
work. In general, to compare with existing task-specific methods, we use the most popular benchmark
for each task and report the standard metrics.

For association-type tasks (MOT, MOTS and PoseTrack), we first report the MOTA metric since it
highly-correlates with human’s perception in measuring tracking accuracy [3]. However, the MOTA
metric disproportionately overweights good detection accuracy [28, 8]. Since most multi-object
trackers (included UniTrack) adopt off-the-shelf detectors, it is desirable to also adopt detection-
independent measures of performance. For this reason, we also report identity based metrics such
as IDF-1 and ID-switch. We also adopt the recently-introduced higher-order HOTA [28], to replace
MOTA and to represent the overall tracking accuracy when comparing self-supervised methods.

For pose tracking, results are averaged for IDF-1 and MOTA, and summed for ID-switch, over 15 key
points. In the main text, we only report results for the first five tasks from the table below. For the
rest tasks (PoseProp and VIS) we provide additional results in Appendix E. We also provide SOT
results on many more recent large-scale datasets in Appendix F.

Task SOT VOS MOT MOTS PoseTrack PoseProp VIS

Dataset OTB [50] DAVIS 2017 [32] MOT 16 [29] MOTS [43] PoseTrack 2107 [2] JHMDB [18] YoutubeVIS [52]

Metrics AUC J -mean IDF1
MOTA

IDF1
sMOTA

IDF1
MOTA

ID-switch (IDs)
PCK mAP

A single run of the evaluation on five tasks takes about 2 hours in a Titan Xp GPU.

B Propagation

B.1 Box Propagation

In order to propagate bounding boxes, we adopt two methods relying on fully-convolutional
Siamese [5, 40, 45, 23] networks. Given a target image patch Ix that contains the object of in-
terest, and a search image patch Iz (typically a larger search area in the next frame), the appearance
model φ processes both patches and outputs their feature maps x = φ(Ix) and z = φ(Iz).

Cross-correlation (XCorr) head. As in SiamFC [5], we simply cross-correlate the two feature
maps, yielding the response map

g(x, z) = x ? z (1)

Eq. 1 is equivalent to performing an exhaustive search of the pattern x over the search region z. The
location of the target object can be determined by finding the maximum value of response map.

Discriminative Correlation Filter (DCF) head. The DCF head [40, 45] is similar to the XCorr
head, with two major differences. The first one is that it involves solving a ridge-regression problem
to find the template w = ω(x) rather than using the original template x, so that the response map is
given by

g(x, z) = ω(x) ? z (2)
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More specifically, the DCF template w = ω(x) is a more discriminative template compared with the
original template, and is obtained by solving

argmin
w

‖w ? x− y‖2 + λ‖w‖2, (3)

where y is an ideal response (here represented as a Gaussian function peaked at the center) and λ ≥ 0
is the regularization coefficient typical of ridge regression. The solution to Eq. 3 can be computed
efficiently in the Fourier domain [40, 45] as

ŵ =
x̂� ŷ∗

x̂� x̂∗ + λ
(4)

where the hat notation x̂ = F(x) indicates the discrete Fourier Transform of x, y∗ represents the
complex conjugate of y and � denotes the Hadamard (element-wise) product. The response map can
be computed via inverse Fourier Transform F−1,

g(x, z) = ŵ ? z = F−1 (ŵ � z) (5)

Another difference w.r.t the XCorr head is that it is effective to update the template online by simple
moving average [45], i.e. , ŵt =

αx̂t�ŷ∗+(1−α)x̂t−1�ŷ∗
α(x̂t�x̂∗

t+λ)+(1−α)(x̂t−1�x̂∗
t−1+λ)

. In contrast, with the XCorr head
every frame is compared against the first one.

As shown in Table 2 and Table 3 from the main paper, for the tested architectures and appearance
models we can see a clear advantage of DCF of XCorr (note that the difference was less significant in
the original [40] paper, though the experiments were done with a shallower architecture).

