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Dissecting Temporal Understanding in Text-to-Audio Retrieval
Anonymous Authors

ABSTRACT
Recent advancements in machine learning have fueled research on
multimodal interactions, such as for instance text-to-video and text-
to-audio retrieval tasks. These tasks require models to understand
the semantic content of input videos, including objects, sounds and
characters. The models also need to learn their spatial arrangement
and the temporal relationships of sounds. In this work, we tackle
the temporal ordering of sounds, which is an understudied problem
in the context of text-to-audio retrieval. In particular, we dissect the
temporal understanding capabilities of a state-of-the-art model for
text-to-audio retrieval on the AudioCaps dataset. Additionally, we
introduce a synthetic text-audio dataset that provides a controlled
setting for evaluating the temporal understanding of recent models.
Lastly, we investigate a new loss function that encourages text-
audio models to focus on the temporal ordering of events.

CCS CONCEPTS
• Information systems → Speech / audio search; Multimedia
and multimodal retrieval.

KEYWORDS
text-to-audio retrieval, temporal understanding
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1 INTRODUCTION
The continued improvement of model capacities and the increase
in data available have led to impressive results on multimodal
tasks, such as text-image understanding [23] and text-audio un-
derstanding [8]. In the domain of text-audio understanding, tasks
include text-to-audio retrieval [3, 13, 17, 19, 26, 30, 38], audio cap-
tioning [6, 7, 15] and recently, text-to-audio generation [11, 14, 37].
Understanding details, such as temporal ordering of events, is im-
portant if we want our systems to give the best search results or
generate reliable content for a text query. Recently, [29] showed that
text-audio models do not use temporal cues available in text-audio
datasets.

In this work, we build on [29] and examine limitations of current
state-of-the-art text-audio models, particularly in their utilization
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of temporal information. Different from [29] who use a Convolu-
tional Neural Networks (CNNs) based audio encoder, our analysis
uses the recent transformer-based audio encoder HTS-AT [2] that
serves as a component of state-of-the-art text-to-audio retrieval
models [17, 30]. We assess whether using an attention mechanism-
based audio encoder, instead of a CNN-based one, improves the
temporal understanding of text-audio models. Additionally, we in-
vestigate in detail the experimental designs and datasets used to de-
termine if poor temporal understanding in current state-of-the-art
models is caused by the training data or by the model architecture.

To determine whether commonly used text-audio datasets, such
as AudioCaps [12], are suitable for training and evaluating cur-
rent models’ ability to comprehend time, we examine the relative
distribution of audio descriptions that contain temporal cues, plot-
ting their frequency in relation to the total number of descriptions.
Our analysis shows that the AudioCaps dataset suffers from biases
caused by the way humans describe events. That is, we tend to
describe events in the order they appear. When first hearing the
sounds of a dog barking and then the sound of a human speaking,
we describe this as ‘A dog barking followed by a human speaking’
rather than ‘A dog barking before a human speaks’. To try to address
the lack of some temporal examples, in [29], the authors generate
new text-audio pairs starting from their existent text-audio data.
They concatenate the audio files in a specific order, and then gen-
erate a description that reflects that e.g. if the generated sound
is 𝑆𝑜𝑢𝑛𝑑1 + 𝑆𝑜𝑢𝑛𝑑2, the description is ‘<Original description of
𝑆𝑜𝑢𝑛𝑑1> before <Original description of 𝑆𝑜𝑢𝑛𝑑1>’. They thus fur-
ther increase the training size of the data by 40%. In comparison to
them, we rephrase existing text descriptions such that to preserve
the content but use a more uniform distribution of textual tempo-
ral cues. We investigate the impact of employing a more uniform
set of training examples on the performance outcomes of models,
comparing text-to-audio retrieval results on the original test data
with those on rephrased test data.

