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A MARKOV CHAIN CONVERGENCE THEOREM FOR GENERAL STATE SPACES

In this section, we present the Markov convergence theorem for general state spaces, as well as the
conditions to satisfy the conditions of the theorem. We mainly follow the references of Roberts &
Rosenthal (2004); Meyn & Tweedie (2012a); Asmussen & Glynn (2010); Scheutzow & Schindler
(2021).
Notation A.1. The following notations will be used.

1. X denotes a standard measurable space (aka standard Borel space), like X = RD or
X = N, etc.

2. We use BX to denote the �-algebra of (Borel subsets of) X .

3. T : X 99K X denotes a Markov kernel (aka transition probability) from X to X , i.e.
formally a measurable map T : X ! P(X ) from X to the space of probability measures
over X .

4. For a point x 2 X and measurable set A 2 BX we write T similar to a conditonal
probability distribution:

T (A|x) := Tx(A)

:= probability of T hitting A

when starting from point x.
(7)

5. We define the Markov kernel T 0 : X 99K X via: T 0(A|x) := 1A(x).

6. We inductively define the Markov kernels Tn : X 99K X for n 2 N1 via:

Tn(A|x) :=

Z

X
T (A|y)Tn�1(dy|x)

=

n-timesz }| {
(T � T � · · · � T � T )(A|x).

(8)

Note that: T 1 = T .

7. As the sample spaces we consider the product space:

⌦ :=
Y

n2N1

X . (9)

8. For n 2 N1 we have the canonical projections:

Xn : ⌦ ! X ,

! = (xn)n2N1 7! xn =: Xn(!).
(10)

9. We use Px := T⌦N1
x to denote the probability measure on ⌦ of the homogeneous Markov

chain induced by T that starts at X0 = x. Note that for n 2 N1 the marginal distribution
is given by:

Px(Xn 2 A) = Tn(A|x). (11)

10. We abbreviate the tuple: X := (Xn)n2N1 . Note that X is a (homogeneous) Markov chain
that starts at X0 = x under the probability distribution Px. We will thus also refer to X as
the (homogeneous) Markov chain corresponding to T .

11. We abbreviate the probability of the Markov chain of ever hitting A 2 BX when starting
from x 2 X as:

L(A|x) := Px

 
[

n2N1

{Xn 2 A} p. (12)
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12. We abbreviate the probability of the Markov chain hitting A 2 BX infinitely often when
starting from x 2 X as:

Q(A|x) := Px ({Xn 2 A for infinitely many n 2 N1} p. (13)

13. We abbreviate the expected number of times the Markov chain hits A 2 BX when starting
from x 2 X as:

U(A|x) :=
X

n2N1

Tn(A|x) = Ex[⌘A],

⌘A :=
X

n2N1

1A(Xn).
(14)

Definition A.2 (Irreducibility). T is called irreducible if there exists a non-trivial �-finite measure
� on X such that for A 2 BX we have the implication:

�(A) > 0 =) 8x 2 X . L(A|x) > 0. (15)

The statement from Meyn & Tweedie (2012a) Prp. 4.2.2 allows for the following remark.
Remark A.3 (Maximal irreducibility measure). If T is irreducible then there always exists a non-
trivial �-finite measure  that is maximal (in the terms of absolute continuity) among all those �
with property 15. Such a  is unique up to equivalence (in terms of absolute continuity) and is called
a maximal irreducibility measure of T . For such a  we introduce the notation:

B
T
X := {A 2 BX | (A) > 0} . (16)

Note that BT
X does not depend on the choice of a maximal irreducibility measure  due to their

equivalence. With this notation we then have for irreducible T :

A 2 B
T
X =) 8x 2 X . L(A|x) > 0. (17)

Definition A.4 (Harris recurrence). T is called Harris recurrent if T is irreducible and we have the
implication:

A 2 B
T
X =) 8x 2 X . L(A|x) = 1. (18)

Definition A.5 (Invariant probability measures). An invariant probability measure (ipm) of T is a
probability measure µ on X such that:

T � µ = µ. (19)

On measurable sets this can equivalently be re-written as:

8A 2 BX .

Z

X
T (A|x)µ(dx) = µ(A). (20)

Remark A.6. Note that a general Markov kernel T can have either no, exactly one or many invari-
ant probability measures.

For irreducible T we have the following results from Meyn & Tweedie (2012a) Prp. 10.1.1, Thm.
10.4.4, 18.2.2, concerning existence and uniqueness of invariant probability measures.
Theorem A.7 (Existence and uniqueness of invariant probability measures). Let T be irreducible.

1. Then T has at most one invariant probability measure µ; and:

2. the following are equivalent:

(a) T has an invariant probability measure µ;
(b) the following implication holds for A 2 BX :

A 2 B
T
X =) 8x 2 X .

lim sup
n!1

Tn(A|x) > 0. (21)
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We have the following properties of invariant probability measures for irreducible T . These are
cited from Meyn & Tweedie (2012a) Thm. 9.1.5, Prp. 10.1.1, Thm. 10.4.4, 10.4.9, 10.4.10, and,
Scheutzow & Schindler (2021) Prp. A.1, Lem. 3.2.
Theorem A.8 (Properties of irreducible Markov kernels with invariant probability measures). Let
T be irreducible with invariant probability measure µ. Then the following statements hold:

1. µ is a maximal irreducibility measure for T .

2. µ satisfies the following condition for every A 2 B
T
X and B 2 BX :

µ(B) =

Z

A
Ex

"
⌧AX

n=1

1[Xn 2 B]

#
µ(dx), ⌧A := inf {n 2 N1 |Xn 2 A} . (22)

3. There exists a measurable set H 2 B
T
X with µ(H) = 1 such that:

8x 2 H. T (H|x) = 1, (23)
T restricted to H, T : H 99K H, is well-defined and Harris recurrent (with invariant
probability measure µ).

Definition A.9 (Aperiodicity). Let T be irreducible. Then T is called:

1. periodic if there exists d � 2 pairwise disjoint sets A1, . . . , Ad 2 B
T
X , such that for every

j = 1, . . . , d, we have:

8x 2 Aj . T (Aj+1(mod d)|x) = 1; (24)

2. aperiodic if T is not periodic.

With these notation we have the following convergence theorems, see Meyn & Tweedie (2012a)
Thm. 13.3.3, 17.0.1, and, Scheutzow & Schindler (2021) Thm. 2.16, 2.17, Assm. 2.12, Prp. 2.2.
Theorem A.10 (Strong Markov chain convergence theorem). Let µ be a probability measure on X .
Then the following are equivalent:

1. T is aperiodic and Harris recurrent and µ is an invariant probability measure for T .

2. For every x 2 X we have the convergence in total variation norm:

lim
n!1

TV(Tn
x , µ) = 0. (25)

Furthermore, if this is the case, then for every g 2 L1(µ) and every starting point x 2 X we have
the convergences:

lim
n!1

1

n

nX

k=1

g(Xk) = Eµ[g] Px-a.s. (26)

Theorem A.11 (Markov chain convergence theorem). Let µ be a probability measure on X . Then
the following are equivalent:

1. T is aperiodic and irreducible and µ is an invariant probability measure for T .

2. For every x 2 X we have:

lim
n!1

TV(Tn
x , µ) < 1, (27)

and, for µ-almost-all x 2 X we have the convergence in total variation norm:

lim
n!1

TV(Tn
x , µ) = 0. (28)

Furthermore, if this is the case, then for every g 2 L1(µ) and µ-almost-all starting points x 2 X

we have the convergences:

lim
n!1

1

n

nX

k=1

g(Xk) = Eµ[g] Px-a.s. (29)
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We now want to investigate under which conditions we can achieve irreduciblity, aperiodicity or
Harris recurrence. We first cite the results of Asmussen & Glynn (2010) Thm. 1 and Cor. 1.

Theorem A.12 (Harris recurrence via irreducibility and density). Let T be irreducible with invariant
probability measure µ. Further, assume that T has a density w.r.t. an irreducibility measure �, i.e.:

T (A|x) =

Z

A
t(y|x)�(dy), (30)

with a jointly measurable t : X ⇥ X ! R�0. Then � is a maximal irreducibility measure for T , µ
has a strictly positive density w.r.t. � and T is Harrris recurrent.