Hyper-parameters. Following common practice [5, 23], we provide the Correlation Filter with a
larger region of context in the template patch. To be specific, the template patch Ix is determined by
expanding the height and width of the target bounding box by k = 4.5 times. The search patch is also
determined by expanding the bounding box by same amount, and its center corresponds the latest
estimated location of the target. To handle scale variation of the object, we consider s = 3 different
search patches at different scales 0.985{1,0,1}. Template and search patches are cropped and resized
to 520× 520. This means that with a total stride of r = 8, we have feature maps of size 65× 65. In
the DCF head, we set the regularization coefficient to λ = 1e−4, and the moving average momentum
to α = 1e−2.

Box prop. hyper-parameters Values

Template patch size 512× 512
Search patch size 512× 512
Box expanding coefficient 4.5
# Scales s 3
Scale factors 1.0275{−1,0,1}

Scale penalties 0.985{1,0,1}

Regularization coefficient λ 1e−4

Moving average momentum α 1e−2

B.2 Mask and Pose Propagation

In Section 2.3 we introduced the recursive mask propagation as zt = Kt
t−1zt−1. In practice, to

provide more temporal context, we use a memory bank [21, 17] consisting of multiple former label
maps as the source label zm instead of a single label map zt−1, i.e. zt = Kt

mzm. More specifically,
the resulting source label map is obtained by concatenating all the label maps inside the memory
bank, zm ∈ [0, 1]Ms, where s is the spatial size of a single label map and M is the size of the memory
bank. The softmax computed for Kt

m is applied over all Ms points in the memory bank. The memory
bank includes the first frame of the video, together with the latest M − 1 frames, and we choose
M = 6. As suggested by MAST [21] and CRW [17], we also introduce the local attention technique,
which restricts the source points considered for each target point to a local circle with radius r = 12.
The hyper-parameter k for the k-NN used when computing the transition matrix Kt

m is set to k = 10.
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Propagating pose key points is cast as propagating the mask of each individual key point, represented
with the widely adopted Gaussian belief maps [48]. Each Gaussian has mean equal to the correspond-
ing keypoint’s location, and variance proportional to the subject’s body size σ = max(ηsbody, 0.5).
The body size is determined by,

sbody = max(max
p
{xp} −min

p
{xp},max

p
{yp} −min

p
{yp}) (6)

where (xp, yp) are the coordinates of the p-th key point.

Mask/Pose prop. hyper-parameters Values

Image size Mask: 480× 640
Pose: 320× 320

Softmax temperature τ 0.05
Memory size M 6
Local attention radius r 12
k for k-nearest neighbor 10
Gaussian variance coefficient η 0.01

C Association

C.1 Association Algorithm

Motion cues: object states and Kalman Filtering. We employ a Kalman filter with constant
velocity and linear motion model to handle motion cues in algorithms of the association type. We
assume a generic setting where the camera is not calibrated and the ego-motion is not known. The
object states are defined in an eight-dimensional space (u, v, γ, h, u̇, v̇, γ̇, ḣ), where (u, v) indicate
the position bounding box center, h the bounding-box height and γ = h

w the aspect ratio. The latter
four dimensions represent the respective velocities of the first four terms.

For the sake of simplicity we convert mask representations to bounding boxes. Let the coordinates
of “in-mask” pixels form a set {(xj , yj)|j = 1, ...N}, where N is the number of mask pixels.
Then, the center of the corresponding bounding box is obtained by averaging these coordinates, as
(u, v) = 1

N

∑N
j=1(xj , yj). We estimate the height of the bounding box as h = 2

N

∑N
j=1 ‖yj − h‖1.

This estimation is analogous to the one suggested in the continuous case [25]. Consider a rectangle
with scale (2w, 2h) whose center locates at the origin of a 2D coordinate plane; by integrating over
the points inside of the rectangle, we have 1

h

∫ h
−h ‖y‖1dy = 2

h

∫ h
0
ydy = h. For objects represented

as a pose, we first convert pose keypoints to masks following Appendix C.2, and then convert masks
to boxes.

For each timestep, the Kalman Filter [19] predicts current states of existing tracklets. If a new
detection is associated to a tracklet, then the state of the detection is used to update the tracklet state.
If a tracklet is not associated with any detection, its state is simply predicted without correction.