Furthermore, we present an empirical evaluation of the correct-
ness and completeness of AudioCaps descriptions by leveraging
Large Language Models (LLMs) as oracles1. More specifically, we
provide an LLM with the original descriptions and with the sub-
set of AudioCaps for which we have temporally localised sounds
(provided by [33]). We ask the LLM to classify the sentences into
correct – if the description contains all the sounds and the correct
ordering, incomplete – if the description is missing sounds or is
missing temporal context, and incorrect – if the description contra-
dicts the provided grounded sounds. We observe that about 23% of
the descriptions are incomplete or incorrect. This can contribute to
models trained on AudioCaps not understanding temporal ordering.

To gain further insights into the temporal understanding capa-
bilities, we propose a synthetic dataset that provides a controlled
setting for analysing text-audio models. This dataset contains only
10 second long audios, keeping in line with the general setting that

1An oracle in a computational context is a theoretical construct that provides perfect
answers or decisions.
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current models have been trained on. We show that the considered
model struggles to use temporal cues in the synthetic dataset, too,
confirming the findings from [29] in a controlled setting. This is
useful as it allows us to decouple the bad temporal performance
of the model from the data not being suited for the task. Lastly,
we propose a simple text-based contrastive loss function and show
that it results in the model paying more attention to the temporal
ordering of events. This also gives improvements in the overall
retrieval results on the synthetic dataset.

In summary, we make the following contributions: (i) We show
why existent text-to-audio retrieval datasets are not good indicators
of a text-audio model’s ability to understand temporal ordering, (ii)
We propose a more uniform version of AudioCaps that is better
suited for the temporal understanding task.We provide benchmarks
and an analysis of the behaviour of current models on the original
and more uniform versions of this dataset. This version keeps the
audios intact and only requires changing the text descriptions. (iii)
We propose a synthetic dataset and use it to evaluate the model’s
understanding of time, (iv) We investigate an additional loss term
to encourage the model to focus on text-based temporal cues.

2 RELATEDWORK
Text-to-audio retrieval. Text-to-audio retrieval involves match-
ing a textual query with its most relevant audio file. This task of
searching through audio databases can be approached in multi-
ple ways. One simple way is to match the text query with the
title or the metadata of the audio file, provided it exists. However,
for unlabelled databases, the aim is to find an audio file that has
the content specified by the user through the given text query.
This is called semantic search. For many years, text-audio seman-
tic retrieval has used audio class labels made of individual or few
words as text queries [9, 10, 25, 28]. More recently, [13, 19] pro-
posed new benchmarks where the text query is a free-form text
description rather than a pre-defined class label, allowing for more
control over the retrieved audio content. Collecting new text-audio
pairs for training and using state-of-the-art transformer-based au-
dio encoders has proven beneficial on the text-to-audio retrieval
benchmarks [17, 30, 38]. As the annotation of audio files with de-
scriptions is time consuming, some of the text-audio pairs collected
by [30] and [17] contain short audio labels instead of descriptions.
To overcome this, [30] employed the T5 [24] model to generate
proper descriptions starting from audio labels, whilst [17] used
ChatGPT [20]. [17] also used ChatGPT to clean audio descriptions
from datasets such as BBC Sound Effects2 by removing visual-based
content. Another line of works considered metric learning objec-
tives for text-to-audio retrieval [16, 32]. Other concurrent research
pushed the text-to-audio retrieval results even further by training
models with additional modalities, such as video and speech [4, 27].
Recently, [18] introduced new text-to-audio retrieval benchmarks
on egocentric video data.
Text-audio grounding. [33] proposes a new set of data annota-
tions for a subset of the AudioCaps dataset [12], with the aim of
grounding each sound to a time interval. For this, annotators la-
belled the start and end times of all relevant sounds in each audio

