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1 Usage of LLM

We used Qwen3-Max and DeepSeek-R1 solely to assist with polishing the phrasing and
writing style of our paper, without influencing the technical content or conclusions in our
work.

2 Detailed Usage of Generative Reward Model (GRM)

The Generative Reward Model (GRM) is a core component of DEPO, designed to evaluate
the quality of model responses and identify efficient vs. inefficient reasoning segments. The
detailed usage and prompt of GRM is as follows:

Figure 1: The detailed usage and prompt of GRM.
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As shown in Fig. 1, we provide GRM with a mathematical problem and its corresponding
answers, along with the reasoning process generated by LRMs, i.e. Chain-of-Thought
(CoT). And we have determined the criteria for identifying the initial reasoning step that
arrives at the correct answer, requiring GRM to output the following responses:

• Score: Score represents the GRM’s assessment of the reasoning correctness of
CoT, where a value of 1 indicates that LRMs arrived at the correct answer, and 0
otherwise.

• Reflection: Reflection represents the first sentence in CoT that derives the correct
answer, which is the distinguishing criterion of efficient and inefficient parts.

• Portion: Portion denotes GRM’s estimated ratio of efficient reasoning to the en-
tire length of CoT, providing a fallback mechanism in case the exact ”Reflection”
matching is unavailable.

• Reason: Reason constitutes the GRM’s explanation for its output, enabling us to
verify the accuracy of ”Score” and ”Reflection”.

3 Training and Evaluation of GRM

3.1 Base Model of GRM

To accurately score the LRMs’s responses and extract the first reasoning sentence leading
to the correct answer, we employed Qwen2.5-Instruct-7B as the base model for GRM and
conducted Supervised Fine-Tuning using a high-quality dataset, ensuring GRM adheres to
our specified response format while enhancing its evaluation accuracy in both scoring and
reasoning sentence matching.

3.2 Dataset and Evaluation of GRM

To generate a high-quality dataset, we first leveraged DeepSeek-Distill-Qwen-7B to
generate 39,961 mathematical problem-response pairs from the DeepScaleR dataset. And
we used Qwen2.5-72B model to produce corresponding responses according to the specified
format in Fig. 1, generating score, reflection, portion and reason fields for all pairs. To
enhance dataset quality and ensure Qwen2.5-Instruct-7B strictly adheres to our format
while improving its scoring and matching accuracy, we implemented rigorous filtering by
removing: (1) samples with incorrect scores, (2) responses failing to identify the initial
correct reasoning step in CoT, (3) sequences where the portion values deviated by over
0.15 from ground-truth effective ratios, ultimately retaining 18,416 high-quality samples
for Supervised Fine-Tuning to derive GRM. Furthermore, post evaluation on the Math500
dataset revealed that GRM correctly scored 474 accurately answered samples among 500
total responses of DeepSeek-Distill-Qwen-7B, successfully matched the first correct
reasoning sentence in CoT for 445 samples, achieving 93.9% matching rate, and maintained
portion deviations within 0.15 of ground-truth ratio for 80% of cases.

In our training process of LRMs, we set the temperature and topp of GRM to 1.0 and 0.95,
respectively, and we set the context size of the prompt to 16K and the size of maximum
to 1K, since the CoT of DeepSeek-Distill-Qwen-7B might be lengthy and the output
formats of GRM are specified and concise.

4 Case Study

We make a case study in Fig. 2 to compare DEPO and the naive GRPO. As illustrated in
Fig. 2, DEPO requires fewer tokens than GRPO to derive the correct answer, and DEPO
can immediately halt the thinking process in CoT while GRPO continues to perform a
reflection and verification even after the model has derived the correct answer.
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Figure 2: Case study of the comparison of DEPO and naive GRPO.
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