We use the (squared) Mahalanobis distance [49] to measure the “motion distance” between a newly
arrived detection and an existing tracklet. Let us project the state distribution of the i-th tracklet into
the measurement space and denote mean and covariance as µi and Σi, respectively. Then, the motion
distance is given by

cmi,j = (oj − µi)>Σ−1(oj − µi) (7)

where oj indicates the observed (4D) state of the j-th detection. We observe that the Mahalanobis
distance consistently outperforms Euclidean distance and IOU distance, likely thanks to the consider-
ation of state estimation uncertainty. Using this metric also allows us to filter out unlikely matches
by simply thresholding at 95% confidence interval [49]. We denote the filtering with an indicator
function

bi,j = 1[cmi,j > η]. (8)

The threshold η can be computed from the inverse X 2 distribution. In our case the degrees of freedom
of the X 2 distribution is 4, so the threshold η = 9.4877.
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Algorithm 1: Hungarian Association
Input: Tracklet indices T = {1, ..., N}, detection indices D = {1, ...,M}. Hyperparameter λ.
Output: Set of matchesM, set of unmatched tracklets Tremain, and detections Dremain

1 Initialization:M← ∅, Dremain ← D, Tremain ← T ;
2 for t ∈ T do
3 Predict the state of the t-th tracklet using Kalman Filter
4 end
// main matching stage

5 Compute motion cost matrix Cm = [cmi,j ] using Eq. 7;
6 Compute appearance cost matrix Ca = [cai,j ] using Eq. 9;
7 Compute final cost matrix C = λCa + (1− λ)Cm;
8 Compute gating matrixB = [bi,j ] using Eq. 8;
9 [xi,j ] = Hungarian_assignment (C);

10 M←M∪ {(i, j)|bi,j · xi,j > 0} ;
11 Tremain ← T \ {i|

∑
j bi,j · xi,j > 0} ;

12 Dremain ← D \ {j|
∑
i bi,j · xi,j > 0} ;

// second matching stage
13 Compute IOU cost matrix Cg between Tremain and Dremain.;
14 [xi,j ] = Hungarian_assignment (C);
15 M←M∪ {(i, j)|xi,j > 0} ;
16 Tremain ← Tremain \ {i|

∑
j xi,j > 0} ;

17 Dremain ← Dremain \ {j|
∑
i xi,j > 0} ;

Association algorithm. Algorithm 1 outlines the association procedure for a single timestamp. The
algorithm takes as input a set of tracklets T = {1, ..., N} and detections D = {1, ...,M}. First, we
predict the current states of the all tracklets using the Kalman Filter. Then we perform the main
matching stage. In this stage, we compute a motion cost matrix Cm using Eq 7, and compute an
appearance cost matrix Ca using the RSM metric described in Section 2.4,

cai,j = RSM(i, j) (9)

The final cost matrix is the linear combination of the two cost matricesC = λCa + (1− λ)Cm. We
set λ = 0.99. A Hungarian solver takes the cost matrix C as input and outputs matches [xi,j ]. We
then filter out unrealistic matches using Eq 8. For the remaining tracklets and detections which failed
matching, we perform a second matching stage using IOU distance as the cost matrix. Remaining
tracklets and detections are output by the association algorithm, further steps (described below)
determine if a remaining tracklet should be terminated or if a new identity should be initialized from
a remaining detection.

Tracklet termination and initialization. If a tracklet fails to be matched with a newly arrived
detection with Algorithm 1, we mark it as inactive. To account for short occlusions, inactive tracklets
can still be restored if they are found to be matching with a new detection. We record a “lost age” for
each inactive tracklet. If the lost age is greater than a pre-given time, the tracklet would be removed
from the current tracklet pool. The lost age is set to 1 second in our experiments.

If a detection fails to match existing tracklets with Algorithm 1, it could correspond to a new tracklet.
However, this would result in the creation of frequent brief “spurious” tracklets, containing one
detection only. To cope with this issue, similarly to [49] we only initialize a new tracklet if a new
detection appears in two consecutive frames (and the IOU between consecutive boxes is at least 0.8).

