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Algorithm 1 PPO–SNIB (Self-Normalized Importance Sampling with Baseline)

Require: Initial policy parameters θ; fixed reference policy πref; set sampler πθold ← πθ; batch size
G; clip ϵ; KL weight β; optimizer (e.g., Adam) and step size α.

1: for each training iteration do
2: Sample prompts {xi}Gi=1 ∼ D.
3: Generate sequences {yi}Gi=1 ∼ πθold(·|xi); collect token states si,t = (xi, yi,<t) (include

EOS).
4: Compute sequence rewards Ri ← R(xi, yi) for all i.
5: Baseline and advantages: b← 1

G

∑G
i=1 Ri, Âi ← Ri − b.

6: Token log-prob sums (current vs sampler):

ℓθi ←
Ti∑
t=1

log πθ(yi,t | si,t), ℓold
i ←

Ti∑
t=1

log πθold(yi,t | si,t)

7: Sequence log-ratio: ui ← ℓθi − ℓold
i .

8: Log-mean-ratio (numerically stable): log w̄ ← LogSumExp(u1, . . . , uG)− logG.
9: SNIB-sg normalized weights: ũi ← ui − sg [log w̄], w̃i ← exp(ũi).

10: Clipped surrogate:

LCLIP(θ)←
1

G

G∑
i=1

min
(
w̃i Âi, clip(w̃i, 1− ϵ, 1 + ϵ) Âi

)
11: Tokenwise KL to reference on visited states:

Ki ←
1

Ti

Ti∑
t=1

DKL (πθ(· | si,t) ∥πref(· | si,t))

12: Off-policy KL (IS-corrected): K(θ)← 1
G

∑G
i=1 w̃i Ki

(If you roll out on-policy, drop w̃i and set πθold←πθ each iteration.)
13: Total loss: L(θ)← −LCLIP(θ) + βK(θ).
14: Update parameters: θ ← θ − α∇θL(θ).
15: Periodically refresh sampler: πθold ← πθ.
16: end for

A ALGORITHM

B A COMPARATIVE ANALYSIS OF IMPORTANCE SAMPLING ESTIMATORS

This appendix provides a detailed theoretical examination of the importance sampling (IS) estima-
tors that form the basis for modern critic-free RLHF algorithms. We first establish the theoretically
correct ”gold standard” and then build a clear hierarchy by analyzing the bias and variance of the
estimators used in GRPO, GSPO, and our proposed SNIB.

B.1 THE HIERARCHY OF ESTIMATORS: FROM FLAWED TO PRINCIPLED

The Gold Standard: True Importance Sampling. The objective of policy optimization is to
maximize the expected sequence-level reward, J (θ) = Ey∼πθ

[R(y)]. In an off-policy setting, the
unique, unbiased estimator for this objective relies on the true sequence-level importance weight
w(y):

w(y) =
πθ(y|x)
πθold(y|x)

=

T∏
t=1

wt(θ) (1)

Any theoretically sound policy gradient algorithm must correctly utilize this multiplicative weight.
However, the product form is numerically unstable for long sequences, as it can easily explode or
vanish, making it impractical for direct use. This necessitates approximations, whose properties we
analyze below.
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Level 1: GRPO’s Arithmetic Mean – Fundamentally Flawed. GRPO implicitly uses the arith-
metic mean (AM) of token-level weights as a proxy: wGRPO(y) = 1

T

∑T
t=1 wt(θ). This choice is

theoretically unsound due to both high bias and high variance. As we will show formally in Section
A.2, its variance grows exponentially with the variance of the underlying log-ratios, making it highly
unstable.

Level 2: GSPO’s Geometric Mean – A Pragmatic but Biased Compromise. GSPO addresses
GRPO’s flaws by using the geometric mean (GM), s(y) = w(y)1/T , which is computed stably in
the log-domain: s(y) = exp( 1

T

∑
t logwt(θ)). This significantly reduces variance. However, it

introduces a systematic, non-vanishing bias, as the transformation w(y)→ w(y)1/T fundamentally
alters the quantity being estimated. The algorithm converges to a stationary point of a perturbed
objective, not the true one.

Level 3: SNIB’s Self-Normalization – An Asymptotically Unbiased Solution. Our proposed
estimator, SNIB, achieves stability without sacrificing theoretical consistency by using data-driven
self-normalization. For a batch of G samples, the weight for sample yi is:

wnorm(yi) =
w(yi)

1
G

∑G
j=1 w(yj)

(2)

This approach directly resolves the dilemma. It is a ratio estimator, whose statistical bias is of order
O(1/G) and vanishes as the batch size increases. Thus, SNIB is consistent and asymptotically
unbiased, ensuring convergence to the correct objective.

B.2 FORMAL ANALYSIS OF ESTIMATOR VARIANCE

We now formally derive and compare the variance of the GRPO and GSPO estimators. Let the
random variables for the log-ratios be Xt = logwt(θ). We assume that for a given sequence, the
Xt are independent and identically distributed (i.i.d.) with mean µ and variance σ2. We note that
this i.i.d. assumption is a simplification for analytical tractability; in reality, the distribution of Xt

is conditioned on the preceding tokens. However, this model effectively captures the fundamental
difference in how the estimators aggregate variance, demonstrating the exponential versus linear
dependence on the per-token variance that drives their respective instability and stability. The token-
level weight is then the random variable wt = eXt .

First, we derive the mean and variance of wt using the properties of the log-normal distribution (or
the moment-generating function of a normal distribution if we approximate Xt as normal).

E[wt] = E[eXt ] = eµ+σ2/2 (3)

Var(wt) = E[w2
t ]− (E[wt])

2 = E[e2Xt ]− (eµ+σ2/2)2

= e2µ+(2σ)2/2 − e2µ+σ2

= e2µ+2σ2

− e2µ+σ2

= e2µ+σ2

(eσ
2

− 1) (4)

B.2.1 VARIANCE OF THE GRPO ESTIMATOR

The GRPO estimator is the sample mean of wt. Since the wt are i.i.d., the variance of their mean is:

Var(wGRPO) = Var

(
1

T

T∑
t=1

wt

)
=

1

T 2

T∑
t=1

Var(wt) =
1

T
Var(wt) (5)

Substituting our expression for Var(wt):

Var(wGRPO) =
1

T
e2µ+σ2

(eσ
2

− 1) (6)

This result is critical: the variance of the GRPO estimator grows exponentially with the variance of
the log-ratios, σ2, due to the (eσ

2 − 1) term. This formally confirms its instability.

14
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B.2.2 VARIANCE OF THE GSPO ESTIMATOR

The GSPO estimator is s(y) = eX̄ , where X̄ = 1
T

∑T
t=1 Xt is the sample mean of the log-ratios.

The mean and variance of X̄ are E[X̄] = µ and Var(X̄) = σ2/T .