2https://sound-effects.bbcrewind.co.uk/

clip. [34, 35] investigated the task of weakly supervised text-to-
audio grounding. The audio grounded dataset has also been used
for learning to align sounds and text in an unsupervised man-
ner [31]. [1] used the grounded sounds to propose new metrics for
audio captioning. In this work, we use this subset to provide an
empirical evaluation of the quality of existing AudioCaps captions.
More specifically, we provide these grounded sounds and the corre-
sponding AudioCaps descriptions to an LLM and ask it to evaluate
if the descriptions are correct and complete.
Text-to-audio retrievalwith synthetic data.A concurrentwork [36]
claims that commonly used text-audio datasets only contain simple
audio descriptions that are not always complete. In particular, they
lack temporal cues, the number of times a sound can be heard, or
details about sounds overlapping. [36] propose a synthetic dataset
for audio captioning, by merging ‘atomic’ sounds in a controlled
way. We also generate a synthetic dataset and use it to analyse the
temporal understanding capabilities of text-audio models.
Temporal understanding of text-audio models. [29] show that
text-audio models do not pay attention to temporal cues in text
queries, such as ‘followed by’, or ‘after’. One example of an experi-
ment employed by [29] for checking if models understand time, is
replacing temporal cues with words that represent a wrong order-
ing, e.g. replacing ‘then’ with ‘as’. Then, the model’s performance
on the ‘wrong’ descriptions is evaluated, finding that this perfor-
mance is similar to when the temporal ordering in the text queries is
correct. In their study, [29] utilize Convolutional Neural Networks
(CNNs) for audio processing. They identify a critical limitation
of CNN-based models: the practice of applying temporal pooling
across all embeddings can result in the loss of temporal informa-
tion. To try mitigating this issue, they suggest augmenting the CNN
architecture with several transformer layers to preserve temporal
dynamics. In contrast, contemporary models built on transformers,
inherently incorporate mechanisms to handle temporal data more
effectively. Different to [29], we investigate the temporal under-
standing of a current transformer-based state-of-the-art audio-text
retrieval model. In particular, we analyse if a transformer-based
model also ignores temporal cues. We dive deep into the analysis
of descriptions in text-audio datasets in the context of temporal
understanding. Additionally, we propose a synthetic text-to-audio
retrieval dataset and perform temporal understanding experiments
on it. Lastly, the approach proposed by [29] for helping models
better understand time does not improve the overall performance
on downstream retrieval benchmarks. In this work, we investigate
a different way to guide the model to focus on temporal cues.

3 TEMPORAL UNDERSTANDING IN
TEXT-TO-AUDIO RETRIEVAL

3.1 AudioCaps dataset
The AudioCaps [12] dataset contains paired audio clips and text de-
scriptions. The training set consists of one text description for each
audio file. The validation and test sets contain five descriptions for
each audio file. In this setting, which is employed by all benchmarks
utilising AudioCaps, if any of the five text descriptions matches
with the audio clip, this corresponds to 100% retrieval accuracy.

In this section, we take a closer look at the AudioCaps dataset,
which is employed in all related text-to-audio retrieval works for
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Figure 1: Distribution of temporal conjunctions and preposi-
tions in the full AudioCaps dataset.

training and evaluation. We want to better understand the temporal
characteristics of this dataset to gauge if the data available for
training text-to-audio retrieval models is a part of the problem of
models not understanding temporal cues [29].

First, we analyse the distribution of temporal conjunctions and
prepositions in the audio captions in the AudioCaps dataset in Fig. 1.
We observe that most conjunctions and temporal prepositions sug-
gest future events, i.e. ‘Followed by’, ‘Then’. This is closely followed
by the joint occurrence of audio events, i.e. ‘As’ and ‘While’. How-
ever, almost no examples contain the temporal prepositions ‘Before’
or ‘Preceded by’ which is reasonable as humans would not natu-
rally describe events in that order. A similar analysis is performed
by [29], where they provide percentage distribution for ‘Followed
by’, ‘Then’, ‘Before’ and ‘After’. In [29] this distribution describes
their training and test data, which are formed form a combination
of multiple datasets amongst which AudioCaps [12] and Clotho [7].
Here, we consider all words in the AudioCaps descriptions that
represent temporal ordering. Given the distribution in Fig. 1, ex-
pecting a model trained on this data to understand the meaning of
reverse temporal prepositions is unreasonable. At the same time,
the test data also suffers from the same problem, therefore, using
AudioCaps benchmarks for deciding if models understand temporal
ordering is not optimal either.

