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A EXAMPLES OF COMPOSITIONALITY METRICS

In our main paper, we proposed “positional disentanglement - mutual information” (pdmi) and
claimed that better corresponds with notions of compositionality than posdis, introduced by
Chaabouni et al. (2020). Here, we include simple examples of communication systems, each of
which is at least somewhat compositional, to compare posdis and pdmi measures for the same
communication systems.

Example 1: distinctions among partial compositionality Agents are trained in a symbolic do-
main with 4 binary fields (A, B, C, D) and communicate over 4 timesteps (similar to our Symbolic
4D experiments). Table 2 depicts examples of three possible communication schemes in this do-
main.

t = 1 2 3 4
A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
D 0 0 0 1

(a) posdis = 1.0;
pdmi = 1.0

t = 1 2 3 4
A 1 0 0 0
B 1 0 0 0
C 0 0 1 0
D 0 0 1 0

(b) posdis = 0.0;
pdmi = 0.375

t = 1 2 3 4
A 1 0 1 0
B 1 0 1 0
C 1 0 1 0
D 1 0 1 0

(c) posdis = 0.0;
pdmi = 0.25

Table 2: The number of bits about a field (rows) at a timestep (columns) for different communication
protocols. Communication in (a) is perfectly compositional, as reflected by both metrics. Commu-
nication in (c) is less compositional than in (b) (agents communicate about all features at timesteps
1 and 3), but only pdmi decreases while posdis remains constant.

Within each table, each entry in row f and column i represents I(si, f): the number of bits about
a feature, f , at timestep i in a message. For example, in Table 2 a, the speaker communicates one
bit about field A at timestep 1, one bit about field B at timestep 2, etc.. This type of compositional
communication leads to high values for both posdis and pdmi.

More subtle effects arise, however, when communication is not perfectly disentangled. In Table 2 b,
the speaker communicates one bit about fields A and B at timestep 1, and one bit about C and D at
timestep 3. Such communication is clearly non-compositional in some ways, given that communica-
tion about multiple fields occurs at the same timestep. At the same time, the communication depicted
in Table 2 c is clearly still less compositional, with communication about all four fields occurring
at timesteps 1 and 3. Despite this important behavioral difference between the two communication
schemes, posdis remains constant in both cases at 0.0. Recall that posdis only considers the
two most informative fields at any given timestep, and therefore ignores any further entanglement.
Conversely, pdmi does capture meaningful differences between b and c. Thus, pdmi appears more
sensitive to variations in compositionality by not relying only upon two fields.

Example 2: synonyms and entropy Agents are trained to communicate about two binary fields,
A and B, with a vocabulary of size eight: si ∀ i ∈ [1, 8]. The speaker always communicates about A
at timestep 1 and about B at timestep 2; this corresponds to perfectly compositional communication.
We consider two variants of this sort of speaker, focusing on communication at the first timestep,
depicted in Table 3.

Each entry Table 3 represents the speaker’s probability of outputting a particular symbol (designated
by column) for a given input (designated by row) at the first timestep in the message. In Figure 3 a,
the speaker follows a deterministic policy: outputting s1 if A = 0, and outputting s3 if A = 1. As a
result, both posdis and pdmi = 1.0, showing perfect compositionality.

However, in Figure 3 b, we see the limitations of the posdis metric. The speaker in this example
is stochastic: choosing s1 and s2 with equal probability if A = 0, and choosing s3 and s4 with
equal probability if A = 1. This stochastic behavior is similar to randomly choosing among a set
of synonyms, which does not seem to detract from the compositionality of natural language. How-
ever, because such stochasticity increases the entropy of the distribution over vocabulary elements,
posdis decreases for Table 3 b. Conversely, as desired, pdmi remains constant. Thus, whereas
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[A,B] P(s1) P(s2) P(s3) P(s4)
[0, 0] 1.0 0 0 0
[1, 0] 0 0 1.0 0
[0, 1] 1.0 0 0 0
[1, 1] 0 0 1.0 0