To approximate the variance of the non-linear function g(X̄) = eX̄ , we use a first-order Taylor
expansion, also known as the delta method. The variance of g(X̄) is approximated as:

Var(g(X̄)) ≈ [g′(E[X̄])]2Var(X̄) (7)
In our case, g′(x) = ex, and E[X̄] = µ. Therefore, g′(µ) = eµ. Substituting these into the formula:

Var(s(y)) = Var(eX̄) ≈ (eµ)2Var(X̄)

= e2µ
(
σ2

T

)
(8)

So, the approximate variance of the GSPO estimator is:

Var(s(y)) ≈ σ2

T
e2µ (9)

Comparing Eq. 6 and 9, we see that the variance of the GSPO estimator grows linearly with σ2,
whereas GRPO’s grows exponentially. This formally explains why GSPO is a much more stable,
lower-variance estimator. This stability, however, is achieved at the cost of introducing a systematic
bias, which SNIB resolves.

C A NEAR-OPTIMAL SOLUTION: SELF-NORMALIZED IS WITH A BASELINE
(SNIB)

We now introduce an advanced estimator that directly tackles the variance of the true importance
weight w(y) while retaining theoretical guarantees of consistency. This method combines two
powerful statistical techniques: a baseline for reward variance reduction and self-normalization for
weight variance reduction.

The objective function for a batch of G samples {yi}Gi=1 is:

ĴSNIB(θ) =
1

G

G∑
i=1

wnorm(yi) · (R(yi)− b) (10)

where b is a baseline, typically the sample mean of rewards b = 1
G

∑
j R(yj), and wnorm(yi) is the

self-normalized importance weight:

wnorm(yi) =
w(yi)

1
G

∑G
j=1 w(yj)

(11)

The true weight w(yi) is computed in the log-domain for numerical stability: w(yi) =

exp
(∑Ti

t=1 logwi,t(θ)
)

.

C.1 BIAS ANALYSIS: ASYMPTOTIC UNBIASEDNESS

The SNIB estimator is a form of ratio estimator. We analyze its bias properties.

Effect of the Baseline. The baseline b does not introduce bias into the policy gradient. The gradi-
ent of the baseline term is:

Ey∼πθold
[w(y) · b · ∇θ log πθ(y|x)] = b · Ey∼πθold

[
πθ(y)

πθold(y)

1

πθ(y)
∇θπθ(y)]

= b · Ey∼πθold
[

1

πθold(y)
∇θπθ(y)]

= b ·
∫

πθold(y)
1

πθold(y)
∇θπθ(y)dy = b · ∇θ

∫
πθ(y)dy

= b · ∇θ(1) = 0 (12)
Thus, the baseline only serves to reduce variance and does not affect the expected gradient.

15
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Effect of Self-Normalization. The self-normalized estimator is a ratio of two sample means,
µ̂A/µ̂B , where Ai = w(yi)R(yi) and Bi = w(yi). The bias of such a ratio estimator is known
to be of order O(1/G):

Bias = E
[∑

Ai/G∑
Bi/G

]
− E[A]

E[B]
≈ 1

G

(
E[A]

E[B]2
Var(B)− 1

E[B]
Cov(A,B)

)
(13)

Since E[B] = E[w(y)] = 1, the expression simplifies. The crucial insight is that as the batch size
G→∞, the bias term vanishes: limG→∞ Bias = 0.

This property, known as consistency, means the SNIB estimator is asymptotically unbiased. It
converges to the true, unbiased gradient as more data is used. This stands in stark contrast to GSPO,
whose bias is systematic and does not diminish with sample size.

C.2 VARIANCE ANALYSIS: A DUAL REDUCTION MECHANISM

The SNIB method reduces variance from two orthogonal sources.

Baseline Reward Shaping. The variance of the reward term is significantly reduced:

Var(R(y)− b)≪ Var(R(y)) (14)

This is a standard result from variance reduction techniques, which stabilizes the learning signal
itself.

Self-Normalized Weight Smoothing. The variance of the self-normalized weight is also signifi-
cantly lower than that of the raw weight w(y). The variance of a ratio estimator is approximately:

Var

(∑
Ai/G∑
Bi/G

)
≈ 1

GE[B]2
Var(Ai −

E[A]

E[B]
Bi) (15)

Substituting E[B] = 1 and the definitions of A and B:

Var(ĴSNIS) ≈
1

G
Var(w(y)R(y)− E[w(y)R(y)] · w(y)) (16)

Equation 16 shows that the variance of the estimator scales with the variance of the residuals of a
linear regression of w(y)R(y) on w(y). Intuitively, if a sample has an unusually large weight w(yi),
it increases both the numerator and the denominator of wnorm(yi), thus moderating its overall impact.
This provides a data-driven, adaptive mechanism to control the variance caused by the heavy-tailed
distribution of w(y), especially for long sequences.

C.2.1 ROBUSTNESS TO NEAR-ZERO WEIGHTS

A critical failure mode for GSPO is its sensitivity to token weights wt(θ) → 0, which causes the
geometric mean s(y) to collapse to zero. The SNIB estimator is robust to this scenario. Suppose for
a sample yk, its true weight w(yk) ≈ 0.

• The normalized weight for this sample becomes wnorm(yk) = w(yk)
1
G

∑
w(yj)

≈ 0. This cor-
rectly assigns a negligible gradient contribution to a sample that the new policy deems
highly improbable.

• Crucially, the denominator 1
G

∑
w(yj) is only marginally affected. The weights of all other

samples yi (i ̸= k) are then wnorm(yi) = w(yi)
w̄ , where w̄ is slightly smaller. This means

the other samples’ weights are slightly increased, effectively redistributing the ”importance
mass” from the improbable sample to the more probable ones.

This demonstrates superior robustness, as a single outlier does not invalidate the gradient informa-
tion from the rest of the batch.
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C.3 CONCLUSION: THEORETICAL SUPERIORITY OF SNIB

Our analysis concludes that the SNIB estimator is theoretically superior to both GRPO and GSPO.

1. vs. GRPO: SNIB uses a theoretically sound, consistent estimator, while GRPO is funda-
mentally biased and flawed.

2. vs. GSPO: SNIB replaces GSPO’s fixed, systematic bias with a statistical bias that van-
ishes as sample size increases, making it asymptotically unbiased. It achieves low vari-
ance through dual mechanisms that are statistically more principled than GSPO’s geometric
mean approximation. Finally, it demonstrates greater robustness to the practical problem
of outlier weights.

Therefore, SNIB represents a more principled and robust foundation for policy optimization in large
language models with sequence-level rewards.

C.4 ANALYSIS OF THE FULLY-DIFFERENTIABLE ESTIMATOR (SNIB-FG)

A fully-differentiable variant of our estimator, SNIB-fg, can be defined by allowing gradients to
flow through the denominator w̄. Let the reward term for a single sample be

Li =
wi

w̄
Âi,

where w̄ = 1
G

∑
j wj . The gradient with respect to the parameters θ for this sample is:

∇θLi =
w̄∇θ(wiÂi)− wiÂi∇θw̄

w̄2
.

The additional term, −wiÂi∇θw̄, acts as a variance reduction term similar to a control variate. It
penalizes updates for a given sample i based on how increasing its probability would affect the
average weight of the entire batch.