C.2 Pose-to-Mask Conversion

Given the key points’ location of a target person,
we convert the pose into a binary mask in two
steps. First, the key points are connected to form
a skeleton, where the width of each segment
forming this skeleton is proportional to the body
size with a linear coefficient ηp = 0.05, and the
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Detector DPM FRCNN SDP FairMOT-Det w/
motion

Metrics IDF1 IDs MOTA IDF1 IDs MOTA IDF1 IDs MOTA IDF1 IDs MOTA

CF 36.5 748 29.8 51.3 480 50.2 60.9 848 64.5 75.5 550 82.9 X
GPF 34.4 1261 29.3 50.0 530 50.2 60.8 985 64.8 76.4 534 82.9 X
GF 36.3 674 29.8 52.2 479 50.2 62.0 759 64.6 75.9 499 82.9 X
ReID 40.0 619 29.8 54.9 461 50.1 67.1 811 64.5 78.4 545 82.8 X
RSM 39.6 513 30.0 55.6 431 50.2 64.2 762 64.5 78.6 543 82.7 X

CF 26.3 1381 22.8 40.4 820 47.4 46.7 1525 58.2 60.4 1599 76.6
GPF 29.5 782 25.5 43.7 517 48.2 48.8 1337 59.5 57.2 1414 77.4
GF 24.9 1298 22.4 41.7 526 48.1 51.0 960 60.6 65.3 868 78.9
ReID 33.1 637 25.9 47.0 692 47.5 53.3 1250 58.5 64.8 1448 75.9
RSM 28.1 805 25.4 51.5 414 49.8 58.6 999 62.7 74.5 605 82.3

Table 1: Comparison between different similarity metrics for association, tested on MOT-16 train split. We
provide results that (1) use motion cues and (2) discard motion cues. The best results are bolded and the second
best results are underlined.

Methods IDF1 IDs MOTA

CF 38.6 6384 41.8
GPF 38.3 6245 41.8
GF 39.3 5858 41.8
ReID 39.1 6442 41.7
RSM 41.3 5552 41.6

Table 2: Comparison between different similarity
metrics for association, tested on MOT-20 [9] with
the provided detector.

Methods IDF1 IDs sMOTSA

CF 62.8 1529 80.7
GPF 60.7 1071 82.4
RSM 66.5 808 83.4

Table 3: Comparison between different similarity
metrics for association, tested on MOTS [43] train
split based on the segmentation masks provided by
the COSTAst [1] tracker.

body size is computed with Eq. 6. Second, we fill closed polygons inside the pose skeleton, since the
parts inside the polygon usually belong to the target object.

D Ablations for the Reconstruction Similarity Metric (RSM)

In Section 2.4 we claimed that the good tracking performance of UniTrack on association-type tasks
is largely attributed to the proposed Reconstruction Similarity Metric (RSM). In this section, we
provide results of several baseline methods in order to validate the effectiveness of RSM. These
baseline are described below.

Center feature (CF). For a given observation feature dj ∈ Rsdj×C of a bounding box or a mask,
we compute the location of its center of mass and extract the corresponding point feature (a single
C-dim vector) as representation of this observation. Cosine similarity is computed to measure how
likely two observations belong to the same identity. Using center feature to represent an object is a
straightforward strategy, widely used in tracking tasks [58, 47, 55]. The benefit of CF is that it can
handle objects in any observation format, e.g. boxes or masks, while the drawback is also obvious: it
is a local feature and cannot represent the complete information of the object.

Global feature (GF). For a given observation feature dj ∈ Rsdj×C , we concatenate the sdj point
features and obtain a single global feature vector with length sdjC. Cosine similarity is computed to
measure how likely two observations belong to the same identity. Note that only representations with
fixed sdj are feasible in this case. For this reason, we only provide results for GF on the MOT task,
where observations are bounding boxes that can be resized to a fixed size. The benefit of GF is that
it preserve complete information of the observation, while the main drawback is that local features
may not align between a pair of samples. Therefore, global feature is only applicable in cases where
samples are aligned with pre-processing, e.g. in face recognition [13]

Global-pooled feature (GPF). Similar to the global feature, but averaging is performed along the
sdj dimension to obtain a single feature vector with length C. Cosine similarity then is computed
to measure how likely it is that the two observations belong to the same identity. A large body of
re-identification (ReID) approaches [38, 59, 37] employ global-pooled feature (on fully supervised
learned feature maps). The benefit and drawback are similar to center feature.
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Methods PCK@0.1 PCK@0.2

TimeCycle [46] 57.3 78.1
UVC [25] 58.6 79.6
CRW [17] 59.0 83.2
I18 (reported in [17]) 53.8 74.6
I18 (UniTrack) 58.3 80.5
Yang et al. [53] 68.7 92.1

Table 4: Results of pose propagation on JH-
MDB [18] dataset. I18 refers to using ImageNet
pre-trained ResNet-18 as the appearance model.