(a) posdis = 1.0; pdmi = 1.0

[A,B] P(s1) P(s2) P(s3) P(s4)
[0, 0] 0.5 0.5 0 0
[1, 0] 0 0 0.5 0.5
[0, 1] 0.5 0.5 0 0
[1, 1] 0 0 0.5 0.5

(b) posdis = 0.5; pdmi = 1.0

Table 3: A speaker’s probability distribution of emitting a symbol, si, at timestep 1 depending upon
different values of [A,B]. In both (a) and (b), communication is perfectly disentangled: the speaker
only communicates about the value of A at t = 1. However, because the entropy of the speaker’s
distribution is greater in (b) than in (a), posdis decreases.

in the previous example pdmi was more sensitive to desired changes when aspects of composi-
tionality changed, here we showed that pdmi remains invariant to some unimportant changes in
communication.

Overall, as illustrated in these two simple examples, we believe that pdmi better aligns with human
notions of compositionality and therefore should be used instead of posdis in future research.

B PROOF OF THEOREM 1

In the main paper, we related complexity to redundancy of communication in Theorem1 1; here, we
include a proof.
Proof of Theorem 1 Within our training framework, if λU > λC , and λC > 0, agents will commu-
nicate about the task-specific field only at the first timestep.

Our proof follows by 1) writing our training objective for a feature, f , 2) decomposing terms within
the objective according to features and symbols emitted across timesteps, and 3) regrouping terms
in a given timestep, establishing relevant pressures for communication at the first timestep and later
timesteps.

maximize λU

∑
t∈[1,L]

U(Yf ; Ŷf (S1:t))− λC

∑
t∈[1,L]

I(X;St) + λII(X; Ŷ (S1:L))

maximize λU

∑
t∈[1,L]

I(Yf ; Ŷf (S1:t))− λC

∑
t∈[1,T ]

I(X;St) + λI

∑
i∈F

I(X; Ŷi(S1:L))

maximize λU

∑
t∈[1,L]

I(Yf ; Ŷf (S1:t))− λC

∑
i∈F

∑
t∈[1,L]

I(Yi;St) + λI

∑
i∈F

I(X; Ŷi(S1:L))

maximize λUI(Yf ; Ŷf (S1))− λC

∑
i∈F

∑
t∈[1,L]

I(Yi;St) + λI

∑
i∈F

I(X; Ŷi(S1:L))

For t = 1

maximize (λU − λC)I(Yf ;S1)

For t > 1. Now assume I(Yf ;S1) = H(Yf )

maximize − λC

∑
i∈F

∑
t∈[1,L]

I(Yi;St) + λI

∑
i∈F

I(X; Ŷi(S1:L))

maximize − λC

∑
i∈F

∑
t∈[2,L]

I(Yi;St) + λI

∑
i∈F/f

I(X; Ŷi(S1:L))

The first line restates the training objective for a particular feature, f . In the second and third lines,
we decompose complexity and informativeness into sums over features. We note that the third line
assumes that features are statistically independent, conditioned on X; this is true in the domains
we consider in our experiments (e.g., digit and clothing) but may not be true in general. In the
fourth line, assuming a sufficiently-large vocabulary, we replace the utility sum with a single term,
reflecting the fact that the speaker will communicate about f at the first timestep.
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We then consider communication at just the first timestep. The informativeness loss is ignored, as
it is computed based on the full communication, S1:L. Therefore, we find that agents will commu-
nicate about feature f at timestep 1 if λU > λC . Intuitively, this states that, if utility pressures are
greater than penalties on complexity, the models will communicate about f .

Lastly, we consider communication about feature f in later timesteps. Having already established
that agents will communicate about f at t = 1, the utility term is already maximized for all timesteps
t > 1 (as the listener always has access to earlier tokens). We therefore ignore the utility term in
the maximization and trade off complexity and informativeness pressures. Here, too, we leverage
the fact that s1 contains complete information about f , so there is no increase in informativeness
by communicating about f in later timesteps. Thus, there are no positive pressures to communicate
about f in later timesteps, but there is a complexity-penalization term (assuming λC > 0), so agents
will not communicate about f for t ≥ 2.