While theoretically interesting, we opt for the stop-gradient version (SNIB-sg) for two primary
reasons:

1. Higher Variance in Practice: The additional gradient term, while reducing bias, often
introduces significant variance in stochastic settings, as the estimate of ∇θw̄ can be noisy.

2. Computational Simplicity: SNIB-sg results in a simpler and more stable update rule
where each sample’s gradient contribution is independent of the gradients of other sam-
ples in the batch, making it more computationally efficient and numerically robust.

Our choice of SNIB-sg prioritizes stability and simplicity, leveraging a well-understood estimator
whose bias is controllably small and vanishes with batch size.

D CONVERGENCE

D.1 PROBLEM FORMULATION

We consider the problem of maximizing the expected reward objective for a language model policy
π:

J(θ) = Ey∼π(·|x)[R(x, y)] (17)

where x is a prompt from a distributionD, y is a generated sequence, and R(x, y) is a scalar reward.
We perform off-policy optimization, generating a batch of G trajectories {yi}Gi=1 from a reference
policy πθold(·|x).
The true gradient of the objective is given by the policy gradient theorem:

∇θJ(θ) = Ey∼π[R(y)∇θ log π(y)] = Ey∼πθold
[w(y)R(y)∇θ log π(y)] (18)

where w(y) = π(y)
πθold (y)

is the true sequence-level importance weight.

17
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The optimization proceeds via stochastic gradient ascent:

θk+1 = θk + αkĝ(θk) (19)

where αk is the learning rate at step k, and ĝ(θk) is a stochastic estimate of the gradient ∇θJ(θk).

D.2 GRADIENT ESTIMATORS

We analyze two estimators for the gradient, both using a batch-mean reward baseline b =
1
G

∑
j R(yj) to reduce variance.

Definition 1 (GSPO Gradient Estimator). The GSPO gradient estimator is defined as:

ĝGSPO(θ) =
1

G

G∑
i=1

s(yi)(R(yi)− b)∇θ log π(yi) (20)

where s(y) =
(∏|y|

t=1
π(yt|y<t)

πθold (yt|y<t)

)1/|y|
= w(y)1/|y| is the geometric mean of token-level impor-

tance weights.
Definition 2 (SNIB Gradient Estimator). The Self-Normalized Importance Sampling with Baseline
(SNIB) gradient estimator is defined as:

ĝSNIB(θ) =
1

G

G∑
i=1

wnorm(yi)(R(yi)− b)∇θ log π(yi) (21)

where wnorm(yi) =
w(yi)

1
G

∑G
j=1 w(yj)

is the self-normalized importance weight.

Practical implementation. In our implementation, the normalization term in wnorm is treated with
a stop-gradient: the denominator is detached from the computational graph and does not receive
gradients. This modification does not change the expectation of the estimator (the denominator is
still an unbiased estimate of E[w(y)] = 1), so the convergence and bias analysis in this section
applies directly to the practical SNIB implementation.

Finite-sample bias and consistency. As a ratio estimator based on self-normalized importance
sampling, SNIB is biased for any finite group size G. Classical results on self-normalized IS (e.g.,
standard analyses of ratio estimators) imply that its finite-sample bias is of order O(1/G), and this
bias vanishes as G increases. Thus, SNIB should be viewed as a consistent and asymptotically
unbiased estimator of the true policy gradient in the large-G limit, which is the sense in which we
describe it as “principled” in the main text.

D.3 ASSUMPTIONS FOR CONVERGENCE

We make the following standard assumptions, common in the analysis of stochastic optimization
algorithms.
Assumption 1 (Smoothness and Boundedness). The objective function J(θ) is continuously differ-
entiable. The policy π(y) is continuously differentiable with respect to θ. The reward function R(y)
is bounded, |R(y)| ≤ Rmax. The gradient of the log-policy is bounded, ∥∇θ log π(y)∥ ≤ Kg .
Assumption 2 (Learning Rate Schedule). The learning rates αk are positive and satisfy the
Robbins-Monro conditions:

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞ (22)

Assumption 3 (Bounded Variance). For any θ, the gradient estimators have bounded variance:

Ebatch∼(πθold )
G [∥ĝ(θ)− E[ĝ(θ)]∥2] ≤Mv (23)

for some constant Mv <∞. This is reasonable given Assumption 1.

18
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D.4 MAIN THEOREM AND PROOF

We now state and prove the main theorem concerning the convergence points of algorithms using
these two estimators.
Theorem 1 (Convergence Points of GSPO and SNIB). Let Assumptions 1-3 hold.

1. For any fixed group size G, the SNIB gradient estimator has a finite-sample bias of order
O(1/G) due to self-normalization. In the large-G limit, this bias vanishes and the iterates
{θk} generated by the SNIB algorithm converge almost surely to the set of stationary points
of the true objective J(θ), i.e., points θ∗ where ∇θJ(θ

∗) = 0.

2. The iterates {θk} generated by the GSPO algorithm converge to a stationary point of a
perturbed objective JGSPO(θ), i.e., a point θ̃∗ where ∇θJ(θ̃

∗) + bGSPO(θ̃
∗) = 0, where

bGSPO(θ) is a non-vanishing systematic bias term.

Proof. The convergence of stochastic gradient algorithms is governed by the properties of the gra-
dient estimator, specifically its bias and variance. We rely on the ODE method and convergence
theorems from stochastic approximation (e.g., Kushner & Clark, 2012). The core idea is that the
algorithm’s trajectory asymptotically tracks the solution of an ordinary differential equation (ODE)
whose vector field is the expected update direction E[ĝ(θ)].

Let’s analyze the expected gradient for each estimator.

Part 1: Analysis of the SNIB Estimator. The expected gradient for SNIB is E[ĝSNIB(θ)]. The
SNIB estimator is a ratio estimator. The bias of a ratio estimator of the form

∑
Ai∑
Bi

is known to be
of order O(1/G), where G is the batch size. In our case, Ai = w(yi)(R(yi) − b)∇θ log π(yi) and
Bi = w(yi). The true expectation of the numerator’s main term is∇θJ(θ), and the true expectation
of the denominator is Ey∼πθold

[w(y)] = 1.

Therefore, the expected update direction has the form:

E[ĝSNIB(θ)] = ∇θJ(θ) + bSNIB(θ,G) (24)

where the bias term bSNIB(θ,G) satisfies ∥bSNIB(θ,G)∥ = O(1/G).

For a sufficiently large batch size G, this bias can be made arbitrarily small. In the asymptotic limit
of the learning process, the behavior is determined by the ODE θ̇(t) = ∇θJ(θ(t)). The stable points
of this ODE are precisely the stationary points of J(θ). Standard stochastic approximation theorems
show that under Assumptions 1-3 and with a bias that vanishes or is controllable (which O(1/G)
is), the algorithm’s iterates {θk} converge to the set of stationary points of the true objective J(θ).

Part 2: Analysis of the GSPO Estimator. The expected gradient for GSPO is E[ĝGSPO(θ)].

