
6 FULL PROOFS AND DERIVATIONS

6.1 DERIVATION OF MAIN OPTIMIZATION OBJECTIVE

The prior probability of a batch containing exactly nk labels for each cluster k ∈ {1, . . . ,K} is(
1

K

)N
N !∏K

k=1 nk!
,

and the likelihood is

p(Z = z1, . . . , zN |Y = k1, . . . , kN ) =

N∏
i=1

exp(− 1
2 (zi − µki

)Σ−1
ki

(zi − µki
))√

(2π)d|Σki |
,

where d is the dimension of the feature space, and µk and Σk are the centroid and covariance matrix
of the kth cluster, respectively.

If we further assume each cluster is spherical, with the same isotropic variance across all clusters,
i.e., Σk = σ2I, for k ∈ {1, . . . ,K}, then equation 6.1 simplifies to

N∏
i=1

exp(− 1
2σ2 ||zi − µki

||2)√
(2πσ)d

,

and the full a posteriori is

p(Y |Z) ∝ P (Y )P (Z|Y ) =

(
1

K

)N
N !∏K

k=1 nk!

N∏
i=1

exp(− 1
2σ2 ||zi − µki ||2)√
(2πσ)d

∝
∏N

i=1 exp(−
1

2σ2 ||zi − µki
||2)∏K

k=1 nk!
,

where we drop the constants that are independent of Y . Then, we obtain an optimization objective
by minimizing the corresponding negative log likelihood as follows

argmax
Y

p(Y |Z) ∝ argmax
Y

p(Y )P (Z|Y ) =

= argmax
Y

log(

N∏
i=1

exp(− 1
2σ2 ||zi − µki ||2))− log(

K∏
k=1

nk!) =

= argmax
Y

N∑
i=1

− 1
2σ2 ||zi − µki

||2 −
K∑

k=1

log(nk!) =

= argmin
Y

N∑
i=1

||zi − µki
||2 + 2σ

K∑
k=1

log(nk!) .

6.2 COMPLEXITY OF MAIN OPTIMIZATION OBJECTIVE

The main optimization objective is too slow to solve exactly. A common solution would involve
interpreting the problem as the rectangular assignment problem, where clusters are works and data
points are jobs. Then take the standard representation of the assignment problem as a flow network.
Instead of adding one edge from the source vertex for each worker, add m parallel edges for each
worker. For k ∈ {0, . . . ,m − 1} the , kth edge for a worker has capacity 1 and cost log k! −
log (k − 1)! = log k. However, using standard solutions to the assignment problem would then
result in complexity cubic in m, which is the batch size. This would be prohibitively slow for all but
very small batch sizes.
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6.3 DERIVATION OF GREEDY APPROXIMATION

We want to maximize the conditional probability of the N th assignment in a batch, conditioned on
the N − 1 previous assignments:

argmax
kN=1,...,K

p(yN = k|y1 = k1, . . . , yN−1 = kN−1;Z) =

argmax
kN=1,...,K

p(y1 = k1, . . . , yN = kN |Z)

p(y1 = k1, . . . , yN−1 = kN−1|Z)
=

argmax
kN=1,...,K

log p(y1 = k1, . . . , yN = kN |Z)−

− log p(y1 = k1, . . . , yN−1 = kN−1|Z) =

argmax
kN=1,...,K

−
N∑
i=1

||zi − µki
||2 + 2σ

K∑
k=1

log(n′
k!)+

+

N−1∑
i=1

||zi − µki ||2 − 2σ

K∑
k=1

log(nk!) =

argmin
kN=1,...,K

N∑
i=1

||zi − µki
||2 −

N−1∑
i=1

||zi − µki
||2+

+2σ(

K∑
k=1

log(n′
k!)−

K∑
k=1

log(nk!)) =

argmin
kN=1,...,K

||zN − µkN
||2 + 2σ(

K∑
k=1

log(nk!)−
K∑

k=1

log(nk!
′)) , (9)

where nk is the number of points assigned to cluster k before the N th assignment, and n′
k is the

number assigned to the kth cluster after all assignments have been made. This means that

n′
k =

{
nk + 1 k = kN
nk otherwise .