Overall, we have shown that, assuming λU > λC and λC > 0, agents 1) will communicate about
feature f at t = 1 and 2) will not communicate about f for t ≥ 2.

C ALTERNATIVE ARCHITECTURES

In the main paper, we presented results using the VQ-VIBC speaker architecture, but our complexity-
limited multi-task framework may be applied to different speakers supporting variational bounds on
complexity. In this section, we discuss the VQ-VIBN and GS speaker architectures that we tested
as additional baselines. Results from such architectures are included in Appendix E and largely
corroborate the trends we observed for VQ-VIBC , although different inductive biases associated
with the different architectures had some effect on results.

C.1 VQ-VIBN

In addition to VQ-VIBC , Peng et al. (2023) proposed the Vector-Quantized Variational Informa-
tion Bottleneck – Normal (VQ-VIBN ) method, named after the fact that it samples from a Normal
distribution. We adapted the VQ-VIBN method to EC settings.

Similar to VQ-VIBC agents, a VQ-VIBN speaker is parametrized by a feedforward encoder, h, and
a set of discrete tokens, ζ. Given input x, the speaker generates a continuous representation, h. h is
mapped via separate linear layers to parameters of a Normal distribution, µ(x),Σ(x) ∈ RZ , as in
standard Variational Auto-Encoder (VAE) architectures (Kingma & Welling, 2013). A continuous
latent representation is sampled from a Normal distribution, using the reparametrization trick: z ∼
N(µ(x),Σ(x)) ∈ RZ . Lastly, z is divided into L representations of equal size and discretized
by selecting the closest element of the learnable codebook, ζ. By penalizing the KL divergence
between the normal distribution and a prior (in our cases, as is standard, fixed to a unit Normal),
we penalize the complexity of communication (Higgins et al., 2016). For further details, we refer to
Peng et al. (2023) and Tucker et al. (2022), who describe the sampling and discretization processes,
although in a distinct setting than emergent communication domains.

C.2 GUMBEL SOFTMAX

We extended the traditional Gumbel-Softmax (GS) architecture to output L onehot vectors, similar
to the concurrent quantized vectors output by VQ-VIBC and VQ-VIBN methods. Concretely, we
used the same encoder architecture as for the VQ-VIB models to compute a continuous latent repre-
sentation, z. This representation is split into L evenly-sized parts of size V , and each part is passed
through a gumbel-softmax layer to generate a L, V−dimensional vectors (Maddison et al., 2017;
Jang et al., 2017). The gumbel-softmax layer uses a straight-through estimator to allow backprop-
agation through discrete one-hot tokens, and is commonly used in EC domains (Chaabouni et al.,
2020; Rita et al., 2022; Kuciński et al., 2021).
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D IMPLEMENTATION

In the main paper, we omitted details about the exact implementations we used in experiments;
here, we share further information about neural architecture parametrizations and hyperparameters.
Anonymized code for all experiments is available here.

D.1 SPEAKER

We used two types of speaker encoders in our experiments, depending upon the type of input, in
combination with the three types of speaker head architectures (VQ-VIBC , VQ-VIBN , and GS).

Across domains, we fed the feature id, f , into a linear layer of size 32. In parallel, we fed the
input, x, (e.g., the two MNIST images stitched together) into a feedforward neural network. In the
symbolic domains, this feedforward network was a single layer of dimension 32. In the MNIST
domain, this network comprised three fully-connected layers of dimensions 256, 128, and 32, with
ReLU activations between layers. The outputs of the feature id embedder and the input embedder
were concatenated and fed a two-layer neural network (with ReLU activation in between) to generate
a continuous latent representation, z.