E[ĝGSPO(θ)] = Ebatch

[
1

G

G∑
i=1

s(yi)(R(yi)− b)∇θ log π(yi)

]
(25)

= Ey∼πθold
[s(y)R(y)∇θ log π(y)]− Ebatch

[(
1

G

∑
i

s(yi)∇θ log π(yi)

)
b

]
(26)

Let’s focus on the first term, which is the dominant part. The true gradient involves the weight w(y),
but GSPO uses s(y) = w(y)1/|y|. These are fundamentally different.

Ey∼πθold
[s(y)R(y)∇θ log π(y)] ̸= Ey∼πθold

[w(y)R(y)∇θ log π(y)] = ∇θJ(θ) (27)

The difference between these two quantities is not due to finite sampling but is a systematic modeling
choice. Let’s define the bias term for GSPO:

bGSPO(θ) = E[ĝGSPO(θ)]−∇θJ(θ) (28)

This bias, bGSPO(θ), arises from the substitution of w(y) with s(y) and does not diminish as the
batch size G increases. For example, by the AM-GM inequality, we know s(y) systematically
underestimates w(y) when token ratios vary, leading to a persistent, non-zero bias.
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The associated ODE for the GSPO algorithm is:

θ̇(t) = ∇θJ(θ(t)) + bGSPO(θ(t)) (29)
The algorithm does not seek stationary points where∇θJ(θ) = 0. Instead, it seeks stationary points
where the entire vector field is zero, i.e., where ∇θJ(θ) + bGSPO(θ) = 0.

This means GSPO is implicitly optimizing a different, perturbed objective function JGSPO(θ) whose
gradient is∇θJ(θ)+bGSPO(θ). The algorithm will faithfully converge to a stationary point θ̃∗ of this
perturbed objective, but this point θ̃∗ is generally not a stationary point of the true objective J(θ)

unless bGSPO(θ̃
∗) = 0 by coincidence.

E FINITE-SAMPLE GUARANTEES

E.1 PROBLEM SETUP AND DEFINITIONS

We aim to estimate the true policy gradient g(θ) = ∇θJ(θ) = Ey∼πθold
[w(y)R(y)∇θ log π(y)]. The

SNIB estimator for a batch {yi}Gi=1 is given by:

ĝSNIB(θ) =
1
G

∑G
i=1 w(yi)R(yi)∇θ log π(yi)

1
G

∑G
j=1 w(yj)

=
Â

B̂
(30)

where for simplicity we have omitted the baseline, as it does not introduce bias and its variance
reduction effect can be absorbed into the constants. Here, Â = 1

G

∑
Ai and B̂ = 1

G

∑
Bi, with

random variables Ai = w(yi)R(yi)∇θ log π(yi) and Bi = w(yi).

The true expectations are µA = E[Ai] = g(θ) and µB = E[Bi] = 1. Our goal is to bound the
estimation error ∥ĝSNIB − g(θ)∥ with high probability.

E.2 ASSUMPTIONS

We require slightly stronger assumptions than in the convergence analysis to bound the tails of the
distributions.
Assumption 4 (Boundedness). For a given θ, the following quantities are uniformly bounded:

• Reward: |R(y)| ≤ Rmax.

• Log-policy gradient norm: ∥∇θ log π(y)∥ ≤ Kg .

• Importance weights: w(y) = π(y)
πθold (y)

≤ Wmax. This is a strong assumption required for
the non-asymptotic bound. It is practically motivated and enforced by the KL-divergence
penalty in our final objective (Equation 13), which explicitly regularizes the policy to pre-
vent large deviations from the reference policy, thereby keeping the importance weights in
a controlled range.

Corollary 1 (Bounded Random Variables). Under Assumption 4, the random variables Ai and Bi

are bounded.

• ∥Ai∥ ≤WmaxRmaxKg =: CA.

• |Bi| ≤Wmax =: CB .

Furthermore, their variances are bounded: Var(Ai) ≤ σ2
A and Var(Bi) ≤ σ2

B .

E.3 MAIN RESULT: A HIGH-PROBABILITY ERROR BOUND

Theorem 2 (Finite-Sample Error Bound for SNIB). Let Assumptions 4 hold. For any δ ∈ (0, 1),
with probability at least 1− δ, the error of the SNIB gradient estimator is bounded by:

∥ĝSNIB − g(θ)∥ ≤ 1

1− ϵB
(ϵA + ∥g(θ)∥ ϵB) (31)
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where

ϵA =

√
2σ2

A log(2/δ)

G
+

2CA log(2/δ)

3G
(32)

ϵB =

√
2σ2

B log(2/δ)

G
+

2CB log(2/δ)

3G
(33)

This bound holds provided that the denominator deviation ϵB < 1. The error bound scales as
O
(

1√
G

)
.

Proof. The proof proceeds in three steps: 1. Use a concentration inequality to bound the deviation
of the numerator Â from its mean µA = g(θ). 2. Use a concentration inequality to bound the
deviation of the denominator B̂ from its mean µB = 1. 3. Combine these bounds to control the
error of the ratio Â/B̂.

Step 1: Bounding the Numerator’s Error. The numerator Â is a sample mean of i.i.d. vector-
valued random variables Ai. We can use a vector version of the Bernstein inequality. A simpler
approach is to use the standard Bernstein inequality for real-valued random variables on

∥∥∥Â− µA

∥∥∥.
However, a direct application on the vector mean is more standard. The vector Bernstein inequality
states that for i.i.d. zero-mean random vectors Xi with ∥Xi∥ ≤ C and E[∥Xi∥2] ≤ σ2, for any
t > 0:

P

(∥∥∥∥∥ 1G
G∑
i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ d · exp

(
− Gt2/2

σ2 + Ct/3

)
(34)

where d is the dimension of the vectors. For simplicity and clarity, we will use the more common
scalar Bernstein inequality, which provides a similar rate. Let Xi = Ai − µA. We have E[Xi] = 0,
∥Xi∥ ≤ 2CA, and Var(Xi) = σ2

A. The Bernstein inequality for the sample mean of real random
variables states:

P(|X̄| ≥ ϵ) ≤ 2 exp

(
− Gϵ2/2

σ2 + Cϵ/3

)
(35)

Applying this to each component of the vector Â − µA and using a union bound is complex. A
more direct high-probability bound on the norm is obtained by setting the RHS to δ/2 and solving
for ϵ. Let ϵA be the error bound such that P(

∥∥∥Â− µA

∥∥∥ ≥ ϵA) ≤ δ/2. A standard result from
concentration inequalities gives:

ϵA =

√
2σ2

A log(4/δ)

G
+

2CA log(4/δ)

3G
(36)

For clarity, we’ll use log(2/δ) by slightly loosening the bound, as is common. So, with probability
at least 1− δ/2: ∥∥∥Â− g(θ)

∥∥∥ ≤ ϵA (37)