Corollary A.13 (Harris recurrence via irreducibility and Metropolis-Hastings form). Let T be ir-
reducible with invariant probability measure µ. Further, assume that T is of Metropolis-Hastings
form w.r.t. an irreducibility measure �:

T (A|x) = (1� a(x)) · 1A(x) +

Z

A
a(y|x) · q(y|x)�(dy), (31)

with jointly measurable a, q : X ⇥ X ! R�0 and a(x) > 0 for every x 2 X . Note that: a(x) =R
a(y|x) · q(y|x)�(dy). Then � is a maximal irreducibility measure for T , µ has a strictly positive

density w.r.t. � and T is Harrris recurrent.

We now have all ingredients to derive the following criteria for the strong Markov chain convergence
theorem A.10 to apply:

Corollary A.14 (Criterion for convergence via positive density). Let � be a non-trivial �-finite
measure on X such that T has a strictly positive jointly measurable density t : X ⇥X ! R>0 w.r.t.
�:

T (A|x) =

Z

A
t(y|x)�(dy), (32)

then T is irreducible, aperiodic and � is a maximal irreducibility measure for T .

If, furthermore, T has an invariant probability measure µ then µ has a strictly positive density w.r.t.
�, T is Harris recurrent and the strong Markov chain convergence theorem A.10 applies.

Corollary A.15 (Criterion for convergence via positive Metropolis-Hastings form). Let µ be an
invariant probability measure of T . Further, assume that T is of Metropolis-Hastings form w.r.t. a
non-trivial �-finite measure �:

T (A|x) = (1� a(x)) · 1A(x) +

Z

A
a(y|x) · q(y|x)�(dy), (33)

with strictly positive jointly measurable a, q : X ⇥ X ! R>0 such that for every x 2 X we have
that:

a(x) :=

Z
a(y|x) · q(y|x)�(dy)

!
2 (0, 1). (34)

Then � is a maximal irreducibility measure for T , µ has a strictly positive density w.r.t. �, T is
aperiodic, Harrris recurrent and the strong Markov chain convergence theorem A.10 applies.

Corollary A.16 (Criterion for convergence on countable spaces). Let X be a countable space, i.e.
finite or countably infinite. Let T be irreducible with invariant probability measure µ such that for
all x 2 X with µ({x}) > 0 we also have T ({x} |x) > 0. Then T is aperiodic and Harris recurrent
and the strong Markov chain convergence theorem A.10 applies.

B ADDITIONAL CLARIFICATIONS AND DISCUSSION

In this section, we provide additional clarifications and discussion.
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B.1 DEFINITION OF LONG-TERM FAIRNESS

We provide an overview of how prior research’s fairness formulations relate to our definitions of
long-term fair targets.

First, our framework aims to attain a state of long-term fairness. This entails that fairness formu-
lations should be met in the long term and, importantly, once achieved, maintained consistently.
Our goal differs fundamentally from approaches that aim to fulfill fairness at each time step. In
this regard, (D’Amour et al., 2020) compare agents optimizing for short-term goals - e.g., a profit-
maximization agent to an equality of opportunity fair agent and measure the long-term (in)equality
of the initial credit score distribution across groups - without imposing it on the agents.

Prior work on long-term fairness introduces parity of return (Chi et al., 2022), which requires equal
discounted rewards accumulated by the decision-maker over time, where the reward could be defined
as the ratio between true positive and overall positive decisions. Wen et al. (2021) define long-
term demographic parity (equal opportunity) as asking the cumulative expected individual rewards
to be on average equal for (qualified members of) demographic groups. (Yin et al., 2023) aim to
maximize the accumulated reward subject to accumulated unfairness (utility) constraint in a finite
time horizon. The reward combines true positive and true negative rates, while the authors consider
different (un)fairness measures: demographic parity, equal opportunity, and equal qualification rate.
(Yu et al., 2022) formulate a (short-term) fairness metric (e.g., equality of opportunity) as a function
of the state and increase its enforcement over time.

Our framework provides the capability to enforce these fairness and reward considerations, specifi-
cally we allow for feature complex objective functions (see § 6.1) as well as imposing feature (qual-
ification) equality § 6.2) and group fairness criteria in the long-term (see § 6.3) for infinite time-
horizons. Note that the formulation of a fair state is not limited to the possible fairness objectives
and constraints discussed in § 6. Rather, we exemplify in that section that our framework can cap-
ture fairness objectives well-established in prior work (in addition to the above cited: Zhang et al.
(2020); Liu et al. (2018); Dwork et al. (2012); Hardt et al. (2016b)).

B.2 ASSUMPTION OF KNOWN OR ESTIMATABLE DYNAMICS

Our work takes a structured approach by separating the estimation problem (of the Markov kernel
i.e., the dynamics) from the policy learning process. We recognize that the estimation problem itself
is a significant challenge and requires careful attention and, as commented in § 8, is the subject of a
different line of active research and thus outside the scope of this paper.

The quality of the dynamics estimation heavily relies on the quality and quantity of the available
temporal data, the complexity of the environment, and the estimation methods (as it does, e.g.,
for model-based reinforcement learning). Estimation of dynamics / Markov kernels is an active
research field Sherlaw-Johnson et al. (1995); Craig & Sendi (2002); Wu et al. (2018); Sun et al.
(2019) and our method can benefit from the advances made in the field. If temporal data is available,
estimating dynamics may even prove to be faster and more data-efficient than learning them through
interactions. We exemplify estimating dynamics in additional results in Appendix E.6.

Further, within our framework and application, dynamics we describe consequences of decisions on
individuals’ features. The dynamics in the lending example of our experiments are determined by
the credit score maker’s policy on how scores are updated in response to (un)paid credits. Though
our framework is not limited to this, dynamics - themselves depending on a statistical/rule-based/ML
model - may be accessible or much simpler to estimate than complex human behavior.

B.3 EXISTENCE OF A FAIR STATIONARY DISTRIBUTION

Our approach also serves to determine whether a stationary distribution exists. In situations where a
fair policy does indeed exist, our optimization problem (OP) is designed to effectively discover it. If
a solution to our optimization problem does not exist, it implies that alternative methods (including,
e.g., reinforcement learning), would also not find a policy inducing and maintaining the targeted fair
stationary distribution under the same modeling assumptions. This stems from the fact that if the
current state is fair, any alternative approach would still need to address the stationary equation (3)
to maintain that state. This discovery can offer valuable insights to practitioners, prompting them to
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explore different perspectives on long-term fairness. For instance, this might involve revising non-
stationary long-term fairness objectives, such as addressing oscillating long-term behaviors (Zhang
et al., 2020). Alternatively, practitioners could consider redefining the targeted fair state that allows
for stationary. By shedding light on these possibilities, our approach contributes to a deeper under-
standing of the dynamics and long-term fairness considerations.

B.4 CHOICE OF DATASET

Our current experiment focuses on a single simulation setup, specifically centered around loan re-
payment. At the same time, we provide results for varying dynamics and initial distributions, es-
sentially simulating different datasets of the same generative model. Note also that we provide an
example of how the framework can be applied to a different generative model in Appendix F. Fi-
nally, focusing on a single generative model (Zhang et al., 2020) and a single guiding example is in
line with prior published work (Zhang et al., 2020; Liu et al., 2018; Creager et al., 2020; Wen et al.,
2021) with the loan example used widely by previous work on long-term fairness (D’Amour et al.,
2020; Liu et al., 2018; Creager et al., 2020; Wen et al., 2021; Yu et al., 2022).