Next, we empirically evaluate the correctness and completeness
of AudioCaps descriptions by using the grounded sound time inter-
vals provided by [33]. Through manual inspection, we notice that
many AudioCaps descriptions are composed of multiple sounds.
For instance, a 10 second audio file with a bird singing from second
0 to second 6 and a dog barking from second 4 until second 10 can
be described as ‘Bird singing and/as dog barks’. Alternatively, this
could be described as ‘Bird singing followed by dog barking’. Both
descriptions are correct, however, a more complete version of these
descriptions would be, for example, ‘Bird singing, soon joined by
a dog barking. Their sounds overlap briefly before the bird stops,
while the dog continues barking.’. If the description is not complete,
however, how could a model learn the difference between ‘as’ and
‘followed by’ when they describe the same audio clip?

To empirically evaluate the completeness and quality of the de-
scriptions in AudioCaps with grounded sound sources, we use an
LLM, specifically GPT-4 [21]. We provide the LLM with the Audio-
Caps description, the grounded sources and their time intervals. We
use one-shot prompting to give the model an example, such that it
better understands the task. We then ask the model to provide an
evaluation of ‘correct’, ‘incomplete’ and ‘wrong’ for the AudioCaps
description based on the sound sources information. Details for our
prompt are shown in Tab. 1. We process the outputs of the LLM,
yielding proportions of correct, incomplete, and wrong descriptions
in the subset of AudioCaps presented in Tab. 2. On average, 23%
of the descriptions are incomplete or wrong. This percentage in-
creases for descriptions containing future and past temporal cues.
The use of future and past refers to the fact that if ‘Sound 1’ and
‘Sound 2’ are connected by a future temporal cue, then that means
that ‘Sound 1’ comes first and is followed by ‘Sound 2’. If a past cue
is used, then ‘Sound 1’ comes after ‘Sound 2’, e.g. ‘Bird sings after
dog barks’. Future cues include ‘Followed by’, ‘Before’ and ‘Then’,
e.g. ‘Bird sings before dog barks’. For past, we consider ‘Preceded
by’ and ‘After’. Based on the significant proportion of incomplete
or wrong descriptions, and the distribution of temporal textual
cues, we conclude that AudioCaps is not well-suited for analysing
if text-audio models understand temporal ordering.

3.2 Model performance on AudioCaps
In this section, we investigate the performance of a state-of-the-art
model for text-to-audio retrieval on AudioCaps in detail.

3.2.1 Evaluation metrics. Throughout all experiments, we use the
standard evaluation metrics for retrieval: recall at rank 𝑘 (R@𝑘).
This measures the percentage of targets retrieved within the top
𝑘 ranked results. Higher numbers are better. We report results for
text-to-audio (T → A) and audio-to-text retrieval (A → T). We
report the mean of three runs that use different random seeds.

3.2.2 Model. We employ the state-of-the-art text-audio model
by [17], utilising an HTS-AT audio encoder [2], and a pre-trained
BERT encoder for text. After encoding audio and text, an MLP
projects the embeddings into the same space. We use the model
variant pre-trained on WavCaps [17]. In our experiments, we fine-
tune the model for 40 epochs and use the same setup as [17]. The
best model is selected based on the highest average validation re-
trieval accuracy R@1.

3.2.3 Loss function. We use the same loss as [17] - a normalised
temperature scaled bidirectional cross-entropy loss (NT-Xent) [5].
We call this loss L𝑎𝑡 with

𝑠𝑖 𝑗 =
𝑓 (𝑎𝑖 ) · 𝑔(𝑡 𝑗 )

∥ 𝑓 (𝑎𝑖 )∥2∥𝑔(𝑡 𝑗 )∥2
, (1)

L𝑎𝑡 = − 1
2𝐵

∑𝐵
𝑖=1

[
log

(
exp(𝑠𝑖𝑖/𝜏 )∑𝐵
𝑗=1 exp(𝑠𝑖 𝑗 /𝜏 )

)
+ log

(
exp(𝑠𝑖𝑖/𝜏 )∑𝐵
𝑗=1 exp(𝑠 𝑗𝑖/𝜏 )

)]
. (2)

Here 𝑓 (·) is the audio encoder and 𝑔(·) the text encoder. 𝑠𝑖 𝑗 is the
cosine similarity, 𝑎𝑖 is an audio input, 𝑡 𝑗 is a text input, 𝐵 is the
batch size, and 𝜏 is a temperature parameter. More details in [17].