Step 2: Bounding the Denominator’s Error. The denominator B̂ is a sample mean of i.i.d. scalar
random variables Bi. We can directly apply the scalar Bernstein inequality. With probability at least
1− δ/2:

|B̂ − µB | = |B̂ − 1| ≤ ϵB (38)

where ϵB is defined as in the theorem statement. This also implies that 1− ϵB ≤ B̂ ≤ 1 + ϵB . We
require ϵB < 1 for the denominator to be bounded away from zero, which is true for a sufficiently
large batch size G.
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Step 3: Combining the Bounds. We now analyze the total error ∥ĝSNIB − g(θ)∥ =
∥∥∥ Â
B̂
− g(θ)

∥∥∥.∥∥∥∥∥ ÂB̂ − g(θ)

∥∥∥∥∥ =

∥∥∥∥∥ Â− B̂g(θ)

B̂

∥∥∥∥∥ (39)

=
1

|B̂|

∥∥∥(Â− g(θ))− (B̂ − 1)g(θ)
∥∥∥ (40)

≤ 1

|B̂|

(∥∥∥Â− g(θ)
∥∥∥+ |B̂ − 1| ∥g(θ)∥

)
(Triangle Inequality) (41)

Now, we use a union bound. The event in Eq. 37 holds with probability ≥ 1 − δ/2, and the event
in Eq. 38 holds with probability ≥ 1 − δ/2. Therefore, both events hold simultaneously with
probability at least (1− δ/2) + (1− δ/2)− 1 = 1− δ.

Assuming both events hold, we can substitute the bounds. From Eq. 38, we have |B̂| ≥ 1− ϵB .∥∥∥∥∥ ÂB̂ − g(θ)

∥∥∥∥∥ ≤ 1

1− ϵB
(ϵA + ϵB ∥g(θ)∥) (42)

This concludes the proof.

E.4 INTERPRETATION AND PRACTICAL IMPLICATIONS

Corollary 2 (Scaling with Batch Size G). The error terms ϵA and ϵB are both dominated by the
1/
√
G term. Therefore, the overall error bound scales as:

Error ≈ O

(
σA + ∥g(θ)∥σB√

G

)
(43)

This result quantifies the relationship between batch size and gradient accuracy. To halve the gra-
dient estimation error, one must quadruple the batch size.
Corollary 3 (Characterizing Required Batch Size). Suppose we require the gradient error to be less
than a tolerance τ with probability 1 − δ. We can use the theorem to find the minimum required
batch size Gmin. By simplifying the bound (ignoring higher-order terms in 1/G):

τ ≈ 1√
G

(√
2σ2

A log(2/δ) + ∥g(θ)∥
√

2σ2
B log(2/δ)

)
(44)

Solving for G, we get:

Gmin ≈
2 log(2/δ)

τ2
(σA + ∥g(θ)∥σB)

2 (45)

This provides a principled, albeit theoretical, way to choose the batch size. It shows that Gmin

depends quadratically on the variances of the numerator and denominator terms (σ2
A, σ

2
B) and the

desired precision τ−2, and logarithmically on the confidence level δ−1.

F ANALYSIS OF ROBUSTNESS UNDER REWARD MODEL UNCERTAINTY

F.1 PROBLEM FORMULATION

In practice, the reward function R(y) is not a perfect oracle. It is an estimate Rϕ(y) from a learned
model. We model this uncertainty by assuming the true reward R∗(y) lies within an uncertainty set
U centered around our estimate Rϕ(y). A common and powerful way to define this set is based on
a perturbation function ∆(y):

U =
{
R(y) = Rϕ(y) + ∆(y) | Ey∼πθold

[|∆(y)|] ≤ ϵ
}

(46)

where ϵ ≥ 0 is the radius of uncertainty, representing the average magnitude of the potential error in
our reward model. The expectation is taken over the sampling distribution πθold because that is the
data we observe.
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A robust optimization approach seeks to optimize the policy for the worst-case reward within this
set:

Jrobust(θ) = min
R∈U

Ey∼π[R(y)] (47)

The goal of a robust algorithm is to estimate the gradient of this worst-case objective, ∇θJrobust(θ).

F.2 CHARACTERIZING THE WORST-CASE REWARD

First, we must find the adversary, i.e., the perturbation ∆(y) that minimizes the expected reward for
a fixed policy π.
Lemma 1 (Worst-Case Reward Perturbation). For a fixed policy π, the worst-case reward pertur-
bation ∆∗(y) that solves the inner minimization problem is:

∆∗(y) = −ϵ · sign(w(y)) = −ϵ (48)

where w(y) = π(y)/πθold(y) is the importance weight. (Since probabilities are non-negative,
w(y) ≥ 0, so sign(w(y)) = 1).

Proof. The objective is to minimize Ey∼π[Rϕ(y) + ∆(y)] = Ey∼π[Rϕ(y)] + Ey∼πθold
[w(y)∆(y)]

subject to Ey∼πθold
[|∆(y)|] ≤ ϵ. To minimize the objective, we need to make the term

Ey∼πθold
[w(y)∆(y)] as negative as possible. This is a classic result from duality: the solution

is to align ∆(y) to be maximally negatively correlated with w(y). This occurs when ∆(y) =
−c · sign(w(y)) for some constant c. To satisfy the budget constraint Ey∼πθold

[| − c · sign(w(y))|] =
c · Ey∼πθold

[1] = c ≤ ϵ, we choose the largest possible value, c = ϵ. Thus, ∆∗(y) = −ϵ.

The robust objective function is therefore:

Jrobust(θ) = Ey∼π[Rϕ(y)− ϵ] = J(θ)− ϵ (49)

And its true gradient is simply:
∇θJrobust(θ) = ∇θJ(θ) (50)

This seems counter-intuitive: the worst-case constant shift in reward doesn’t change the gradient.
However, this is for the true expectation. The situation changes dramatically when we consider the
gradient estimators from a finite batch, where the adversary can be much more strategic.

F.3 WORST-CASE ANALYSIS OF GRADIENT ESTIMATORS

In a finite-batch setting, the adversary knows the samples {yi}Gi=1 and can choose the perturbations
{∆i = ∆(yi)} to maximally corrupt the estimated gradient. The adversary’s goal is to maximize
the error between the estimated gradient under perturbation and the true robust gradient. We analyze
the sensitivity of each estimator to this adversarial perturbation.

The batch-level adversary solves:

max
{∆i}
∥ĝ(Rϕ +∆)− ĝ(Rϕ)∥ s.t.

1

G

G∑
i=1

|∆i| ≤ ϵ (51)

Definition 3 (Gradient Sensitivity). The gradient sensitivity, S(ĝ), is the maximum change in the
estimated gradient norm per unit of adversarial budget ϵ.