Thus, equation 9 becomes

argmin
kN=1,...,K

||zN − µkN
||2 + 2σ log(nkN

+ 1!)− log(nkN
!) =

argmin
kN=1,...,K

||zN − µkN
||2 + 2σ log(nkN

+ 1) . (10)

6.4 PROOF OF EQUIVALENCE TO MUTUAL INFORMATION MAXIMIZATION

We want to show that the greedy algorithm that iteratively solves equation 6 can be interpreted
as (a close approximation to) iteratively making whatever assignment will maximize the mutual
information between the batch index i and the cluster labels. First note that, because the proposed
model makes hard assignments, the entropy of cluster labels given the batch index is automatically
zero, and so recalling that

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) ,

we see that the mutual information of the batch index i and the cluster labels equals the entropy of
cluster labels. Below, we show that the proposed method, up to small approximation error, maxi-
mizes the entropy of cluster labels and, hence, the mutual information of cluster labels and the batch
indices in each batch.
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Lemma 1. Let X ∈ RN×K be the matrix of already-made assignments in the current batch, and
let H(k) be the marginal entropy after the new hard assignment is made to cluster k. Then

H(k) −H(k′) ≈ 1

N + 1
(log(xk′ + 1)− log(xk′ + 1)) . (11)

Proof. Let X ∈ RN×K be the matrix of already-made assignments in the current batch after N
points have been assigned, so that H , the current marginal entropy of X , is given by:

H = −
K∑
j=1

(
1

N

N∑
i=1

xij

)
log

(
1

N

N∑
i=1

xij

)
.

To simplify notation, let xj =
∑N

i=1 xij . Then H(k), the marginal entropy after the new hard as-
signment is made to cluster k, is given by

H(k) =− xk + 1

N + 1
log

xk + 1

N + 1
−

K∑
j=1,j ̸=k

xj

N + 1
log

xj

N + 1

=
−1

N + 1

(xk + 1) log(xk + 1) +

K∑
j=1,j ̸=k

xj(log xj − log(N + 1))


=
−1

N + 1

(xk + 1) log(xk + 1) +

K∑
j=1,j ̸=k

xj log xj −
K∑

j=1,j ̸=k

xj log(N + 1)


=
−1

N + 1

(xk + 1) log(xk + 1) +

K∑
j=1,j ̸=k

xj log xj −N log(N + 1)


=
−1

N + 1

(xk + 1) log(xk + 1) +

K∑
j=1,j ̸=k

xj log xj

+
N

N + 1
log(N + 1)

Now, consider the difference H(k)−H(k′) between the entropy after making assignment k vs. after
making a different assignment k′.

=
−1

N + 1

(xk + 1) log(xk + 1) +

K∑
j=1,j ̸=k

xj log xj

−
(xk′ + 1) log(xk′ + 1) +

K∑
j=1,j ̸=k′

xj log xj

 =

=
−1

N + 1
((xk + 1) log(xk + 1)− (xk′ + 1) log(xk′ + 1)) +

 K∑
j=1,j ̸=k

xj log xj −
K∑

j=1,j ̸=k′

xj log xj

 =

=
−1

N + 1

(
(xk + 1) log(xk + 1)− (xk′ + 1) log(xk′ + 1)

)
+ (xk′ log xk′ − xk log xk) =

=
−1

N + 1
(((xk + 1) log(xk + 1)− xk log xk)− ((xk′ + 1) log(xk′ + 1)− xk′ log xk′))

≈ −1
N + 1

(
(log(xk + 1) +

xk

xk + 1
)− (log(xk′ + 1) +

xk′

xk′ + 1
)

)
=
−1

N + 1

(
log(xk + 1)− log(xk′ + 1)− xk − xk′

(xk + 1)(xk′ + 1)

)
=

1

N + 1

(
log(xk′ + 1)− log(xk + 1)− xk′ − xk

(xk + 1)(xk′ + 1)

)
=

1

N + 1
(log(xk′ + 1)− log(xk + 1))− 1

N + 1

(
xk′ − xk

(xk + 1)(xk′ + 1)

)
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where the fourth last line uses the fact that log n ≈ Hn to make the substitution

xk log xk ≈ xk(log(xk + 1)− xk

xk + 1
) ,

and similarly for xk′ . Note that the term 1
N+1

xk−xk′
(xk+1)(xk′+1) is 0 in expectation and has absolute

value ≤ N
(N+1)2 . If we drop this small error term, then we get

H(k) −H(k′) ≈ 1

N + 1
(log(xk′ + 1)− log(xk + 1)) , (12)

as desired.