3.2.4 Data used. For our analysis, we construct a more uniform
version of the AudioCaps dataset with descriptions having a more
balanced distribution of temporal conjunctions and prepositions.
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Table 1: Methodology for evaluating the quality of the grounded subset of AudioCaps using an LLM. Our input prompt includes
setting the scene, one-shot prompting with an example, followed by the generation of new examples.

Prompt

Given descriptions of audio files and detailed temporal information about specific sounds within these files, where a
sound may be present during multiple, distinct time intervals, your task is to evaluate the accuracy of each description
with a primary focus on the timing and sequence of these sounds. Each audio file is 10 seconds long. For every
description, assess its accuracy specifically in terms of how well it captures the chronological order and exact timing of
sounds. Classify your evaluation into one of three categories: ’Correct’, ’Incomplete’, or ’Wrong’. If necessary, provide a
corrected description that not only fixes inaccuracies related to timing but also maintains the original writing style of
the description. Your analysis should critically examine the temporal details provided, ensuring your assessment is
primarily guided by the accuracy of these temporal sequences.

Keep in mind the following:
Pay attention to whether the description matches the start and end times of sounds accurately.
Consider if the sequence of described sounds follows the actual sequence in the audio file. Evaluate if the description
misses any sounds within the specified time frames or includes sounds that do not occur within these times.
Use similar vocabulary as the original audio description.

Example:
Input:
Original audio description: A power tool motor running then revving
Localized components and their start and end times:
revving: 2.154, 10.02;
a power tool motor running: 0.0, 10.02;
Output:
Evaluation: Incomplete
Corrected description: A power tool motor running throughout, with revving starting early on and continuing alongside
the motor’s running sound until the end.

Table 2: Proportion of correct, incomplete and wrongly cap-
tioned AudioCaps data as determined by an LLM. First row
contains the total numbers of grounded descriptions. The
other rows show proportions for specific temporal cues.

Preposition Correct Incomplete Wrong

Total (#) 3835 636 503

As (%) 75.3 13.9 10.8
Followed by (%) 60.6 15.3 24.1

Then (%) 62.1 15.9 22.0
While (%) 72.0 15.4 12.6
Before (%) 58.8 9.8 31.4
After (%) 54.5 6.1 39.4

Proceeded by (%) 50.0 0.0 50.0
During (%) 53.3 13.3 33.3
And (%) 75.6 13.5 10.9

In particular, we rephrase AudioCaps descriptions to preserve the
original meaning while varying the use of temporal conjunctions
and prepositions. We investigate if this helps with temporal un-
derstanding. Specifically, we re-write the descriptions from the
original AudioCaps dataset to generate the 𝐴𝑢𝑑𝑖𝑜𝐶𝑎𝑝𝑠𝑢𝑛𝑖 dataset
with corresponding 𝑇𝑟𝑎𝑖𝑛𝑢𝑛𝑖 , 𝑉𝑎𝑙𝑢𝑛𝑖 and 𝑇𝑒𝑠𝑡𝑢𝑛𝑖 subsets. There
are two approaches to re-writing the descriptions. One is to replace
the temporal cues with something that has the same meaning e.g.

Figure 2: Distribution of temporal conjunctions and preposi-
tions in AudioCaps training data. We compare the propor-
tion of temporal textual cues in the original training dataset
(Train) and the more uniform dataset (𝑇𝑟𝑎𝑖𝑛𝑢𝑛𝑖 ).