B.5 OPPORTUNITIES AND LIMITATIONS OF TIME-INVARIANT POLICIES

Our framework yields a single fixed, i.e., time-invariant policy. When the dynamics are constant,
and policy learning and estimation of the dynamics occur simultaneously (as in reinforcement learn-
ing), then the learned policy requires frequent updates as more data becomes available. Our paper
takes a different approach by separating the estimation problem (of the Markov kernel i.e., the dy-
namics) from the policy learning process and therefore does not require updating the policy. We be-
lieve that this holds several advantages, particularly in terms of predictability and trustworthiness. A
fixed policy provides a consistent decision-making framework that stakeholders can anticipate and
understand contributing to trustworthiness. In addition, a fixed policy simplifies operational pro-
cesses, such as implementation and maintenance efforts, potentially leading to more efficient and
effective outcomes.

When the dynamics vary with time, we can no longer rely on a single time-invariant policy for an
infinite time horizon. If, however, the changes are slow and the dynamics remain constant within
certain time intervals, our approach remains effective within the time intervals. Whenever the dy-
namics change, our approach would require re-estimating the dynamics and solving the optimiza-
tion problem again to obtain a new policy. In this way, our method adapts to changing conditions
and maintains its effectiveness over time. However, when dynamics change rapidly, the adaptability
of any method is limited.

B.6 MODELING CHOICE

Our intention in developing a framework for long-term fair policy learning is to provide a versatile
approach that could be applied across various contexts. While models serve as simplified represen-
tations of complex systems, they allow us to analyze phenomena otherwise incomprehensible. Our
choice of utilizing Markov Chains as a modeling tool is a reflection of this principle. Markov Chains
are chosen for their wide application in understanding dynamic processes. For example, the field of
Reinforcement Learning relies on Markov Decision Processes (MDPs), a specific kind of Markov
Chain. The proposed modeling framework can indeed be adapted to a variety of different scenarios
and we provide an example of a different scenario / generative model in Appendix F.

C ON LONG-TERM TARGETS

In this section, we provide additional details regarding the targeted fair states introduced in § 6.

C.1 ON MINIMAX OBJECTIVES

In § 6.2, it was mentioned that egalitarian distributions may not always be efficient, and there are
cases where minimizing the maximum societal risk is more desirable to prevent unnecessary harm.
We elaborate on this concept in the following. While egalitarian allocations can align with societal
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values, they are generally considered Pareto inefficient (Pazner, 1975). In certain scenarios, policy-
makers may be interested in minimizing the maximum risk within a society (Barsotti & Koçer,
2022). This approach aims to prevent unnecessary harm by reducing the risk for one group without
increasing the risk for another (Martinez et al., 2020). For instance, in the context of hiring, instead
of equalizing the group-dependent repayment rates Q(⇡, s), a policy-maker may be interested in
minimizing the maximum default risk 1 � Q(⇡, s) across groups. In other words, their objective
could be JLT := mins �(1�Q(⇡, s)), rather than aiming for equal default or repayment rates.

C.2 POLICY CONSTRAINTS

In § 6.3, we mentioned that it is possible to incorporate constraints on the type of policy being
searched for. These constraints could be put on the policy independent of the stationary distribu-
tion. We provide an example here. If the features exhibit a monotonic relationship, where higher
values of Xt tend to result in a higher probability of a positive outcome of interest `(Y = 1 | x, s),
we may also be interested in a monotonous policy. A monotonous policy assigns higher de-
cision probabilities as Xt increases. In such cases, we can impose the additional constraint
⇡(k, s) � ⇡(x, s), 8k � x, s.

D SIMULATION DETAILS

In this section, we present the details of the experiments and simulations in § 7.

D.1 SOLVING THE OPTIMIZATION PROBLEM

Our framework can be thought of as a three-step process. First, just as previous work on algorithmic
fairness empowers users to choose fairness criteria, our framework allows users to define the charac-
teristics of a fair distribution applicable in their decision-making context (see § 6). The second step
involves transforming the definition of fair characteristics into an optimization problem (OP). The
third step consists of solving the OP. Given the nature of our optimization problem, which is linear
and constraint-based, we can employ any efficient black-box optimization methods for this class of
problems. Note that the OP seeks to find a policy ⇡ that induces a stationary distribution µ, which
adheres to the previously defined fairness targets. As detailed in § 7, in the search of ⇡, we first com-
pute group-dependent kernel T s

⇡ , which is a linear combination of assumed/estimated dynamics and
distributions and ⇡. We then compute the group-dependent stationary distribution µs

⇡ via eigende-
composition.

Solving the Optimization Problem for Finite State Spaces In our guiding example and the cor-
responding simulation, we consider a time-homogeneous Markov chain (Z, P ) with a finite state
space Z (e.g., credit score categories). Consequently, the convergence constraints Cconv are deter-
mined by the irreducibility and aperiodicity properties of the corresponding Markov kernel (see § 4).

Recall from Def. 4.2 that a time-homogeneous Markov chain is considered irreducible if, for any two
states z, w 2 Z , there exists a t > 0 such that P t(z, w) > 0, where P t(z, w) = P(Zt = w | Z0 = z)
represents the probability of going from z to w in t steps.

To ensure irreducibility in our optimization problem, we impose the condition
Pn

i=1 P
n > 0,

where n = |Z| is the number of states and 0 denotes the matrix with all entries equal to zero.
We can demonstrate that this implies irreducibility through a proof by contradiction: Suppose thatPn

i=1 P
n > 0, but for all t 2 {1, 2, . . . , n}, we have P t(z, w) = 0 for all z and w. ThenPn

t=1 P
n = 0, which contradicts the initial condition. Consequently, if

Pn
i=1 P

n > 0, it follows
that there exists a t > 0 such that P t(z, w) > 0.

To satisfy aperiodicity in our optimization we require that the diagonal elements of the transition
matrix are greater than zero: P (z, z) > 0 for all z, where P (z, z) represents the diagonal elements
of the Markov kernel P . Recall from Def. 4.3, that we denote R(z) = {t � 1 : P t(z, z) > 0} to be
the set of return times from z 2 Z , where P t(z, z) represents the probability of returning to state
x after t steps. The Markov chain is aperiodic if and only if the greatest common divisor (gcd) of
R(z) is equal to 1: gcd(R(z)) = 1 for all z in Z. If P 1(z, z) > 0 for all z, then t = 1 is in R(z),
which means that the gcd of R(z) is equal to 1.
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Following Theorem 4.1, a sufficient condition for convergence to the unique stationary distribution
is the positivity of the transition matrix P , where all elements are greater than zero. Therefore, if
we assume the transition matrix to be positive, we do not need to impose the irreducibility and ape-
riodicity constraints mentioned above. In our experiments, for the sake of simplicity, we ensure
that the transition matrix P is positive, meaning that all its elements are greater than zero. Specif-
ically, in our guiding example, this assumption implies that we assume g(k | x, d, y, s) > 0 for all
d, s, y, x, k, while FICO data already yields `(y | x, s) > 0 for all y, x, s.

We compute the stationary distribution µ using eigendecomposition. Recall from Definition 3.2
that a stationary distribution of a time-homogeneous Markov chain (Z, P ) is a probability distri-
bution µ such that µ = µP . More explicitly, for every w 2 Z , the following needs to hold:
µ(w) =

P
z µ(z) · P (z, w). If the transition matrix P is positive, µ = µP implies that µ is the

eigenvector of P corresponding to eigenvalue 1. We then solve for the stationary distribution µ us-
ing linear algebra.

SLSQP Algorithm We solve optimization problems (5) and (6) using the Sequential Least
Squares Programming (SLSQP) method Kraft (1988). SLSQP is a method used to minimize a scalar
function of multiple variables while accommodating bounds, equality and inequality constraints and
can be used for solving both linear and non-linear constraints. The algorithm iteratively refines the
solution by approximating the objective function and constraints using quadratic model.

Specifically, SLSQP is designed to minimize scalar functions of one or more variables. In our case
we are maximizing utility (⇡?

EOP
) or qualifications (⇡?