Methods mAP↑
FEELVOS [42] 26.9
SipMask [6] 32.5

OSMN† [54] 27.5
DeepSORT† [49] 26.1
MTRCNN† [52] 30.3
UniTrack† 30.1

Table 5: VIS results@YoutubeVIS [52] val split.
† indicates methods using the same observations
(segmentation masks in every single frames).

Supervised ReID feature (ReID). For a given image cropped from a bounding box, we employ
an strong, off-the-shelf person ReID model to extract a single feature vector with length C, and
compute cosine similarity between observations. The model uses a ResNet-50 [15] architecture and
is trained with the joint set of three widely-used datasets: Market-1501 [56], CUHK-03 [24], and
DukeMTMC-ReID [34]. Using supervised ReID models to extract appearance features is widely
used in existing multi-object tracking approaches [39, 27, 35]. Considering large amount of identity
labels are leveraged in training, supervised ReID models usually show good association accuracy.

Note that for CF, GF, GPF, and the proposed RSM, we employ the same appearance model (ImageNet
pre-trained ResNet-18) for fair comparison. For a broad comparison, we provide results obtained
with different detectors and on different datasets. We adopt the following detectors and test on MOT-
16 [29] train split (listed with detection accuracy from low to high): DPM [14], Faster R-CNN [33]
(FRCNN), SDP [51], and FairMOT [55].

Results are shown in Table 1. We first apply the full association algorithm, i.e. using both appearance
and motion cues. In this case (first half of the table), RSM consistently outperforms CF, GF, GPF
baselines, and even surpasses the supervised ReID features in several cases, e.g. with FRCNN and
FairMOT detectors. In the second half of the table, we show results in which only appearance cues
are used, so that the difference between metrics (which are based on appearance) can be better
emphasized. In this case, the gaps between different methods are more significant than in the previous
case, and RSM still consistently outperforms CF, GF, and GPF. Furthermore, RSM also surpasses the
strong supervised ReID feature with all detectors, except for DPM. This suggests that RSM can be an
effective similarity metric for tasks that have association at their core.

To show the generality of the results, we also experiment on different datasets and different tasks.
Table 2 shows comparisons on the MOT-20 [9] train split for the MOT task (box observations). The
MOT-20 dataset is specialized for the extreme crowded person tracking scenario. Table 3 presents
results on MOTS [43] train split for the MOTS task (mask observations). Note for the MOTS task,
since the observations (masks) vary in size, it is not feasible to apply the GF strategy. Results show
that the proposed RSM yields significantly higher IDF1 scores on both datasets.

E More Tracking Tasks

In this section we present two more tasks that UniTrack can address.

The first task is human Pose Propagation on the JHMDB [18] dataset: each video contains a single
person of interest, and the pose keypoints are provided in the first frame of the video only. The goal
here is to predict the pose of the person throughout the video. Note that this is different from the
previously mentioned PoseTrack task: PoseTrack mainly focuses on association between different
identities, while in Pose Propagation we aim at propagating the pose of a single identity.