‘Bird singing followed by dog barking’ is equivalent to ‘Bird singing
before dog barking’. The second approach is to re-order the text lo-
cation of events and also change the temporal cue e.g. ‘Bird singing
followed by dog barking’ becomes ‘Dog barking after bird singing’.
We present the distribution of temporal cues in the original Audio-
Caps dataset and its uniform variant in Fig. 2 and Fig. 3. An analysis
of the validation split can be found in the supplementary material.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dissecting Temporal Understanding in Text-to-Audio Retrieval ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 3: Distribution of temporal conjunctions and preposi-
tions in the AudioCaps test dataset.

In addition to the more uniform AudioCaps version, we create
a test subset where at least one of the 5 text descriptions contains
future and past temporal cues (as defined in Sec. 3.1). We do this to
evaluate the performance of the model on sentences that actually
contain temporal cues of interest. We call this subset TempTest.

3.2.5 Experiments. We consider three main experiments. First, we
conduct the standard evaluation for text-to-audio retrieval on the
AudioCaps test set. The performance on the standard test set serves
as a point of reference for the training and evaluation on different
variants of the AudioCaps data.

The second experiment involves reversing the ordering of sounds
in the text queries of the test set.We call this𝑇𝑒𝑠𝑡𝑟𝑒𝑣 . The purpose of
this experiment is to see what happens if the temporal text descrip-
tions keep the same temporal preposition or conjunction but the
sound sources are reversed, resulting in a wrongly ordered descrip-
tion, e.g. Birds singing before dog barks becomes Dog barks before
birds singing. If the model understands the temporal ordering of
events, the performance of the model should drop for the ‘wrongly’
ordered events as compared to the original test set performance.

For the third experiment, we replace the temporal cue in a de-
scription with its opposite, thus changing the order of events with-
out changing their position, e.g. Birds singing before dog barks be-
comes Birds singing after dog barks. We refer to this as Test𝑟𝑒𝑝 .
More concretely, we do the following replacements: (‘followed
by’→‘preceded by’), (‘preceded by’→‘followed by’), (‘after’→‘before’),
(‘before’→‘after’), and (‘then’→‘before’).

If the model does not understand temporal cues, we expect it
to perform similarly well on Test, Test𝑟𝑒𝑣 and 𝑇𝑒𝑠𝑡𝑟𝑒𝑝 . Conversely,
if it understands temporal ordering, Test performance should be
considerably higher than Test𝑟𝑒𝑣 and Test𝑟𝑒𝑝 . We would also expect
Test𝑟𝑒𝑣 and Test𝑟𝑒𝑝 to be similar, as the meaning of the sentence is
the same but opposite of the Test sentences meaning. We addition-
ally consider rev and rep subsets of the temporal subset TempTest.

In Tab. 3, we take the checkpoint provided by [17] which was
trained on WavCaps [17] and finetune it on the original AudioCaps
training dataset. We notice that on the reversed TempTest𝑟𝑒𝑣 set
the model performs worse, indicating that the model understands

Table 3: Text-to-audio retrieval and audio-to-text-retrieval
results on the AudioCaps and AudioCaps𝑢𝑛𝑖 datasets for the
model fine-tuned on AudioCaps (Train). We report retrieval
accuracies R@1. Reverting the order of events (generally)
does not change performance.

Eval Dataset Subset T→A A→T

R@1 R@1

AudioCaps

Test 43.71 56.57
TempTest 50.51 63.74

TempTest𝑟𝑒𝑣 43.90 57.71
TempTest𝑟𝑒𝑝 49.55 62.67

AudioCaps𝑢𝑛𝑖
Test 41.54 53.84

TempTest 48.61 61.37
TempTest𝑟𝑒𝑣 47.37 62.10
TempTest𝑟𝑒𝑝 47.60 60.89

Table 4: Text-to-audio retrieval and audio-to-text retrieval
results on the AudioCaps𝑢𝑛𝑖 dataset for the model fine-tuned
on AudioCaps𝑢𝑛𝑖 (Train𝑢𝑛𝑖 ). Improved results on Test𝑢𝑛𝑖 .
Slightly bigger drop in 𝑟𝑒𝑣 and 𝑟𝑒𝑝 wrt TempTest.