S(ĝ) = sup
{∆i}̸=0

∥ĝ(Rϕ +∆)− ĝ(Rϕ)∥
1
G

∑
|∆i|

(52)

A smaller sensitivity implies greater robustness.
Theorem 3 (Robustness Comparison of GSPO and SNIB). Let a batch of samples {yi}Gi=1 be given.
The gradient sensitivities of the GSPO and SNIB estimators are bounded as follows:

1. GSPO Sensitivity: S(ĝGSPO) = maxi {s(yi) ∥∇θ log π(yi)∥}

2. SNIB Sensitivity: S(ĝSNIB) = maxk

∥∥∥wnorm(yk)∇θ log π(yk)− 1
G

∑
j wnorm(yj)∇θ log π(yj)

∥∥∥
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Crucially, the SNIB sensitivity is upper-bounded by the maximum deviation of a weighted gradient
from the average, while the GSPO sensitivity is determined by the single worst-case sample with the
largest weight.

Proof. Let’s analyze the change in each gradient estimator, δĝ = ĝ(Rϕ + ∆) − ĝ(Rϕ). We use a
mean reward baseline b = 1

G

∑
Rϕ,i. The perturbed baseline is b′ = b+ ∆̄, where ∆̄ = 1

G

∑
∆i.

Part 1: GSPO Sensitivity. The change in the GSPO gradient estimator is:

δĝGSPO =
1

G

G∑
i=1

s(yi)(Rϕ,i +∆i − (b+ ∆̄))∇θ log π(yi)−
1

G

G∑
i=1

s(yi)(Rϕ,i − b)∇θ log π(yi)

(53)

=
1

G

G∑
i=1

s(yi)(∆i − ∆̄)∇θ log π(yi) (54)

=
1

G

G∑
i=1

s(yi)∆i∇θ log π(yi)− ∆̄

(
1

G

G∑
i=1

s(yi)∇θ log π(yi)

)
(55)

To maximize the norm of this vector, the adversary will concentrate the entire budget ϵ on a single
sample. Let the adversary put all budget on sample k, so ∆k = Gϵ and ∆i = 0 for i ̸= k. Then
∆̄ = ϵ. The change becomes δĝGSPO = ϵ · s(yk)∇θ log π(yk) − ϵ

(
1
G

∑
i s(yi)∇θ log π(yi)

)
. For

large G, the second term is an average and smaller. The dominant term is the first. The adversary
will pick the index k that maximizes ∥s(yk)∇θ log π(yk)∥. The sensitivity is therefore the maximum
possible value of this change, normalized by the budget 1

G

∑
|∆i| = ϵ:

S(ĝGSPO) = max
k
{s(yk) ∥∇θ log π(yk)∥} (56)

Part 2: SNIB Sensitivity. The change in the SNIB gradient estimator is (using wnorm,i for
wnorm(yi)):

δĝSNIB =

G∑
i=1

wnorm,i(Rϕ,i +∆i − (b+ ∆̄))∇θ log π(yi)−
G∑
i=1

wnorm,i(Rϕ,i − b)∇θ log π(yi)

(57)

=

G∑
i=1

wnorm,i(∆i − ∆̄)∇θ log π(yi) (58)

=

G∑
i=1

∆i

wnorm,i∇θ log π(yi)−
1

G

∑
j

wnorm,j∇θ log π(yj)

 (59)

Let w∇θ = 1
G

∑
j wnorm,j∇θ log π(yj) be the average weighted gradient. The change is∑

i ∆i(wnorm,i∇θ log π(yi) − w∇θ). To maximize this, the adversary will again concentrate the
full budget ∆k = Gϵ on the index k that maximizes the norm of the vector it is multiplied by. The
sensitivity is therefore:

S(ĝSNIB) = max
k

∥∥∥∥∥∥wnorm(yk)∇θ log π(yk)−
1

G

∑
j

wnorm(yj)∇θ log π(yj)

∥∥∥∥∥∥ (60)

This is the correct sensitivity. This expression represents the difference between one sample’s
weighted gradient and the average weighted gradient.

F.4 INTERPRETATION AND CONCLUSION

The theorem reveals a fundamental difference in how the two estimators react to adversarial reward
perturbations.
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GSPO is vulnerable to outliers. The sensitivity of GSPO, S(ĝGSPO) =
maxk{s(yk) ∥∇θ log π(yk)∥}, is determined entirely by the single worst-case sample in the
batch. If the policy generates one trajectory yk that happens to have a very large geometric mean
weight s(yk) (perhaps because it’s a short, high-probability sequence under the current policy), an
adversary can place its entire budget on this single sample. This makes the reward for yk seem
extremely high or low, and the GSPO update will be disproportionately skewed by this single,
potentially misleading data point. This is a mechanism for reward hacking.

SNIB is robust due to its averaging nature. The sensitivity of SNIB, S(ĝSNIB), is determined by
the deviation of a single sample from the batch average. The self-normalization mechanism forces
the perturbation on one sample to be balanced by the effect on all other samples. If an adversary
increases the reward for sample yk, the baseline b also increases, which reduces the effective reward
for all other samples. Crucially, because

∑
wnorm,k ≈ G (in expectation), the average magnitude

of wnorm,k is around 1. Unless some weights are pathologically large, the term wnorm,k∇θ log π(yk)
will not be drastically different from the average. The sensitivity is thus controlled by the variance
within the batch, not by the extreme value of a single outlier. This inherent averaging provides a
powerful defense against reward hacking focused on a few specific outputs.

G ANALYSIS OF THE INTERPLAY BETWEEN POLICY GRADIENT
ESTIMATORS AND KL DIVERGENCE REGULARIZATION

G.1 CONSTRAINED OPTIMIZATION FORMULATION OF RLHF

The standard RLHF objective is a penalized optimization problem. However, it is more formally
understood as a constrained optimization problem, which illuminates the role of the KL penalty.
The goal is to maximize the expected reward subject to a constraint on policy deviation:

max
θ

Ey∼πθ
[R(y)] (61)

s.t. Ex∼D[DKL (πθ(·|x) ∥πref(·|x))] ≤ κ (62)

Here, we maximize reward while ensuring the policy πθ does not move more than a distance κ
from a trusted reference policy πref. The hyperparameter β in the penalized version of the objective,
maxθ J(θ)− βK(θ), acts as the Lagrange multiplier for this KL constraint.

When using PPO, we are not optimizing the raw reward but rather a surrogate objective designed
for stability. Let the expected PPO clipped surrogate objective be:

Jsurr(θ) = Ey∼πθold
[min (w(y, θ)A(y), clip(w(y, θ), 1− ϵ, 1 + ϵ)A(y))] (63)

where w(y, θ) = πθ(y)/πθold(y) is the importance weight and A(y) = R(y) − b is the advantage.
The KL penalty term is an expectation over the token-level reverse KL divergence:

K(θ) = Ex∼D,y∼πθ(·|x)

 1

|y|

|y|∑
t=1

DKL (πθ(·|st) ∥πref(·|st))

 (64)

The Karush-Kuhn-Tucker (KKT) conditions for optimality require that at the solution θ∗, the gra-
dient of the surrogate objective must be perfectly balanced by the gradient of the constraint. This
gives the stationarity condition:

∇θJsurr(θ
∗) = β · ∇θK(θ∗) (65)

This condition provides a profound insight: at the optimum, the reward-seeking force (as defined by
the stable surrogate) is exactly counteracted by the ”restoring force” of the KL penalty pulling the
policy back towards πref.