The continuous representation, z, was transformed into the EC message, S, according to the speaker
architecture we were testing. For VQ-VIBC , for example, we used a VQ-VIBC speaker head to
split z into L continuous representations and discretize them (likewise for VQ-VIBN and GS). The
VQ-VIB architectures used codebook sizes dictated by each domain (in all cases, V = 100), and
we set the dimensionality of ζ to 10. For GS speakers, V inherently specifies the dimensionality of
communication.

D.2 LISTENER

We used the same listener implementation for all speaker architectures and all domains (subject to
changes in dimensions to match the communication and prediction dimensions). The core part of
the listener architecture was a three-layer transformer encoder, using four attention heads and hidden
dimension 32. We did not use positional encoding to avoid undesired variation in interpretation of
the same symbol in different positions in a message. The feature predictor head was instantiated as a
single-layer neural network, mapping from the output of the transformer encoder to the appropriate
dimension (e.g., 10-dimensional for predicting one of the features in the Symbolic 2D domain). The
decoder head was composed of |F| single-layer neural networks, similarly mapping to the desired
dimensionality (e.g., for the Symbolic 2D domain, two prediction heads, each of dimension 10).

D.3 TRAINING PARAMETERS

In all experiments, we used an Adam optimizer with learning rate 0.001 and otherwise default pa-
rameters. (Although note that in our population-based experiments, as ρ varied, we varied how often
we updated the listener agent’s parameters.) Similarly, all experiments used the same batch size of
1024.

In the Symbolic 2D and MNIST domains, we trained agents for 5,000 batches; in the Symbolic 4D
domain, we trained agents for 20,000 batches. These training times were likely longer than necessary
for most of our experiments but 1) established important convergence behaviors and 2) provided a
more fair training setting for some of the population baselines, which took longer to converge. In the
Symbolic 2D and MNIST domains, there were two training features |F| = 2, while in the Symbolic
4D domain, there were four training features. When generating the data for each batch, we selected
the training feature id uniformly at random, and selected input elements uniformly at random (i.e.,
for symbolic domains, generating the onehot vector for each field randomly, and for the MNIST
domains, selecting the digit and fashion images randomly). Each batch therefore contained data for
multiple training features.

For our population-based experiments, we used our implementation of the approach presented by
Rita et al. (2022). For a population of size N , we randomly initialized N speakers and N listeners,
each with an associated Adam optimized. With each training batch, we selected a speaker and
a listener uniformly at random from the population and trained them using associated optimizers.
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Figure 6: 2D Symbolic VQVIBC results for N = 1, ρ = 1.

For ρ! = 1.0, we randomly selected whether or not to apply gradient updates to the listener with
probability ρ. We believe this implementation follows from the method outlined in Section 3.4 of
Rita et al. (2022), and our convergent results (for λC = λU = 0) support our belief.

E ADDITIONAL RESULTS

In the main paper, we highlighted partial results to illustrate the important role of our complexity-
limited multi-task training framework. In particular, we showed results for VQ-VIBC models, fo-
cusing on topsim and pdmi metrics. Here, we include further results for various architectures
(VQ-VIBN and GS) and more metrics (posdis and reconstruction accuracy).

E.1 SYMBOLIC 2D

Compositionality metrics (pdmi, topsim, and posdis), as well as reconstruction accuracy in the
Symbolic 2D domain are plotted in Figures 6, 7, 8 for the three speaker architectures we tested. VQ-
VIBC speakers exhibited the greatest compositionality for small but positive λC . Other speakers had
less straightforward trends: compositionality tended to increase with λC and λU , but at the same
time, increasing λC too much tended to decrease reconstruction accuracy.
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Figure 7: 2D Symbolic VQ-VIBN results for N = 1, ρ = 1.
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Figure 8: 2D Symbolic GS results for N = 1, ρ = 1.
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Figure 9: 2D Symbolic VQ-VIBC for varying ρ. Used N = 1 λU = 3.
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Figure 10: 4D Symbolic VQ-VIBC results for N = 1, ρ = 1.