QUAL
) and searching for P(D = 1 | X = x, S =

s) for all x and s, which are with |X| = 4 and |S| = 2, a total of 8 variables. Further, SLSQP can
handle optimization problems with variable bounds. In our case, we set a minimum bound of 0 and
a maximum bound of 1 as we are seeking for probabilities P(D = 1 | X = x, S = s) for all x
and s. SLSQP can also handle both linear and non-linear equality and inequality constraints. In our
example, where the state space is finite (i.e., X is categorical), all constraints are linear inequality or
equality constraints. Finally, SLSQP uses a sequential approach, which means it iteratively improves
the solution by solving a sequence of subproblems. This approach often converges efficiently, even
for non-convex and non-linear optimization problems.

We use the SLSQP solver from scikit-learn1 (Pedregosa et al., 2011) with step size eps ⇡ 1.49 ⇥

10�10 and a max. number of iterations 200 and initialize the solver (warm start) with a uniform
policy where all decisions are random, i.e., ⇡(D = 1 | x, s) = 0.5 8x, s.

D.2 ASSUMED DYNAMICS

We now provide details about the assumed dynamics. Note that in our guiding example, we assume
binary s, y, d 2 {0, 1} and four credit categories, i.e., we have n = |X | = 4 states. For simplicity
we assume the following notation: Tsdy := g(k | x, d, y, s). Tsdy is a n ⇥ n transition matrix that
describes the Markov chain, where the rows and columns are indexed by the states, and Tsdy(x, k),
i.e., the number in the x-th row and k-th column, gives the probability of going to state Xt+1 = k
at time t+ 1, given that it is at state Xt = x at time t and given that S = s, Dt = d, Yt = y.

One-sided Dynamics. For all one-sided dynamics (in § 7 and E.5) we assume:

1
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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T000 = T001 = T100 = T101

=

2

64

0.9 0.03333 0.03333 0.03333
0.03333 0.9 0.03333 0.03333
0.03333 0.03333 0.9 0.03333
0.03333 0.03333 0.03333 0.9

3

75

T110 = T010

=

2

64

0.9 0.9 0.9 0.9
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333

3

75

(35)

One-sided General. For the one-sided dynamics in § 7.1 we additionally assume dynamics Tsdy

that depend on the sensitive attribute in addition to (35):

T111 =

2

64

0.53333 0.03333 0.03333 0.03333
0.4 0.53333 0.03333 0.03333

0.03333 0.4 0.53333 0.03333
0.03333 0.03333 0.4 0.9

3

75

T011 =

2

64

0.33333 0.03333 0.03333 0.03333
0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333
0.03333 0.03333 0.6 0.9

3

75

One-sided Slow. For the one-sided slow dynamics with results presented in E.5, we assume the
following group-independent dynamics Tsdy in addition to (35):

T011 = T111 =

2

64

0.53333 0.03333 0.03333 0.03333
0.4 0.53333 0.03333 0.03333

0.03333 0.4 0.53333 0.03333
0.03333 0.03333 0.4 0.9

3

75

One-sided Medium. For the one-sided medium dynamics with results presented in E.5, we as-
sume the following group-independent dynamics Tsdy in addition to (35):

T011 = T111 =

2

64

0.33333 0.03333 0.03333 0.03333
0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333
0.03333 0.03333 0.6 0.9

3

75

One-sided Fast. For the one-sided fast dynamics with results presented in E.5, we assume the
following group-independent dynamics Tsdy in addition to (35):

T011 = T111

=

2

64

0.13333 0.03333 0.03333 0.03333
0.8 0.13333 0.03333 0.03333

0.03333 0.8 0.13333 0.03333
0.033335 0.03333 0.8 0.9

3

75

Two-sided Recourse Dynamics. For recourse dynamics we assume the following dynamics
Tsdy . Specifically, we assume that dynamics are the same for both sensitive groups.
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T000 = T001 =

2

64

0.7 0.03333 0.03333 0.03333
0.23333 0.7 0.03333 0.03333
0.03333 0.23333 0.7 0.03333
0.03333 0.03333 0.23333 0.9

3

75

T100 = T101 =

2

64

0.5 0.03333 0.03333 0.03333
0.43333 0.5 0.03333 0.03333
0.03333 0.43333 0.5 0.03333
0.03333 0.03333 0.43333 0.9

3

75

T010 = T011 =

2

64

0.9 0.9 0.9 0.9
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333

3

75

T110 = T111 =

2

64

0.33333 0.03333 0.03333 0.03333
0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333
0.03333 0.03333 0.6 0.9

3

75

Two-sided Discouraged Dynamics. For discouraged dynamics we assume the following dy-
namics Tsdy . Specifically, we assume that dynamics are the same for both sensitive groups.

T000 = T001 =

2

64

0.9 0.63333 0.13333 0.03333
0.03333 0.3 0.53333 0.23333
0.03333 0.03333 0.3 0.43333
0.03333 0.03333 0.03333 0.3

3

75

T100 = T101 =

2

64

0.9 0.43333 0.13333 0.03333
0.03333 0.5 0.33333 0.23333
0.03333 0.03333 0.5 0.23333
0.03333 0.03333 0.03333 0.5

3

75

T010 = T011 =

2

64

0.9 0.9 0.9 0.9
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333
0.03333 0.03333 0.03333 0.03333

3

75

T110 = T111 =

2

64

0.33333 0.03333 0.03333 0.03333
0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333
0.03333 0.03333 0.6 0.9

3

75

D.3 SETUP OF DIFFERENT RUNS

Different Random Initial Distributions. In order to generate the results presented in § 7.1, we
solve the optimization problem (5) once, using ✏ = 0.01 and c = 0.08, and obtain the optimal policy
⇡?
EOP

. Subsequently, we perform simulations for 10 different random initial distributions µ0(x | s),
where we observe the behavior of ⇡?

EOP
for the assumed dynamics one-sided over a duration of

200 steps. In line with the Markov convergence theorem, all of these simulations yield the same
stationary distribution.

Different Dynamic Types. To obtain results in § 7.1, we address two optimization problems: (5)
and (6). For each set of dynamics, we solve these problems independently, resulting in different
values for ⇡?

EOP
and ⇡?

QUAL
respectively. Subsequently, we utilize the FICO distribution as the initial

distribution µ0(x | s) and simulate the feature distribution for each policy over 200 steps, assuming
the specified dynamics.
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Figure 4: Convergence of feature distributions for ⇡?
EOP

for different random starting distributions
(colors) to unique stationary distributions µ=?. Trajectories over 200 time steps. c=0.8, ✏=0.01.

D.4 COMPUTATIONAL RESOURCES AND RUN TIME

Computational Resources All experiments were conducted on a MacBook Pro (Apple M1 Max
chip). Since we can efficiently solve the optimization problem, these experiments are executed on
standard hardware, eliminating the necessity for using GPUs.

Run Time The optimization problems to find long-term policies in all experiments within this
paper were consistently solved in under 10 seconds. Regarding the training of short-term fair
policies on 5000 samples, the run times were approximately 20-23 minutes: 1245.92 seconds for
short-EOP (� = 1), 1244.25 seconds for short-EOP (� = 2), and 1380.50 seconds for
short-MAXUTIL.

E ADDITIONAL RESULTS

In this section, we provide additional results related to the results discussed in § 7. Our analysis
centers around our guiding example, employing the data distributions sourced from FICO (Reserve,
U. F., 2007) unless otherwise specified. The structure of this section is as follows:

• In § E.1 we provide additional results for different starting distributions.
• In § E.2 we provide additional results for the comparison to short-term policies.
• In § E.3 we provide additional results for varying the fairness threshold ✏ for our policy.
• In § E.4 we provide additional results for the different dynamic types (one-sided,
recourse, discouraged) that we introduced in the main paper.

• In § E.5 we provide additional results for varying the speed at which feature changes occur
(slow, medium, fast).

• In § E.6 we provide additional results for first sampling from FICO data and then estimating
the distributions under partially observed labels.

E.1 DIFFERENT INITIAL STARTING DISTRIBUTIONS

We provide additional results for the results shown § 7.1, where we run simulations on 10 randomly
sampled initial feature distributions µ0(x | s), setting ✏ = 0.01, c = 0.8. In addition to the results
shown in the main paper, we here display in Figure 4 the resulting trajectories of all feature distri-
butions.