Results are shown in Table 4. We report a higher result with ImageNet pre-trained ResNet-18
compared with in previous work [17, 25] (58.3 v.s. 53.8 PCK@0.1). With this result, we observe the
best self-supervised method CRW [17] does not beat the ImageNet pre-trained representation by a
significant margin (only +0.7 PCK@1). This again validates our second finding in Section 3.2: a
vanilla ImageNet-trained representation is surprisingly effective.
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Method TS sup. TrackingNet [31] TC-128 [26] TLP [30] LaSOT [12] OxUvA [41]

Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. MaxGM

KCF [16] N 41.9 44.7 38.7 54.9 8.4 6.3 17.8 - -
ECO [7] N 56.1 48.9 - - 20.2 21.2 32.4 30.1 0.314
Staple [4] N - - - - - - - - 0.261
BACF [20] N - - - - - - - - 0.281
SiamFC [5] Y 57.1 66.3 50.3 68.8 23.5 28.4 33.6 33.9 0.313
CFNet [40] Y 53.3 57.8 - - - - 27.5 - -
SiamRPN [23] Y - - - - - - - - -
SiamRPN++ [22] Y 73.3 69.4 - - - - 49.6 49.1 -
LUDT [44] N 46.9 54.3 51.5 67.1 - - 26.2 - -
LUDT+ [44] N 49.5 56.3 55.2 72.5 - - 30.5 - -
UnTrack N 59.1 51.2 54.5 73.1 25.4 23.2 35.1 32.6 0.334

Table 6: Results on more SOT datasets. An ImageNet pre-trained representation with a ResNet-50 architecture
is employed as the appearance model within UniTrack. “TS sup.” indicates whether the method requires
task-specific supervision.

The second task is Video Instance Segmentation (VIS). The problem of VIS is similar to Multiple
Object Tracking and Segmentation (MOTS), but its setup differs in the following aspects: first,
the object categories are fairly diverse (40 different categories), while in MOTS objects are mostly
persons and vehicles. This also requires the trackers tackling the VIS task to handle objects from
different classes within the same scene. Second, the evaluation metrics are different. In MOTS, the
MOT-like metrics (CLEAR [3], IDF-1/IDs, and HOTA [28]) are used, which implicitly encourages
methods to focus on outputting temporally consistent trajectories. Instead, for VIS the evaluation
metric is spatial-temporal mAP, a temporal extension of the vanilla mAP which is usually used
in detection and segmentation tasks. The mAP metric significantly biases towards segmentation
and classification accuracy in single frames, thus being less informative for evaluating “tracking”
accuracy.

Results on VIS task are shown in Table 5. We adopt an identical segmentation model to the one of
MaskTrackRCNN [52], and observe only a 0.2 difference in mAP. For further comparison, we also
provide results of two other association methods, OSMN [54] and DeepSORT [49], providing them
with the same observations as used by UniTrack. Note how UniTrack boasts better accuracy than
both methods (30.0 v.s. 27.5 and 26.1 mAP). Comparing with an state-of-the-art model, SipMask [6],
our result is also comparable with −2.4 point mAP. We believe if equipped with more advanced
single frame segmentation model, the mAP would be further improved.

F SOT results on more datasets

To further validate the general validity of our experiments, we provide more results for the SOT task
by testing on more recent datasets that contain large-scale and long-term videos.

The results in Table 6 show a very similar trend to the one already observed for OTB (Table 3e in the
main text): For the SOT task, UniTrack with ImageNet features has comparable performance to the
one of the recent LUDT+, which like UniTrack does not require task-specific supervision, but can
only be used for SOT. Again, similarly to what was reported for OTB, UniTrack is outperformed by
recent methods such as SiamRPN++. This is to be expected, as SiamRPN++ is specifically designed
for SOT and trained in a supervised fashion on several large-scale video datasets.

G Additional Correlation Studies

In Section 3.3 (main paper) we investigated the correlation between tracking performance and
ImageNet “linear probe” accuracy for different SSL models. In this section, we provide more
results and discussions by studying the correlation between tracking performance and several other
downstream tasks when using the appearance model from the many SSL methods under consideration.
For non-tracking tasks, we report numbers from [10] and plot them against tracking performance in
Figure 1.

We report three tasks: surface normal estimation on the NYUv2 [36] dataset, where the mean angular
error is used as the evaluation metric (the lower the better); Object detection on Pascal VOC [11],
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(a) Correlation between tracking tasks and surface normal estimation on NYUv2 [36] dataset.
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(b) Correlation between tracking tasks and object detection (frozen backbone) on Pascal VOC [11] dataset.