Lemma 2. Assume that N data points in a batch have already been assigned. Let L(k) be the
batch likelihood, under the a K-component Gaussian mixture model with isotropic variance σ2 (as
described in Section 3.2), after the (N + 1)th data point is assigned to cluster k. Let Hk be, as
above, the entropy of cluster sizes after the (N + 1)th data point has been assigned to cluster k.
Then maximizing the objective logL(k) + λHk with respect to the (N + 1)th cluster assignment
gives the following optimization problem

argmin
k∈{1,...,K}

||z − µk||2 +
2λσ2

N + 1
log(xk + 1)

Proof. Maximizing logL(k) + λHk with respect to the (N + 1)th cluster assignment means we
prefer to assign to cluster k over cluster k′ if and only if

logL(k) + λHk > logL(k′) + λHk′
⇐⇒ (13)

logL(k)− logL(k′) > λHk′
− λHk ⇐⇒ (14)

− logL(k)− (− logL(k′)) < λHk − λHk′
⇐⇒ (15)

logL(k)− logL(k′) < λ

N + 1
(log(xk′ + 1)− log(xk + 1)) , (16)

where the last line uses lemma 1. Let z be the encoding of the (N + 1)th point, as in Section 3.2.
Then

− logL(k) =− log

(
exp(− 1

2σ2 ||z − µk||2)√
2πσd

)
= 1

2 log (2πσ
d) +

1

2σ2
||z − µk||2 .

Subbing this into equation 16, we get(
1
2 log (2πσ

d) +
1

2σ2
||z − µk||2

)
−
(

1
2 log (2πσ

d) +
1

2σ2
||z − µk′ ||2

)
<

1

N + 1
(log(xk′ + 1)− log(xk + 1)) ⇐⇒

1

2σ2
(||z − µk||2 − ||z − µk′ ||2) < λ

N + 1
(log(xk′ + 1)− log(xk + 1)) ⇐⇒

1

2σ2
||z − µk||2 +

λ

N + 1
log (xk + 1) <

1

2σ2
||z − µk||2 +

λ

N + 1
log (xk + 1) ⇐⇒

||z − µk||2 +
2λσ2

N + 1
log (xk + 1) < ||z − µk′ ||2 + 2λσ2

N + 1
log (xk′ + 1) .

Choosing pairwise between all k, k′ as per equation 6.4 is equivalent to choosing k so as to minimize

||z − µk||2 +
2λσ2

N + 1
log (xk + 1) .
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Remark 3. This shows that our proposed method closely approximates a maximization of the en-
tropy of cluster labels. There is some similarity to those methods, discussed in Section 2, that use an
additional loss term to encourage greater entropy of soft assignments in each batch, but the important
difference here is that we are maximizing the entropy of hard assignments.
Theorem 4. Assume that N data points in a batch have already been assigned. Let L(k) be the
batch likelihood, under the a K-component Gaussian mixture model with isotropic variance σ2 (as
described in Section 3.2), after the (N + 1)th data point is assigned to cluster k. Let C and B be,
respectively, random variables indicating the cluster assignments in the batch and the batch indices.
Then, the method presented in Section 3.3 is equivalent, up to a small error term, to maximizing

logL(k) + λI(C;B) ,

for some λ ∈ R that does not depend on the cluster assignments in the batch.

Proof. By Lemma 1, the method in equation 4 is equivalent to maximizing
logL(k) + λHk , (17)

for λ = 1
N+1 . The mutual information I(C;B) can be expressed in terms of entropy as

I(C;B) = H(C)−H(C|B) .

Moreoever, we are making hard assignments so, given the cluster index, the distribution over cluster
labels has all the probability on one cluster and has zero entropy. This means

I(C;B) = H(C)−H(C|B) = H(C)− 0 = H(C) .

Subbing this into equation 17, the result follows.