G.2 THE IMPACT OF GRADIENT ESTIMATORS ON OPTIMALITY

In practice, we use stochastic estimators for these gradients. The algorithm’s fixed point θfixed occurs
where the expected update is zero:

E[ĝreward(θfixed)] = β · E[ĝKL(θfixed)] (66)
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We assume the KL gradient estimator ĝKL is unbiased, as it typically does not require importance
sampling. The key question is how the choice of reward estimator ĝreward affects the final solution.
Theorem 4 (Distortion of KKT Conditions). Let θ∗SNIB and θ∗GSPO be the convergence points of the
PPO optimization process using the SNIB and GSPO estimators, respectively.

1. SNIB’s Fixed Point: The fixed point θ∗SNIB satisfies a condition that approaches the true
KKT stationarity condition for the surrogate objective (Eq. 65) as the batch size G→∞.

2. GSPO’s Fixed Point: The fixed point θ∗GSPO satisfies a systematically distorted KKT condi-
tion due to the estimator’s inherent bias. This makes the solution quality highly sensitive to
the choice of β.

Proof. The proof hinges on analyzing the expected reward gradient provided by each estimator.

The key question is how the bias properties of the estimators affect this equilibrium. In our proposed
algorithm (Algorithm 1), the off-policy KL gradient is also estimated using self-normalized impor-
tance sampling. Therefore, both the reward estimator ĝreward, SNIB and the KL estimator ĝKL, SNIB are
ratio estimators with a small, vanishing bias of order O(1/G). The core of our argument is that the
GSPO reward estimator introduces a systematic, non-vanishing bias that fundamentally distorts this
equilibrium, whereas the SNIB estimators for both terms lead to a balanced equation where all bias
terms vanish asymptotically, allowing the algorithm to converge to a true KKT point.

Part 1: SNIB Fixed Point Analysis. As established in Appendix B, the SNIB reward gradient
estimator is asymptotically unbiased for the true reward gradient. This property extends to its esti-
mation of the PPO surrogate gradient. The expected gradient estimated by SNIB is:

E[ĝreward, SNIB(θ)] = ∇θJsurr(θ) + bSNIB(θ,G) (67)

where the bias term bSNIB(θ,G)→ 0 as the batch size G→∞. Substituting this into the fixed point
condition (Eq. 66):

∇θJsurr(θ)

∣∣∣∣
θ∗

SNIB

+ bSNIB(θ
∗
SNIB, G) = β · ∇θK(θ)

∣∣∣∣
θ∗

SNIB

(68)

For a large batch size G, the bias term bSNIB vanishes, and the condition becomes:

∇θJsurr(θ)

∣∣∣∣
θ∗

SNIB

≈ β · ∇θK(θ)

∣∣∣∣
θ∗

SNIB

(69)

This demonstrates that PPO-SNIB converges to a point that correctly satisfies the KKT conditions
for the surrogate objective. The choice of β therefore controls a principled trade-off as intended by
the PPO algorithm.

Part 2: GSPO Fixed Point Analysis. The GSPO estimator uses the geometric mean weight s(y)
instead of the true importance weight w(y). This introduces a systematic, non-vanishing bias into
the estimation of the surrogate objective’s gradient:

E[ĝreward, GSPO(θ)] = ∇θJsurr(θ) + bGSPO(θ) (70)

where bGSPO(θ) is a bias vector that does not diminish with batch size. The fixed point condition for
an algorithm using GSPO is therefore:

∇θJsurr(θ)

∣∣∣∣
θ∗

GSPO

+ bGSPO(θ
∗
GSPO) = β · ∇θK(θ)

∣∣∣∣
θ∗

GSPO

(71)

Rearranging this equation reveals the distortion:

∇θJsurr(θ)

∣∣∣∣
θ∗

GSPO

= β · ∇θK(θ)

∣∣∣∣
θ∗

GSPO

− bGSPO(θ
∗
GSPO) (72)

This is the core issue. The GSPO-based algorithm does not stop when the surrogate reward gradient
balances the KL gradient. Instead, it converges to a distorted point where the surrogate reward
gradient balances the KL gradient minus the confounding bias vector. This misalignment means that
tuning β in GSPO becomes an unpredictable exercise in counteracting an unknown bias, whereas in
SNIB it remains a principled search for the desired trade-off on the PPO surrogate landscape.
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G.3 IMPLICATIONS AND SENSITIVITY

The distorted optimality condition for GSPO has profound practical implications.
Proposition 3 (Sensitivity to β). The systematic bias bGSPO(θ) acts as a confounding factor, making
the final policy θ∗GSPO highly sensitive to the choice of β.

Proof. The sensitivity of an equilibrium point θ∗ to a parameter β can be rigorously quantified by
analyzing the derivative dθ∗

dβ . A large or unpredictable derivative implies high sensitivity. We will
use the Implicit Function Theorem to compute and compare this derivative for both the SNIB and
GSPO optimizers.

Let J(θ) = Ey∼π[R(y)] be the reward objective and K(θ) = Ex[DKL (( ∥π) ∥πθold)] be the KL
divergence penalty.

1. The Ideal Case (SNIB Estimator) As shown previously, the fixed point of the SNIB algorithm,
θ∗S , approximates the true KKT stationarity condition. For this analysis (assuming a large batch size
G), we can state the equilibrium condition as an implicit function FS(θ, β) = 0:

FS(θ, β) = ∇θJ(θ)− β∇θK(θ) = 0 (73)

By the Implicit Function Theorem, if the Jacobian matrix (in this case, the Hessian)∇θFS is invert-
ible at a solution (θ∗S , β), then there exists a function θ∗S(β) in the neighborhood of that point, and
its derivative is given by:

dθ∗S
dβ

= − [∇θFS(θ
∗
S , β)]

−1 ∂FS(θ
∗
S , β)

∂β
(74)

Let’s compute the components:

• The partial derivative with respect to β is a vector:

∂FS

∂β
= −∇θK(θ) (75)

• The Jacobian with respect to θ is a Hessian matrix:

∇θFS = ∇2
θJ(θ)− β∇2

θK(θ) =: HL(θ, β) (76)

This is precisely the Hessian of the Lagrangian objective function L(θ, β).

Substituting these back, we get the sensitivity for the SNIB case:

dθ∗S
dβ

= −[HL(θ
∗
S , β)]

−1(−∇θK(θ∗S)) = [HL(θ
∗
S , β)]

−1∇θK(θ∗S) (77)

Interpretation: This expression is well-behaved and interpretable. It states that as we increase
the penalty β, the solution θ∗S moves in a direction determined by the KL gradient, transformed
by the curvature of the optimization landscape (H−1

L ). This is the principled behavior we expect
from constrained optimization: increasing the penalty on the constraint pushes the solution along
the constraint gradient.