0.46 0.48 0.50 0.52 0.54
Det mAP (Finetune)

.58

.60

.62

.64

AU
C

/J
-m

ea
n/

ID
F-

1

r = -0.12
ρ = -0.02

SOT

0.46 0.48 0.50 0.52 0.54
Det mAP (Finetune)

.58

.59

.60

.61

.62

.63

r = 0.01
ρ = -0.08

VOS

0.46 0.48 0.50 0.52 0.54
Det mAP (Finetune)

.68

.70

.72

.74

.76

r = 0.28
ρ = 0.51

MOT

0.46 0.48 0.50 0.52 0.54
Det mAP (Finetune)

.66

.67

.68

.69

.70

.71

r = 0.51
ρ = 0.53

MOTS

0.46 0.48 0.50 0.52 0.54
Det mAP (Finetune)

.72

.73

.74

.75

r = -0.02
ρ = -0.22

PoseTrack
supervised
InsDis
MoCo-v1
PCL-v1
PIRL
PCL-v2
SimCLR-v1

MoCo-v2
SimCLR-v2
SeLa-v2
InfoMin
BYOL
DeepCluster-v2
SwAV

(c) Correlation between tracking tasks and object detection (finetune) on Pascal VOC [11] dataset.
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(d) Correlation between tracking tasks and semantic segmentation on ADE20k [57] dataset.

Figure 1: Correlation study between tracking tasks and other tasks for SSL models. On the y-axes we plot
tracking performance, and on x-axes performance of the other tasks. Spearman’s r and Pearson’s ρ are shown in
the left bottom corner of each plot, indicating how the two axes are correlated.

with performance measured in mAP (the higher the better); Semantic segmentation on ADE20k [57]
dataset, with performance measured in mean IOU (the higher the better). In each subfigure, we plot
the performance of five tracking tasks along the y-axes, and performance of the other task along the
x-axes. Note that we actually use negative mean error for surface normal estimation, to represent
accuracy. As in the main paper, we compute two types of correlation coefficient: Spearman’ r and
Pearson’s ρ, and report them in the left bottom corner of each plot. Several interesting findings can
be observed:

(a) Correlation between tracking and surface normal prediction performance is fairly strong. Results
are shown in Figure 1a. For instance, r = 0.70 for surface normal error v.s. MOT accuracy, and
0.56 for surface normal error v.s. PoseTrack accuracy. Interestingly, the behavior of SOT is in
contrast with MOT and PoseTrack: SOT accuracy is moderately negative correlated (r = −0.50)
with surface normal estimation accuracy. VOS presents a similar trend to the one of SOT, but with a
lower correlation coefficient.

(b) Object detection is moderately correlated with association-type tracking tasks. For object
detection, we consider two setups: one is to freeze the representation and only train the additional
classification/regression head; the other is to finetune the whole network in an end-to-end manner.
Results are shown in Figure 1b and 1c respectively. In general, MOT and PoseTrack are moderately
correlated with object detection under the frozen setting (r = 0.48 for MOT and and r = 0.42 for
PoseTrack), and MOTS is moderately correlated with object detection under the finetune setting
(r = 0.51). Propagation-type tasks are poorly correlated with object detection results under both
settings (|ρ| < 0.10). We speculate that, in this case, positive correlation might be due to the fact that

8



both object detection and association-type tracking require discriminative features at the level of the
object.

(c) Semantic segmentation is slightly negative correlated with tracking tasks. As can be observed
in Figure 1d, correlation coefficients between segmentation accuracy and tracking performance are
mildly negative. Among these results, VOS is the task that is most (negatively) correlated with
segmentation, with r = −0.50. MOTS and PoseTrack are also mildly correlated, with r = −0.41
and r = −0.25 respectively. We speculate that negative correlation might be cause to the fact that
tracking and segmentation require features with contradictory properties. Consider two different
instances that belongs to the same category, i.e. two different pedestrian. For segmentation, the task
requires pixel-wise classification, meaning that pixels inside the two instances should be equally
classified into the same “pedestrian” class, thus their features should be similar (close to the class
center). In contrast, for tracking tasks, it is required to distinguish different instances from the same
class, otherwise a tracker would easily fail when objects overlap with each other. Therefore, point
features inside the two different pedestrian are expected to be dissimilar.
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