7 MODIFIED VARIANCE MAXIMIZATION

As discussed in Section 4, one of the methods we compare to is that proposed by Zhong et al. (2020),
which minimizes the sum of squares of the marginal soft assignments across a batch. The expectation
of the square (and hence the sum of squares) can be decomposed as the square of the expectation
plus the variance. Minimizing the sum of squares can then help to combat partition collapse as it
involves minimizing the variance. However, empirically we find this method not to perform well,
see Table 1. Here, we show that a simply modified version of this method performs better than the
original, though still less well than our method. Results are presented in Table 3.

The modification is to just minimize variance directly, rather than via sum of squares. Note that this
may be equivalent in some formulations, if the probability of membership across clusters for a single
data point is normalized to sum to 1. Then the expectation of the sum of memberships is 1, because it
is 1 deterministically, so the square of the expectation is also 1 deterministically and, in particular, is
independent of the cluster assignments. This means that minimizing the sum of squares with respect
to cluster assignments, is identical to minimizing variance with respect to cluster assignments. In
our model this is true. The probability of membership depends only on the distance to the cluster
centroids, and is conditionally independent across clusters, given the cluster centroids. Details are
not given in Zhong et al. (2020) as to whether this holds in their method.

8 CALCUATION OF ENTROPIES OF MATRICES

Let h, s : R4×3 → R3 be the functions that compute the marginal hard and soft cluster distributions
for a given matrix of batch assignment probabilities. Then, for matrices

D1 =

.98 .01 .01
.98 .01 .01
.49 .50 .01
.49 .01 .50

D2 =

.34 .33 .33
.34 .33 .33
.34 .33 .33
.34 .33 .33

 ,

we have
s(D1) = [.74, .13, .13] H(h(D1)) = 1.10

h(D1) = [.5, .25, .25] H(s(D1)) = 1.50

s(D2) = [.34., .33, .33] H(s(D2)) = 1.58

h(D2) = [1, 0, 0] H(h(D2)) = 0 .
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CA Var VarM

Cifar10

Acc 22.7 (2.07) 11.8 (1.72) 20.8 (0.67)
NMI 10.1 (1.68) 1.1 (1.15) 11.2 (0.65)
ARI 5.8 (0.93) 0.3 (0.38) 7.3 (0.50)
HVar 425 (136) 43542 (11424) 11515 (1524)
SVar 407 (135) 339 (92) 10028 (1407)
HEnt 3.3 (0.01) 0.9 (1.22) 1.3 (0.09)
SEnt 3.3 (0.01) 2.6 (0.97) 1.5 (0.08)

Cifar100

Acc 6.4 (0.22) 1.2 (0.22) 1.0 (0.00)
NMI 13.2 (0.37) 0.6 (1.05) 0.0 (0.00)
ARI 1.7 (0.14) 0.0 (0.04) 0.0 (0.00)
HVar 1280 (156) 55405 (3743) 59400 (0)
SVar 190 (21) 121 (62) 12580 (391)
HEnt 5.4 (0.11) 0.2 (0.17) 0.0 (0.00)
SEnt 6.5 (0.17) 6.5 (0.06) 3.1 (0.03)

FashionMNIST

Acc 54.5 (6.96) 10.0 (0.04) 37.4 (2.53)
NMI 53.2 (4.23) 0.0 (0.04) 42.8 (2.08)
ARI 39.1 (6.29) 0.0 (0.00) 27.1 (1.78)
HVar 386 (51) 53950 (98) 8550 (1001)
SVar 368 (40) 376 (172) 6072 (3066)
HEnt 3.3 (0.01) 0.0 (0.01) 1.5 (0.07)
SEnt 3.3 (0.00) 3.1 (0.40) 1.6 (0.06)

STL

Acc 23.5 (1.42) 10.1 (0.20) 22.6 (1.52)
NMI 13.7 (1.33) 0.0 (0.08) 11.4 (1.70)
ARI 7.1 (0.70) 0.0 (0.00) 7.1 (1.16)
HVar 217 (21) 11317 (765) 1321 (384)
SVar 194 (17) 524 (247) 949 (303)
HEnt 3.2 (0.02) 0.1 (0.16) 1.7 (0.13)
SEnt 3.2 (0.01) 3.1 (0.12) 1.9 (0.10)

Table 3: Comparison between the modified variance minimization method, denoted ‘VarM’, the
original variance minimization method from Zhong et al. (2020), denoted ‘Var’, and our method,
denoted ‘CA’.
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