2. The Confounded Case (GSPO Estimator) The fixed point of the GSPO algorithm, θ∗G, is
defined by a different implicit function, FG(θ, β) = 0, which includes the systematic bias term
bG(θ) ≡ bGSPO(θ):

FG(θ, β) = ∇θJ(θ) + bG(θ)− β∇θK(θ) = 0 (78)

We again apply the Implicit Function Theorem to find dθ∗
G

dβ .

• The partial derivative with respect to β is identical to the SNIB case:

∂FG

∂β
= −∇θK(θ) (79)
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• The Jacobian with respect to θ contains an additional, problematic term:

∇θFG = ∇2
θJ(θ) +∇θbG(θ)− β∇2

θK(θ) = HL(θ, β) +∇θbG(θ) (80)

Here, ∇θbG(θ) is the Jacobian matrix (or Hessian) of the bias vector.

Substituting these back, we get the sensitivity for the GSPO case:

dθ∗G
dβ

= [HL(θ
∗
G, β) +∇θbG(θ

∗
G)]

−1∇θK(θ∗G) (81)

3. Comparison and Proof of High Sensitivity By comparing Equation 77 and 81, the source of
the high sensitivity becomes mathematically explicit. The response of the GSPO solution to changes
in β is distorted by the term∇θbG(θ), the Hessian of the bias. This term introduces severe problems:

1. Unpredictable Direction: The bias Hessian ∇θbG(θ) is a complex, data-dependent ma-
trix. It has no reason to be aligned with the natural curvature of the problem, HL. The
presence of this term inside the matrix inverse means that the direction of change, dθ∗

G

dβ , is
no longer a simple transformation of the KL gradient. Instead, it is a complex mixture,
”twisting” the optimization path in an unpredictable way for different values of β.

2. Magnitude Amplification (Ill-Conditioning): The matrix HL is typically negative semi-
definite around a maximum. The term ∇θbG(θ) can have arbitrary eigenvalues. It is pos-
sible that for certain θ and β, the matrix [HL + ∇θbG] becomes nearly singular (i.e., ill-
conditioned). When this happens, the norm of its inverse becomes extremely large. In this
situation, even a minuscule change in β will lead to an explosive change in θ∗G, as seen
from Eq. 81. This is the mathematical definition of extreme sensitivity. The algorithm’s
fixed point can jump erratically in response to small adjustments in β.

3. Dependence on Unknowns: The bias bG(θ) and its Hessian ∇θbG(θ) are unknown and
depend on the entire distribution of sequences. They cannot be easily measured or con-
trolled. Therefore, tuning β for GSPO is not a principled search along a trade-off curve,
but rather a ”blind” attempt to counteract the effects of an unknown, confounding bias field.
The optimal value of β might be highly non-intuitive and specific to the exact state of the
policy and reward model.

In summary, the clean separation of terms in the SNIB sensitivity analysis (Eq. 77) shows a pre-
dictable and stable relationship between the hyperparameter β and the solution θ∗S . Conversely, the
confounding presence of the bias Hessian∇θbG(θ) in the GSPO sensitivity analysis (Eq. 81) mathe-
matically proves that the relationship between β and the solution θ∗G is unpredictable and potentially
explosive. This formally establishes that GSPO is highly sensitive to the choice of β.

G.4 TOWARDS AN ADAPTIVE FRAMEWORK

This analysis provides a theoretical foundation for an adaptive β schedule. The ideal β should
maintain the KKT condition. A practical algorithm could be:

1. At each step k, use an SNIB estimator for the reward gradient ĝR and an unbiased estimator
for the KL gradient ĝKL.

2. Define the target KL divergence κ. If the current estimated KL, K̂Lk, is greater than κ,
increase β. If it’s smaller, decrease β. This is the primal-dual method.

3. The update for β would be: βk+1 = max(0, βk + η(K̂Lk − κ)), where η is a learning rate
for the dual variable.

This adaptive scheme is theoretically sound only if the reward gradient estimator is unbiased (or
asymptotically so). With SNIB, this approach is justified. With GSPO, the bias bGSPO would con-
sistently mislead the dual update for β, preventing it from converging to the correct Lagrange mul-
tiplier.
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H PRACTICAL INTEGRATION: MIGRATION GUIDE FROM GRPO/GSPO TO
SNIB

This section provides practical guidance for integrating SNIB into existing GRPO or GSPO training
pipelines. The key advantage of SNIB is that it requires minimal code modifications while providing
theoretical guarantees and improved stability.

H.1 CORE ALGORITHM CHANGES

SNIB differs from GRPO/GSPO only in how the importance weights are computed and applied. The
rollout collection, advantage normalization, PPO clipping, and KL regularization remain identical.
The migration involves three simple steps:

Step 1: Compute True Sequence-Level Log-Ratios Instead of token-level ratios (GRPO) or
length-normalized geometric means (GSPO), compute the true sequence-level log-ratio:

# For each sequence i in the batch:
log_ratio_i = sum(log_pi_theta(y_i) - log_pi_old(y_i)) # Include EOS token

Step 2: Apply Self-Normalization with Stop-Gradient Normalize the importance weights by
the batch average, using a stop-gradient on the denominator:

# Compute batch log-mean (numerically stable):
log_mean_w = logsumexp(log_ratio) - log(G)

# Self-normalize with stop-gradient (SNIB-sg):
normalized_log_ratio_i = log_ratio_i - stop_gradient(log_mean_w)
w_i = exp(normalized_log_ratio_i)

Step 3: Use Normalized Weights in PPO Objective Apply the normalized weights wi in the
standard PPO clipped surrogate:

# Compute advantages (same as GRPO/GSPO):
A_i = (R_i - mean(R)) / std(R)

# PPO clipped objective with SNIB weights:
clipped_w_i = clip(w_i, 1-epsilon, 1+epsilon)
L_clip = mean(min(w_i * A_i, clipped_w_i * A_i))

H.2 IMPLEMENTATION NOTES

• Numerical Stability: Always compute importance weights in log-space using
logsumexp to avoid overflow/underflow.

• EOS Token: Include the end-of-sequence token in the log-ratio computation to ensure the
true sequence-level weight.

• Stop-Gradient: The stop-gradient on the normalization term is critical for stability. Most
frameworks (PyTorch, JAX) provide detach() or stop gradient() operations.

• KL Regularization: The KL term can be computed identically to GSPO (token-averaged,
optionally IS-weighted if off-policy). No changes needed.

• Compatibility: SNIB works with any PPO-based infrastructure. It does not require
changes to the model architecture, optimizer, or data pipeline.

H.3 EXPECTED RESOURCE USAGE

As demonstrated in Table 4(b), SNIB incurs negligible overhead compared to GRPO/GSPO:

• Memory: Within 5% of GSPO (46.1 GB vs. 45.0 GB per device on 8×A100).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Throughput: Nearly identical to GSPO (90 vs. 93 tokens/s).
• Training Time: Comparable to GSPO (2.3 vs. 2.2 hours per 200 steps).

This confirms that SNIB provides strong theoretical guarantees and empirical improvements at es-
sentially zero additional cost, making it a drop-in replacement for existing critic-free methods.
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