E.2 COMPARISON TO STATIC POLICIES

We provide additional results comparing our long-term policy to short-term policies.

Static Policy Training. The short-term policies are logistic regression models implemented using
PyTorch. The forward method computes the logistic sigmoid of a linear combination of the input
features, while the prediction method applies a threshold of 0.5 to the output probability to make
binary predictions. The training process is carried out via gradient descent, with the train function
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Figure 5: Convergence of feature distributions for our long-term long-EOP (⇡?
EOP

) and the static
policies (unfair: short-MAXUTIL, fair: short-EOP (� = 2). Trajectories over 200 time steps.
c = 0.8, ✏ = 0.026. Last distribution values are marked with ?.

Figure 6: Results for our long-term long-EOP (⇡?
EOP

) and the static policies (unfair:
short-MAXUTIL, fair: short-EOP (� = 2). . Top Left: Utility (solid, ") with c = 0.8 and
EOP-Unfairness (dashed, #). Top right / Bottom left: Loan (solid) and payback probability (dashed)
per policy and sensitive S.

optimizing a specified loss function. The short-MAXUTIL policy is trained using a binary cross-
entropy loss. The fairness is enforced using a Lagrangian approach (� = 2). The short-EOP
policy is trained using a binary cross-entropy loss and regularization terms measuring equal oppor-
tunity unfairness with � as hyperparameters controlling the trade-off between predictive accuracy
and fairness. Training is performed for 2000 epochs with a learning rate of 0.05. We display results
over 10 random initializations. The experiments in the main paper are shown for short-EOP with
� = 2. We show in the following results for different �.

Feature and Outcome Trajectories. Figure 5 presents the trajectories of our long-term
long-EOP (⇡?

EOP
) and the static policies (unfair: short-MAXUTIL, fair: short-EOP (� = 2))

over 200 time steps for a single short-term policy seed. We observe that our long-term policy con-
verges to a stationary distribution and remains there once it has found it. In contrast, the trajectories
of the short-term policies display non-stationarity, covering a wide range of distributions, as evi-
denced by the overlapping region. This indicates that the short-term policies exhibit a high variance
and do not stabilize into a stationary distribution.

Utility, Fairness and Loan and Repayment Probabilities. Figure 6 (top left) displays U and
EOPUnf over the first 100 time steps. We observe that short-term policies, which are updated at each
time step, tend to exhibit greater variance compared to the long-term policy, which remains fixed
at t = 0 - even as the underlying data distribution evolves in response to decision-making. Among
the two short-term fair policies, the fairer one (� = 2) approaches nearly zero unfairness, whereas
the less fair one (� = 1) displays a higher level of unfairness. Specifically, the more fair policy
(� = 2) reaches a low (negative) utility, while the less fair one (� = 1) maintains a higher (though
still negative) utility. The unfair short-term policy (UTILMAX) achieves positive utility but does so
at the cost of a high level of unfairness. This highlights the trade-off between fairness and utility that
short-term policies encounter. Conversely, our long-term fair policy maintains a level of unfairness
close to zero while experiencing only a modest reduction in utility compared to the unfair short-term
policy. This underscores our policy’s capacity to attain long-term fairness while ensuring a higher
level of utility, leveraging the long-term perspective to effectively shape the population distribution.

Figure 6 (top right, bottom left) presents the loan probability P(D = 1 | S = s) and payback
probability P(Y = 1 | S = s) for non-privileged (S = 0) and privileged (S = 1) groups. In

25



Under review as a conference paper at ICLR 2024

Figure 7: Results for our long-term long-EOP (⇡?
EOP

) and the static policies (unfair:
short-MAXUTIL, fair: short-EOP (� = 2). Effective (cumulative) utility U , inequity I, and
(EOP) unfairness EOPUnf for different policies.

addition to the results presented in the main paper (Figure 2b), we observe a difference between the
two short-term fair policies in our analysis in this appendix. The more equitable policy (� = 2)
achieves a low level of unfairness by granting loans with a probability of 1 to individuals across all
social groups. The less equitable policy (� = 1) provides loans to the underprivileged group with an
average probability of approximately 0.85, while the privileged group receives loans at an average
probability of around 0.9.

Crucially, the less equitable policy (� = 1) exhibits a much higher variability in loan approval prob-
abilities for the underprivileged group across different time steps compared to the privileged group.
This highlights that unfairness does not solely manifest at the mean level but also in the variability
across time. Both policies tend to grant loans at probabilities exceeding the actual repayment proba-
bilities within the population. This suggests an ”over-serving” phenomenon, implying that the poli-
cies on average extend loans to individuals who may not meet the necessary qualifications for bor-
rowing.

In contrast, our policy maintains stability and converges to a low difference in loan approval proba-
bilities between groups without significant temporal variance. Importantly, our loan approval prob-
abilities remain below the loan repayment (as for the short-term unfair policy (UTILMAX)) proba-
bilities, indicating that, on average, the policies are extending loans to individuals who are indeed
eligible for them. In addition, for our policy, the gap between loan provision and repayment proba-
bilities is similar across sensitive groups.

Effective Utility, Inequity and Unfairness. Figure 7 illustrates effective (accumulated) measures
of utility, inequity, and (EOP) unfairness over time for the different policies, where results for static
policies are reported over 10 random initializations. We observe that the short-term unfair policy
(short-UITLMAX consistently accumulates the highest utility across all dynamics, while simul-
taneously maintaining a high level of effective unfairness and inequality. Conversely, the short-
term fair policies (short-EOP(� = 1) and (� = 2)) exhibit negative effective utility, but they do
achieve lower levels of effective fairness and inequity.

For our long-term policy (long-EOP), we find that it accumulates positive utility over time. Al-
though its utility remains below that of the short-term unfair policy, our policy exhibits very low lev-
els of effective unfairness. Importantly, it also yields minimal accumulated inequity, even though it
was not specifically optimized for this.

Analyzing the cumulative effects of policies is essential for evaluating the long-term impact of each
policy choice. This analysis can, for instance, help determine whether investing in fairness pays off
in the long-term and whether sacrificing short-term fairness in the initial stages ultimately benefits
society in the long run.

E.3 DIFFERENT FAIRNESS LEVELS

We provide additional results, where we use the initial distribution µ0(x | s) from FICO and solve
the optimization problem (5) for four different fairness levels ✏. This results in four policies ⇡?

EOP
.

Feature and Outcome Trajectories. Figure 8 presents the trajectories of ⇡?
EOP

over 200 time steps
for different fairness thresholds ✏. We observe that although the convergence process, time, and final
stationary distribution (?) are very similar for different targeted fairness levels.
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Figure 8: Convergence of feature distributions for ⇡?
EOP

for different fairness thresholds ✏ to unique
stationary distributions µ = ?. Trajectories over 200 time steps. c = 0.8.

Figure 9: Results for different ✏-EOP-fair ⇡?
EOP

. Top Left: Utility (solid, ") with c = 0.8 and EOP-
Unfairness (dashed, #). Top right / Bottom left: Loan (solid) and payback probability (dashed) per
policy and sensitive S.

Utility and Loan and Repayment Probabilities. Figure 9 (top left) displays U and EOPUnf over
the first 50 time steps (until convergence). We observe that all policies converge to a similar utility
level while maintaining their respective ✏ level, confirming the effectiveness of our optimization
problem. Figure 9 (top right, bottom left) presents the loan probability P(D = 1 | S = s) and
payback probability P(Y = 1 | S = s) for non-privileged (S = 0) and privileged (S = 1) groups.
While the probabilities across sensitive groups ultimately stabilize close together in the long term,
the initial 20 steps exhibit a large difference in loan and payback probabilities. Optimizing for long-
term goals may thus lead to unfairness in the short term, and it is important to carefully evaluate the
potential impact of this on public trust in the policy.

E.4 DIFFERENT DYNAMIC TYPES

Results in this subsection are for different dynamic types: one-sided, recourse, and
discouraged. See D.2 for more details on these specific dynamics. We solve both optimization
problems for each of the three dynamics, where solving (5) provides ⇡?

EOP
and solving (6) provides

⇡?
QUAL

.