E.2 SYMBOLIC 4D

As in the Symbolic 2D domain, we include complete results for pdmi, topsim, posdis, and
reconstruction accuracy for VQ-VIBC , VQ-VIBN , and GS speakers in Figures 10, 11, and 12. In-
terestingly, GS teams did not converge to high reconstruction accuracy when λC = 0. This cor-
roborates some results from prior works that adding some noise in training improves convergence
for onehot-based communication (Lowe et al., 2017; Kuciński et al., 2021). We merely highlight
that result to emphasize that compositionality metrics for GS agents in that regime should likely be
ignored, given the poor overall reconstruction.
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Figure 11: 4D Symbolic VQ-VIBN results for N = 1, ρ = 1.
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Figure 12: 4D Symbolic GS results for N = 1, ρ = 1.
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Table 4: Population heterogeneity effects for [4, 4, 4, 4] domain. We include results for N ∈
[1, 2, 4, 8], complementing the partial results presented in Table 1. All results for λU = 10.0. Medi-
ans and standard errors over 10 trials reported. Starred reconstruction accuracy entries indicate that
not all 10 trials converged to > 90 % accuracy within the 20,000 training episodes.

N ρ λC Recons. topsim pdmi > 90% Recons. Eps.

1
1 0 1.00 (0.00) 0.61 (0.02) 0.53 (0.01) 1000 (63)

0.1 0.99 (0.01) 0.75 (0.01) 0.65 (0.02) 1000 (126)

0.5 0 1.00 (0.00) 0.66 (0.02) 0.57 (0.01) 1000 (106))
0.1 0.99 (0.00) 0.70 (0.02) 0.63 (0.02) 1500 (162)

2
1 0 1.00 (0.00) 0.65 (0.02) 0.59 (0.01) 2500 (242)

0.1 0.99 (0.00) 0.74 (0.01) 0.62 (0.02) 2500 (174)

0.5 0 1.00 (0.00) 0.66 (0.03) 0.54 (0.01) 3000 (318)
0.1 0.99 (0.00) 0.72 (0.01) 0.58 (0.02) 3000 (126)

4
1 0 1.00 (0.00) 0.61 (0.02) 0.54 (0.01) 7000 (369)

0.1 0.98 (0.00) 0.72 (0.01) 0.58 (0.03) 6500 (387)

0.5 0 1.00 (0.00) 0.66 (0.02) 0.56 (0.01) 6000 (293)
0.1 0.98 (0.00) 0.72 (0.01) 0.62 (0.01) 8500 (308)

8
1 0 0.99 (0.03) 0.62 (0.03) 0.58 (0.01) 13000∗ (810)

0.1 0.96 (0.03) 0.67 (0.02) 0.57 (0.04) 15000∗ (812)

0.5 0 0.97 (0.03) 0.61 (0.02) 0.57 (0.02) 14000 ∗ (668)
0.1 0.91 (0.04) 0.65 (0.03) 0.58 (0.03) 17000 ∗ 814

In Table 1 in the main paper, we presented partial results for population dynamics in the Symbolic
4D domain; here, in Table 4, we include our complete results for more population sizes. Regardless
of N , we found consistent benefits in increasing λC from 0.0 to 0.1. This confirms the important
role of limiting the complexity of communication. At the same time, overall performance, measured
by both reconstruction accuracy and compositionality metrics, tended to worsen as N increased.
This appears partially attributable to the slower training associated with larger populations (note the
longer convergence times).

E.3 MNIST

For completeness, we include plots of pdmi, topsim, posdis, and reconstruction accuracy for
all three speaker architectures in Figures 13, 14, and 15. Once again, GS teams tended to converge
to lower reconstruction accuracies than VQ-VIB models. Interestingly, VQ-VIBN agents achieved
maximum pdmi for λC = 0 (but still required positive λU ). We note that in VQ-VIBN method,
a clustering loss encourages communication to cluster around discrete tokens; this clustering loss
could indirectly encourage less complex communication, which therefore increases compositional-
ity.
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Figure 13: MNIST VQ-VIBC results for N = 1, ρ = 1.
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Figure 14: MNIST VQ-VIBN results for N = 1, ρ = 1.
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Figure 15: MNIST GS results for N = 1, ρ = 1.
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Table 5: Mixed Linear Effects Model results for pdmi in the Symbolic 2D domain. For λC ≤ 0.1,
there was a significant increase in pdmi when λC increased (effect size 2.382, p = 0.002). Larger
λC , however, worsened pdmi as reconstructions worsened (effect size -0.74, p < 0.001).