Eval Dataset Subset Loss T→A A→T

R@1 R@1

AudioCaps𝑢𝑛𝑖
Test L𝑡𝑎 43.67 53.88

TempTest L𝑡𝑎 50.67 61.31
TempTest𝑟𝑒𝑣 L𝑡𝑎 46.82 59.31
TempTest𝑟𝑒𝑝 L𝑡𝑎 47.45 59.06

temporal ordering. However, on TempTest𝑟𝑒𝑝 which contains the
replacement of temporal cues, the model performs similarly to
on TempTest. This is interesting, as the temporal ordering of both
𝑇𝑒𝑚𝑝𝑇𝑒𝑠𝑡𝑟𝑒𝑣 and TempTest𝑟𝑒𝑝 is reversed and wrong as compared
to TempTest. The only difference is that for the former, the actual
positional text locations of the sounds are swapped, whilst for the
latter the meaning is reversed by changing the temporal connector.
This leads us to believe that at best, the model learns text location-
based ordering rather than the ordering given by the text connector.

We then run the same experiments on the test sets of AudioCaps𝑢𝑛𝑖 .
We notice that the model is unable to identify the text-based order
of sound events, with results on all ‘correct’ (TempTest) and ‘wrong’
(TempTest𝑟𝑒𝑣 and TempTest𝑟𝑒𝑝 ) splits being almost the same.

Next, we investigate if the model does not understand temporal
ordering due to a lack of variety in the training examples. We
take the same pre-trained checkpoint as before [17], and finetune
it on the 𝐴𝑢𝑑𝑖𝑜𝐶𝑎𝑝𝑠𝑢𝑛𝑖 𝑇𝑟𝑎𝑖𝑛𝑢𝑛𝑖 set. We notice that the overall
performance on the 𝐴𝑢𝑑𝑖𝑜𝐶𝑎𝑝𝑠𝑢𝑛𝑖 test sets and the corresponding
temporal subsets is higher when finetuning on a more uniform
distribution of temporal cues (Tab. 4) than when finetuning on
the original training data (Tab. 3). Thus, the lack of understanding
temporal ordering is in part due to the training data not containing
examples of past temporal cues. We also notice some signs of better
temporal understanding, with a slightly bigger drop in performance
on the TempTest𝑟𝑒𝑣 and TempTest𝑟𝑒𝑝 sets relative to TempTest.
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Table 5: Text-to-audio retrieval and audio-to-text retrieval
results on the SynCaps dataset for the model fine-tuned on
SynCaps with the L𝑡𝑎 (audio-text alignment) loss function.

Subset T→A A→T

R@1 R@1

Test 67.70 65.50
Test𝑟𝑒𝑣 66.67 64.95
Test𝑟𝑒𝑝 67.08 63.64

4 TEMPORAL UNDERSTANDING IN
CONTROLLED SETTING

We analyse the text-audio model’s temporal understanding in a
controlled setting where we can guarantee correct alignment of
text-audio pairs.

4.1 Data generation
We use the ESC-50 [22] environmental sound classification dataset
to generate a synthetic dataset for text-to-audio retrieval with a
focus on temporal understanding capabilities. ESC-50 is a dataset
of 2000 audio samples from 50 classes. As this dataset is clean and
contains clear ‘atomic’ sounds (i.e. 5 second audios containing only
one sound), we use it for synthetic data generation.

We first ask an LLM to take the sound labels from ESC-50 and
generate textual descriptions in the style of AudioCaps (e.g. ‘dog’→
‘dog barking’). To generate the text-audio pairs, we take two sounds
and their LLM-generated labels and concatenate them based on the
temporal order we decide on. We call this dataset SynCaps.