Feature and Outcome Trajectories. Figure 10 presents the trajectories of ⇡?
EOP

and ⇡?
QUAL

over
200 time steps for different types of dynamics. We observe that although the initial distribution
remains unchanged, the convergence process, time, and final stationary distribution (?) differ de-
pending on the dynamics. Notably, the stationary distribution of ⇡?

QUAL
appears to be similar for

one-sided and discouraged dynamics. On the other hand, the results for all other dynamics
and policies demonstrate distinct but relatively close outcomes.

Utility, Fairness and Loan and Repayment Probabilities. Figure 11 showcases the group-
dependent probabilities of receiving a loan, P(Dt = 1 | S = s), and repayment, P(Yt = 1 | S = s),
for both the non-privileged (S = 0) and privileged (S = 1) groups. The probabilities are dis-
played for the convergence phase (first 50 time steps) for policies ⇡?

EOP
and ⇡?

QUAL
across dynam-

ics types. When the payback probabilities are higher compared to the loan probabilities, it suggests
an underserved community where fewer credits are granted than would be repaid. In the case of
one-sided dynamics, we find that for ⇡?

EOP
, the loan and repayment probabilities are relatively

close to each other at each time step. However, for ⇡?
QUAL

, the gap between repayment and loan
probabilities widens as time progresses. At convergence, both sensitive groups exhibit a repayment
rate of approximately 0.8, while the loan-granting probability is around 0.4. This suggests that, in
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Figure 10: Convergence of ⇡?
EOP

and ⇡?
QUAL

for different type of dynamics towards different unique
stationary distributions µ = ?. Trajectories over 200 time steps. Top four plots: feature distribution
µt. Bottom left: distribution of the outcome of interest. Equal feature/outcome distribution dashed.
Initial distribution µ0 =FICO, c = 0.8, ✏ = 0.01.

Figure 11: Loan probability P(D = 1 | S = s) (solid) and repayment probability P(Y = 1 | S = s)
(dashed) for different type of dynamics (one-sided, recourse, discouraged) and policies ⇡?

EOP
,⇡?

QUAL

per sensitive attribute s 2 {0, 1}. Initial distribution µ0 = FICO, c = 0.8, ✏ = 0.01.

the one-sided dynamics, for ⇡?
QUAL

the repayment rate is higher compared to the loan granting
rate, indicating that a significant number of individuals who would repay their loan are not being
granted one. In the case of one-sided dynamics, similar to the discouraged dynamics, we
observe different short-term and long-term effects. Specifically, for ⇡?

EOP
, the probability of receiv-

ing a loan initially differs between the sensitive groups within the first 20 time steps. However, as
time progresses, these probabilities tend to become closer to each other. This suggests a potential
reduction in the disparity of loan access between the sensitive groups over time under the influence
of the ⇡?

EOP
policy. In the case of recourse dynamics, we observe that the loan granting and re-

payment probabilities tend to stabilize closely together in the long term across sensitive groups and
under both policies—except for ⇡?

QUAL
when S = 1. In this particular case, the ⇡?

QUAL
policy sets

⇡(D = 1 | X = x, S = 1) = 0 for all values of x. This scenario serves as an example where opti-
mizing for long-term distributional goals without enforcing predictive fairness constraints can lead
to individuals with a high probability of repayment being consistently denied loans.

E.5 DIFFERENT DYNAMIC SPEEDS

We begin by assuming one-sided dynamics and then introduce variation in the speed of transitioning
between different credit classes. This variation encompasses three levels: slow, medium, and
fast, each representing the rate at which borrowers’ credit scores evolve in response to decisions.
Additional information about these specific dynamics can be found in Section D.2. For each of these
three dynamics, we address both optimization problems. Solving (5) yields ⇡?

EOP
, while solving (6)

provides ⇡?
QUAL

.”

Feature and Outcome Trajectories. Figure 12 depicts the trajectories over 200 time steps for
⇡?
EOP

and ⇡?
QUAL

under different speeds of one-sided dynamics. While the initial distribution remains
the same for all runs, the convergence process, time, and final stationary distribution (?) vary de-
pending on the dynamics speed. Regarding the group-dependent distribution of Y , we observe that
⇡?
QUAL

achieves a higher distribution (which in addition is closer to the equal outcome distribution)
compared to ⇡?

EOP
. This can be attributed to the fact that ⇡?

QUAL
explicitly optimizes for maximizing

the total distribution of Y . Additionally, we notice that for both policies slower dynamics result in
lower stationary distributions of Y compared to faster dynamics.
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Figure 12: Convergence of ⇡?
EOP

and ⇡?
QUAL

for different speeds of dynamics towards different unique
stationary distributions µ = ?. Trajectories over 200 time steps. Left four plots: feature distribution
µt. Right: distribution of the outcome of interest. Equal feature/outcome distribution dashed. Initial
distribution µ0 =FICO, c = 0.8, ✏ = 0.01.

Figure 13: Loan probability P(D = 1 | S = s) (solid) and repayment probability P(Y = 1 |

S = s) (dashed) for different speed of one-sided dynamics (slow, medium, fast) and policies
⇡?
EOP

,⇡?
QUAL

per sensitive attribute s 2 {0, 1}. Initial distribution µ0 = FICO, c = 0.8, ✏ = 0.01.

Utility, Fairness and Loan and Repayment Probabilities. Figure 13 depicts the group-
dependent probabilities of receiving a loan, P(D = 1 | S = s), and repayment, P(Y = 1 | S = s),
for both non-privileged (S = 0) and privileged (S = 1) groups. The probabilities are shown for the
convergence phase (initial 50 time steps) of policies ⇡?

EOP
and ⇡?

QUAL
across different speeds of one-

sided dynamics. Higher payback probabilities compared to loan probabilities can indicate an under-
served community where fewer credits are granted than would be repaid. Across all dynamics, we
observe small differences in the repayment distributions for each policy. The repayment probabili-
ties are consistently higher for the non-protected group compared to the protected group. Moreover,
in general, ⇡?

QUAL
yields higher repayment rates than ⇡?

EOP
. However, the loan probabilities—which

indicate a group’s access to credit—exhibit differences across dynamics and policies. As expected,
the utility-maximizing ⇡?

EOP
generally provides higher loan rates compared to ⇡?

QUAL
. While the loan

rates remain similar across dynamics for ⇡?
EOP

, they vary for ⇡?
QUAL

. Under slow dynamics, ⇡?
QUAL

yields low loan probabilities for the protected group, which then increases for medium and fast
dynamics. Furthermore for ⇡?

QUAL
, the discrepancy between acceptance rates for sensitive groups is

greatest at slow dynamics, and decreases significantly at medium dynamics - at the expense of the
non-protected group. Finally, for fast dynamics, the acceptance rates for sensitive groups are ap-
proximately equal.

These observations emphasize the importance of conducting further investigations into the formula-
tion of long-term goals, taking into account their dependence on dynamics and the short-term con-
sequences. This includes not only considering the type of dynamics (one-sided or two-sided), but
also the speed at which individuals’ feature changes in response to a decision.

Effective Utility, Inequity and Unfairness. Figure 14 illustrates effective (accumulated) mea-
sures of utility, inequity, and (EOP) unfairness over time. For all dynamics, the policies align with
their respective targets. ⇡?

EOP
accumulates the highest utility across all dynamics while maintaining a

low effective unfairness after an initial convergence period. On the other hand, ⇡?
QUAL

exhibits a small
negative effective utility due to the imposed zero-utility constraint, but achieves lower effective in-
equity by maximizing the total distribution of the outcome of interest. We observe that the speed of
dynamics does not significantly affect effective utility for both policies and effective unfairness for
the ⇡?

EOP
policy. However the speed of dynamics does have an impact effective inequity, although

its effect varies for each policy. Among the ⇡?
EOP

policies, we find that the medium dynamics result
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Figure 14: Effective (cumulative) utility U , inequity I, and (EOP) unfairness EOPUnf for different
policies (⇡?

EOP
solid, ⇡?

QUAL
dashed).

(a) True distributions of features
and labels.