Coeff. Std. Err. z P > |z| [0.025 0.975]
Intercept 0.961 0.120 8.021 0.000 0.726 1.195
C(λC ≤ 0.1) -0.234 0.067 -3.478 0.001 -0.366 -0.102
λC -0.740 0.077 -9.570 0.000 -0.891 -0.588
C(λC ≤ 0.1):λC 2.382 0.773 3.083 0.002 0.867 3.896

Table 6: Mixed Linear Effects Model results for pdmi in the Symbolic 4D domain. The significant
(p = 0.002) positive interaction C(λC ≤ 0.1) : λC indicates that pdmi increased more for small
positive values of λC . Unlike the other two domains, we observed no significant trend for larger
λC ; we believe that further trials, for larger values of λC , could induce uninformative and non-
compositional communication, which would reveal the desired trend.

Coeff. Std. Err. z P > |z| [0.025 0.975]
Intercept 0.596 0.023 26.165 0.000 0.551 0.641
C(λC ≤ 0.1) -0.064 0.020 -3.223 0.001 -0.102 -0.025
λC 0.035 0.046 0.772 0.440 -0.055 0.125
C(λC ≤ 0.1):λC 0.666 0.152 4.378 0.002 0.368 0.964

F STATISTICS TESTS

In the main paper, we presented the partial results of mixed linear effects modeling statistical tests,
confirming that small positive λC induced greater compositionality. Here, for completeness, we
include the coefficients and p−values for all terms in our fitted statistical models, in all three domains
using VQ-VIBC models, N = 1, and ρ = 1.0.

In Wilkinson notation, the tests were: pdmi ∼ λC + C(λC ≤ 0.1) + λC : C(λC ≤ 0.1) +
(1|λU ) Wilkinson & Rogers (1973). The first three terms model the role of increasing λC in general,
a binary categorical variable representation whether λC ≤ 0.1), and the interaction between those
two terms. The interaction term shows whether the effect of increasing λC is different for small and
large λC . Lastly, the model groups data by λU to capture the random-intercept effects of varying
the weight on utility.

Results from the Symbolic 2D, Symbolic 4D, and MNIST results are included in Tables 5, 6, and
7, respectively. In all three domains, there is a significant positive interaction (p ≤ 0.002) between
λC and the categorical variable for λC ≤ 0.1. This indicates that pdmi increased significantly
more in the small λC region than later, confirming the importance of a small pressure on penalizing
complexity.

In both the Symbolic 2D and MNIST domains, we further observed a significant (p < 0.002)
negative correlation between λC and pdmi, indicating that, for λC > 0.1, increasing λC worsened
compositionality metrics. Such worsening pdmi values likely arose due to worsening reconstruction
accuracies as λC grew too large. It is interesting that we did not observe this decrease in pdmi in
the Symbolic 4D domain, which similarly suffered from decreased reconstruction accuracy, but
apparently did not significantly decrease pdmi.
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Table 7: Mixed Linear Effects Model results for the MNIST domain. As in the Symbolic 2D domain,
we observed especially an high interaction effect, indicating that a small increase in λC led to a large
increase in pdmi, and a significant negative correlation between pdmi and λC for larger λC .

Coeff. Std. Err. z P > |z| [0.025 0.975]
Intercept 0.972 0.019 50.366 0.000 0.934 1.010
C(λC ≤ 0.1) -0.144 0.016 -9.174 0.000 -0.175 -0.114
λC -0.419 0.035 -11.814 0.000 -0.489 -0.350
C(λC ≤ 0.1):λC 1.334 0.124 10.734 0.000 1.090 1.577
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