To avoid any confusion, we only use future and past temporal
cues. This is because synchronous temporal cues such as ‘as’ or
‘during’ can represent many things, especially in a noisily labelled
dataset. They can be used for sounds that completely overlap, or for
partial overlaps of sounds, ignoring the actual order in which the
sounds appear. The test set contains unique sound components that
are not used in the training and validation sets. This leads to 485
examples of 10 second long audio clips. For training and validation,
we allow the same 5 seconds sound component to appear on average
5 times and apply 5 types of augmentation, to reduce overfitting on
the training and validation sets. We use augmentations, such as time
shifting, volume adjustment, pitch shift, time stretch, and added
noise. We also allow an overlap between the files of up to 1 second.
This results in a total of 4400 training files and 485 validation files.

4.2 SynCaps Experiments
We analyse the temporal understanding of the text-audio model in
the more controlled setting of the SynCaps dataset. For this, we take
the same pre-trained model from [17] and finetune it on SynCaps.

We see that evaluating on the ‘reversed’(rev) and ‘replaced’(rep)
datasets gives almost the same results as using the correct (origi-
nal) test data (Tab. 5). This shows that the model indeed does not
understand temporal cues even on a simple dataset.

Table 6: Text-to-audio retrieval and audio-to-text retrieval
results on the SynCaps dataset for the model fine-tuned on
SynCaps using our text-text contrastive loss L𝑡𝑡 .

Subset Loss T→A A→T

R@1 R@1

Test L𝑡𝑎 + 𝜆L𝑡𝑡 69.83 71.13
Test𝑟𝑒𝑣 L𝑡𝑎 + 𝜆L𝑡𝑡 40.41 43.43
Test𝑟𝑒𝑝 L𝑡𝑎 + 𝜆L𝑡𝑡 44.95 47.70

4.3 Proposing new loss
We propose a loss function L𝑡𝑡 that enhances the understanding of
temporal information. It is formulated as a text-to-text contrastive
loss, which relies on pairs of positive examples (have the same
temporal significance as the original sentence) and negative text
examples (have the opposite temporal meaning). Concretely, given
the original description Bird sings followed by dog barks, one posi-
tive example is Bird sings before dog barks and one negative example
would be Bird sings after dog barks.

We provide the model with two positive text examples and two
negative text examples for each text description containing the
previously defined future and past temporal textual cues. Positive
and negative text examples can be generated once, before training
the model. We searched for the temporal cues we are interested in
and automatically generated multiple positives and negatives by
changing the temporal cues and/or the ordering of the sounds.

The contrastive loss for each query and a margin 𝛼 is:

L𝑡𝑡 =
1
2𝑁

𝑁∑︁
𝑛=1

2∑︁
𝑘=1

max(0, 𝛼 − pos_sim𝑛𝑘 + neg_sim𝑛𝑘 ), (3)

where pos_sim𝑛𝑘 is the similarity between the 𝑛-th query and its
𝑘-th positive example, neg_sim𝑛𝑘 is the similarity between the 𝑛-th
query and its 𝑘-th negative example. Our full loss then becomes:

L = L𝑡𝑎 + 𝜆L𝑡𝑡 . (4)

In our experiments that use the text-text loss, we set 𝜆 = 10, 𝛼 = 0.2.
We now evaluate the same model pre-trained on WavCaps and

finetuned on SynCaps but employing our additional loss. In Tab. 6,
we observe that the model performs better on the original test set
compared to Tab. 5, whilst at the same time showing a big drop
in performance on the ‘reversed’ and ‘replaced’ data. This shows
that employing a simple additional loss can help the model better
understand time, at least in the synthetic controlled setting.

5 CONCLUSION
In this work, we dissected temporal understanding capabilities of
current state-of-the-art text-audio model. We first analysed how
well-suited AudioCaps is as a training and evaluation dataset for
the temporal understanding of events. We then proposed a new
synthetic dataset, concluding that indeed models fail to use the
temporal cues even when the data is clean. Lastly, we propose
a simple loss that results in better text-to-audio retrieval results
on SynCaps, whilst also putting more emphasis on the temporal
content of the audio and text data.
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