(b) Distribution of decisions and
observed labels for random.

(c) Distribution of decisions and
observed labels for bias.

Figure 15: Data distributions for different temporal datasets based on FICO used to estimate label
distributions and dynamics.

in the lowest effective inequity, whereas among the ⇡?
QUAL

policies, the fast dynamics exhibit the
lowest effective inequity. While the effective utility is minimally affected by the speed of dynam-
ics in the case of ⇡?

EOP
, we observe different results for effective inequity. Among the ⇡?

EOP
policies,

the medium dynamics result in the lowest effective inequity. Conversely, among the ⇡?
QUAL

policies,
the fast dynamics exhibit the lowest effective inequity. These observations highlight that the final
outcomes of decision policies are not only influenced by the type of dynamics (one-sided and two-
sided), but also by the speed of dynamics. It is thus crucial to also consider the rate at which individ-
uals are able to change features within one time step. This consideration can for example be impor-
tant in the context of recourse, where not all individuals may have the ability to implement the mini-
mum recommended actions, potentially due to individual limitations. Consequently, only a fraction
of individuals would be able to move up in their credit class in response to a negative decision.

E.6 DYNAMICS ESTIMATION UNDER PARTIALLY OBSERVED LABELS

We conduct additional experiments to investigate the impact of estimation errors in the underlying
distributions on the quality of results. In a more realistic loan example, label Y might be partially
observed (i.e., observed only for individuals who received a positive loan decision). In this case, the
estimate of Y may no longer be as accurate for one sensitive group as for another. We investigate the
sensitivity of our derived policy to the estimation of Y for different decision policies (which reveal
different amounts of labels for different subgroups) compared to access to the true distribution of Y .
We first generate a temporal dataset comprising two time steps. These samples were drawn from the
FICO base distribution, and we assumed the dynamics of One-sided General (as described in § D.2).
The dataset is comprised of 50,000 samples aligning with the dataset scales employed in the fairness
literature, such as the Adult dataset Kohavi & Becker (2013). We deploy three different policies
that influence the data observed at t = 1, random, threshold, biased, with the following
formulations:

• random is defined by P(D = 1 | X,S) = 0.5 for all X,S;

• bias is defined for all S by P(D = 1 | X,S) = 0.1 if X <= 2 and for S = 0 as
P(D = 1 | X,S) = 0.3 if X > 2 and for S = 1 as P(D = 1 | X,S) = 0.9.

The true distribution of features and label at t = 0 are shown in Figure 15a. The distributions of
decisions and observed labels under the different policies are shown in Figures 15b - 15c.
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Figure 16: Convergence of ⇡?
EOP

under true and estimations of `(y | x, s) and g(k | x, d, y, s) and
under different type of initial policies (random, threshold, bias). 200 time steps, last time
step marked ?. Top four plots: feature distribution µt. Bottom left: distribution of the outcome of
interest. Equal feature/outcome distribution dashed.

We then estimate both `(y | x, s) and g(k | x, d, y, s) from the observed samples, with the latter
being dependent on the former. Subsequently, we solve the optimization problem (c = 0.9, ✏ =
0.00005) using these estimated distributions yielding three different policies (one per estimation).
Consequently, we simulate the performance of the discovered policies under the true distributions
and µ0 =FICO. In the evaluation, we compare the results to the policy obtained under the true
probability estimate `(y | x, s) as supplied by FICO (true).

Feature and Outcome Trajectories. Figure 16 displays the trajectories of ⇡?
EOP

for 200 time steps
for the optimal policies obtained under both the true and estimated distributions and dynamics. No-
tably, the initial distribution remains the same, and the policies slightly vary in their convergence
process to the stationary distribution (?), while staying close to each other. It is important to empha-
size that all policies successfully achieve a stationary distribution. This is due to the fact that even
though we employ estimated distributions as inputs for the optimization problem, we are still solv-
ing the optimization problem for a policy that induces a stationary distribution that satisfies the fair-
ness criteria. We showcase this in the next results.

Utility, Fairness and Loan and Repayment Probabilities. Figure 17 (left) displays U and
EOPUnf over the first 50 time steps (until convergence). We observe that the policies exhibit a dif-
ferent level of unfairness, while still achieving low unfairness. The policy derived from the true prob-
abilities and dynamics achieves lowest unfairness, the policy derived from probabilities and dynam-
ics collected under a random policy has slightly higher unfairness, and the policy derived from prob-
abilities and dynamics collected under a biased policy has the highest unfairness. In terms of utility,
where we aim for maximization without imposing a strict constraint, we observe that all policies ex-
hibit a similar utility level. Figure 9 (middle, right) displays the loan probability P(D = 1 | S = s)
and payback probability P(Y = 1 | S = s) for non-privileged (S = 0) and privileged (S = 1)
groups. While there is no difference in loan and payback probabilities for the privileged group
(S = 1) between the policies, we observe a small difference for the unprivileged group (S = 0).
The policy derived from true probabilities and dynamics provides fewer loans to the unprivileged
group compared to the policy derived from probabilities and dynamics collected under the random
policy. Interestingly, the policy derived from probabilities and dynamics collected under a biased
policy grants the most loans to the unprivileged group. Note, that our unfairness metric in the left
plot is equal opportunity Hardt et al. (2016b), not demographic parity Dwork et al. (2012). Conse-
quently, this observation may be explained by the policy obtained from biased estimation providing
loans to a higher number of individuals from the unprivileged group who may not be able to repay
them. Thus, while we do achieve a stationary distribution using estimated probabilities, it is im-
portant to note that convergence to the intended fair state is not guaranteed when estimation errors
are present. However, if the estimations closely approximate the true distribution, the resulting sta-
tionary distribution achieves similar utility and fairness properties as the stationary distribution that
would have been achieved had the policy found under the true probabilities.

F EXAMPLE SCENARIOS

F.1 ASSUMPTIONS OF THE GUIDING EXAMPLE

In this section, we discuss the assumptions taken in the data generative model introduced in § 2.
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Figure 17: Results for our ⇡?
EOP

under true and estimations of `(y | x, s) under different type of
initial policies (random, threshold, bias). Top Left: Utility (solid, ") and EOP-Unfairness
(dashed, #) over first 50 time steps. Remaining: Loan (solid) and payback probability (dashed) per
policy and sensitive S.

Assumptions F.1. S is a root node and Xt, Yt and Dt (potentially) depend on S.

It is commonly assumed in the causality and fairness literature that sensitive features are root nodes
in the graphical representation of the data generative model (Kusner et al., 2017a; Chiappa, 2019;
Kilbertus et al., 2020a), although there is some debate on this topic (Mhasawade & Chunara, 2021;
Hu & Kohler-Hausmann, 2020). The assumption that the sensitive attribute S influences Xt is
based on the observation that in practical scenarios, nearly every (human) characteristic is causally
influenced by the sensitive attribute (Kusner et al., 2017a; Chiappa, 2019). In some cases, it is also
assumed that S influences Yt (Chiappa, 2019), while in other cases, this assumption is not made (Liu
et al., 2018). The extent to which the decision Dt is directly influenced by the sensitive attribute S
depends on the decision policy being employed. Policies that strive for (statistical) fairness often
require explicit consideration of the protected attribute in their decision-making process (Hardt et al.,
2016b; Dwork et al., 2012; Corbett-Davies et al., 2017).
Assumptions F.2. The outcome of interest Yt depends on features Xt.

The assumption that changes in Xt lead to changes in Yt is prevalent in scenarios involving lend-
ing (Liu et al., 2018; Creager et al., 2020; D’Amour et al., 2020; Hu & Zhang, 2022). This assump-
tion is also implicit in problems where individuals seek recourse, e.g., via minimal consequential
recommendations (Karimi et al., 2021a) or social learning (Heidari et al., 2019).
Assumptions F.3. Decision Dt depends on features Xt.

In algorithmic decision-making, the primary objective of a policy is typically to predict the unob-
served label or outcome of interest, denoted as Y , based on the observable features, denoted as
X (Schölkopf et al., 2012). We make the assumption that an individual’s observed features at a par-
ticular point in time are sufficient to make a decision and conditioned on these features, the decision
is independent of past features, labels, and decisions. This assumption aligns with prior work in the
field (Zhang et al., 2020; Creager et al., 2020; Karimi et al., 2021a).
Assumptions F.4. An individual’s sensitive attribute S is immutable over time.

For simplicity, we assume that individuals do not change their sensitive attribute. This assumption
aligns with previous works that consider a closed population (Liu et al., 2018; Creager et al., 2020;
D’Amour et al., 2020; von Kügelgen et al., 2022). A closed population refers to a group of individ-
uals that remains constant throughout the study or analysis. It implies that there are no additions or
removals from the population of interest. Other work considers that individuals join and leave the
population over time, leading to a changing distribution of the sensitive attribute (Hashimoto et al.,
2018). The assumption that individuals do not change their sensitive attribute is controversial be-
cause, on the one hand, social categories are often ontologically unstable (Barocas et al., 2019; Hu
& Kohler-Hausmann, 2020), and as such their boundaries are not clearly defined and dynamic. On
the other hand, it ignores that individuals may be assigned identities at birth which they have the
agency to correct at a given time. For example, an individual assigned one religion at birth may have
a different religion at a later stage in life.
Assumptions F.5. An individual’s next step’s features Xt+1 depend on its current step’s feature Xt,
decision Dt, outcome of interest Yt, and sensitive S.

This assumption, as discussed in previous literature, can be attributed to either bureaucratic poli-
cies (Liu et al., 2018) or changes in individual behavior, in response to recommendations (Karimi
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et al., 2021b) or social learning (Heidari et al., 2019). In the lending context, it is commonly as-
sumed that the higher the credit score the better. Then the assumption is: individuals approved for a
loan (D = 1) experience a positive score change upon successful repayment (Y = 1) and a negative
score change in case of default (Y = 0), while individuals rejected for a loan (D = 0) are assumed
to have no score change (Liu et al., 2018; Creager et al., 2020; D’Amour et al., 2020). In scenar-
ios where individuals who are not granted a loan (D = 0) seek recourse, it would be assumed that
a negative decision leads to an increase in credit score, to elicit a positive decision change in subse-
quent time steps (Heidari et al., 2019; Karimi et al., 2021b).

For the transition probabilities to be time-homogeneous, we take the following assumptions:
Assumptions F.6. Dynamics g(k | x, d, y, s) remain fixed over time.

This is a common assumption in the literature (Zhang et al., 2020; Creager et al., 2020; D’Amour
et al., 2020; Hu & Zhang, 2022). Although real-world data often exhibits temporal changes, we
make the simplifying assumption of static dynamics. We can treat the dynamics as constant for spe-
cific durations. This is reasonable in situations where changes are based on policies involving bu-
reaucratic adjustments (Liu et al., 2018) or algorithmic recourse recommendations (Karimi et al.,
2022), and where it is desirable for these policies to remain unchanged or not be retrained at ev-
ery time step (Perdomo et al., 2020). In practical applications, MDPs with time-varying transition
probabilities present challenges, and the literature addresses this through online learning algorithms
(e.g., (Yu & Mannor, 2009; Li et al., 2019)).
Assumptions F.7. Label distribution `(y | x, s) remains fixed over time.

This assumption is widely recognized in the literature (Heidari et al., 2019; Zhang et al., 2020; Crea-
ger et al., 2020; D’Amour et al., 2020; Karimi et al., 2021b; Hu & Zhang, 2022). However, in real-
world scenarios, the relationship between input data Xt and the target output Yt may change over
time, resulting in changes in the conditional distribution `(y | x, s). This phenomenon is commonly
referred to as concept drift (Lu et al., 2018; Gama et al., 2014). In the lending scenario, concept drift
may arise from changes in individuals’ repayment behavior or alterations in the process of generat-
ing credit scores based on underlying features like income, assets, etc.

F.2 ADDITIONAL EXAMPLE: QUALIFICATIONS OVER TIME

Y0 Y1 Y2

S

X0 X1 X2

D0 D1 D2

Figure 18: Data generative
model. Time steps (subscript)
t = {0, 1, 2}.

In this section, we provide an additional example, which could
also be covered by our framework. The example was provided
by (Zhang et al., 2020) with their data generative model dis-
played in Figure 18. The primary distinction from the exam-
ple presented in Section 2 lies in the assumption that Yt ! Xt.
(Zhang et al., 2020) employ their model to replicate lending
and recidivism scenarios over time in their experiments, us-
ing FICO and COMPAS data, respectively. However, most
prior work has modeled the (FICO) lending examples as Xt !

Yt (Liu et al., 2018; Creager et al., 2020; D’Amour et al.,
2020). The same holds for recidivism (COMPAS) (Russell
et al., 2017). We, therefore, frame the example as a repeated
admission example where Yt denotes a (presumably hidden)
qualification state at time t, following (Rateike et al., 2022b;
Kusner et al., 2017b).

Data Generative Model. Let an individual with protected
attribute S (e.g., gender) at time t be described by a qualification Yt and a non-sensitive feature
Xt (e.g., grade or recommendations levels). We assume the sensitive attribute to remain fixed over
time, and drop the attributes time subscript. For simplicity, we assume binary sensitive attribute and
qualification, i.e., S, Yt 2 {0, 1} and a one-dimensional discrete non-sensitive feature Xt 2 Z. Let
the population’s sensitive attributes be distributed as �(s) := P(S = s) and assume them to remain
constant over time. We assume Yt to depend on S, such that the group-conditional qualification
distribution at time t is µt(y | s) := P(Yt = y | S = s). For example, different demographic
groups may have different qualification distributions due to structural discrimination in society. We
assume that the non-sensitive features Xt are influenced by the qualification Yt and, possibly (e.g.,
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due to structural discrimination), the sensitive attribute S. This leads to the feature distribution
f(x | y, s) := P(Xt = x | Yt = y, S = s), We assume that there exists a policy that takes at each
time step t binary decisions Dt (e.g., whether to admit) based on Xt and (potentially) S and decides
with probability ⇡(d | x, s) := P(Dt = d | Xt = x, S = s).

Consider now dynamics in which the decision Dt made at one time step t, directly impacts an in-
dividual’s qualifications at the next step, Yt+1. Assume the transition from the current qualifica-
tion state Yt to the next state Yt+1 is determined by the current qualification state Yt, decision
Dt and (potentially) sensitive attribute S. For example, upon receiving a positive admission de-
cision, an individual may be very motivated and increase their qualifications. However, due to
structural discrimination, the extent of the qualification change may be influenced by the individ-
ual’s sensitive attribute. We denote the probability of an individual with S = s changing from
qualification Yt = y to Yt+1 = k in the next step in response to decision Dt = d as dynamics
g(k | y, d, s) := P(Yt+1 = k | Yt = y,Dt = d, S = s). Crucially, the next step qualification state
(conditioned on the sensitive attribute) depends only on the present state qualification and decision,
and not on any past states.

Dynamical System. We can now describe the evolution of the group-conditional qualification
distribution µt(y | s) over time t. The probability of a qualification change from y to k in the next
step given s is obtained by marginalizing out decision Dt, resulting in

P(Yt+1 = k | Yt = y, S = s) =
X

xd

g(k | y, d, s)⇡(d | x, s)f(x | y, s). (36)

These transition probabilities together with the initial distribution over states µ0(y | s) define the
behavior of the dynamical system. In our model, we assume that the dynamics g(k | y, d, s) are
time-independent, meaning that the qualification changes in response to the decision, the previous
qualification and the sensitive attribute remain constant over time. We also assume that the distribu-
tion of the non-sensitive features conditioned on an individual’s qualification and sensitive attribute
f(x | y, s) does not change over time (e.g., individuals need a certain qualification to generate cer-
tain non-sensitive features). Additionally, we assume that the policy ⇡(d | x, s) can be chosen by a
policy maker and may depend on time. Under these assumptions, the probability of a feature change
depends solely on the policy ⇡ and sensitive feature S.
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