
Opening the Black Box: 1

Automated Software Analysis for Algorithm Selection 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Impressive performance improvements have been achieved in many areas of AI by meta- 5

algorithmic techniques, such as automated algorithm selection and configuration. However, 6

existing techniques treat the target algorithms they are applied to as black boxes – nothing 7

is known about their inner workings. This allows meta-algorithmic techniques to be used 8

broadly, but leaves untapped potential performance improvements enabled by information 9

gained from a deeper analysis of the target algorithms. In this paper, we open the black box 10

without sacrificing universal applicability of meta-algorithmic techniques by automatically 11

analyzing algorithms. We show how to use this information to perform algorithm selec- 12

tion, and demonstrate improved performance compared to previous approaches that treat 13

algorithms as black boxes. 14

1 Introduction 15

The past decade has seen the rise of meta-algorithmic techniques that enable the more efficient and 16

intelligent use of existing algorithms, alleviating some of the challenges encountered in the design of 17

new algorithms. This has given rise to the field of AutomatedMachine Learning [Hutter et al., 2019], 18

which heavily relies on meta-algorithmic techniques. A prominent example of the success and 19

impact of meta-algorithmic techniques is algorithm selection, where we choose from a given 20

portfolio of algorithms the one likely to perform best on a given problem instance. 21

The per-instance algorithm selection problem, in which, given a problem instance, one of several 22

available algorithms is to be chosen to solve that instance most effectively and efficiently, has been 23

first considered in the 1970s [Rice, 1976]. The first prominent system that demonstrated the promise 24

of algorithm selection was SATzilla [Xu et al., 2008], which chooses the most suitable algorithm 25

from a portfolio of satisfiability (SAT) solvers. SATzilla showed excellent performance (including 26

several gold medals) in SAT solver competitions. Since then, many more examples have shown the 27

promise of algorithm selection, where we choose from among a set of existing algorithms, and algo- 28

rithm configuration, where we tune the parameters of algorithms to achieve the best performance. 29

Among them are 3S [Kadioglu et al., 2011], Proteus [Hurley et al., 2014], SMAC [Hutter et al., 2011] 30

(used in e.g. auto-sklearn [Feurer et al., 2015]) and TPOT [Olson et al., 2016]. The growing inter- 31

est in per-instance algorithm selection over the past decade has led to the establishment of the 32

Algorithm Selection Benchmark Library, ASlib [Bischl et al., 2016], and to two competitions for 33

algorithm selection systems [Lindauer et al., 2019]. 34

While these systems are based on different techniques and leverage different ideas and assump- 35

tions, they share a common trait – the algorithm(s) they leverage are treated as black boxes; that 36

is, we know nothing about how the algorithms work internally. Instead, we gather information 37

by probing given algorithms repeatedly, usually by observing their performance in solving a set 38

of problem instances. In this work, we argue that by ignoring information that can be obtained 39

through the automatic analysis of algorithms, we leave untapped useful knowledge that can sub- 40

stantially improve the performance of meta-algorithmic approaches. We open the black box without 41

compromising the general applicability of meta-algorithmic techniques by automatically analyzing 42
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the algorithms under consideration. We demonstrate that considerable performance improvements 43

can be achieved using this additional information for algorithm selection. 44

The performance improvements achieved by our approach result in improved efficiencies, thus 45

reducing the amount of computation necessary to solve a problem. This reduction in computation 46

can also contribute to a more sustainable and energy-efficient AI. We have not identified any 47

potential negative societal impacts in either our work or possible applications of our work. 48

2 Related Work 49

Choosing the most promising approach for solving a given problem has always been of interest, in 50

particular for hard combinatorial problems (e.g. [Allen and Minton, 1996, Weerawarana et al., 1996, 51

Lobjois and Lemaître, 1998]). The idea of using portfolios for this purpose was introduced 52

by [Huberman et al., 1997] and popularized in AI by [Gomes and Selman, 2001]. These early ap- 53

proaches that leverage complementarity in the performance characteristics of algorithms did not 54

perform algorithm selection as we consider it here, but rely heavily on parallel processing to be able 55

to run several or all portfolio algorithms concurrently. They were soon followed by approaches 56

performing algorithm selection in the sense we consider here (e.g. [Guerri and Milano, 2004, 57

Beck and Freuder, 2004, Hough and Williams, 2006]). 58

However, it took several decades before algorithm selection procedures achieved signif- 59

icant performance improvements in practical settings. One of the first such systems is 60

SATzilla [Leyton-Brown et al., 2003, Xu et al., 2008], which solves the prominent SAT problem 61

using a rich set of instance features and draws from a broad set of high-performance SAT solvers. 62

Different versions of SATzilla won several SAT competitions and prompted the development of 63

further algorithm selection systems for SAT, e.g. [Roussel, 2012, Malitsky et al., 2013]. 64

In recent years, algorithm selection systems have gained prominence in many 65

application domains, including ASP [Hoos et al., 2014], CSP [Hurley et al., 2014], 66

QBF [Pulina and Tacchella, 2009], AI planning [Vallati, 2012], TSP [Kerschke et al., 2018], 67

and operations research [Tierney and Malitsky, 2015]. The growing interest in per-instance 68

algorithm selection over the past decade has led to the establishment of the Algorithm Selection 69

Benchmark Library, ASlib [Bischl et al., 2016], and to two competitions for algorithm selection sys- 70

tems [Lindauer et al., 2019]. We refer the interested reader to two surveys on algorithm selection for 71

additional details and an overview of further work in the area [Kotthoff, 2014, Kerschke et al., 2019]. 72

Per-instance algorithm selection systems usually apply machine learning to determine which 73

algorithm to run on a given problem instance, based on expert-defined, cheaply computable 74

features of problem instances. These features can either be used to directly predict the best- 75

performing algorithm (e.g. [Kadioglu et al., 2010, Gent et al., 2010, Pfahringer et al., 2000]), or to 76

obtain performance predictions for all given algorithms and choose the algorithm with the best 77

predicted performance; the latter approach was used in the original SATzilla system. 78

Recent work has applied deep learning techniques to obviate the need for human experts to 79

explicitly define problem instance features [Loreggia et al., 2016]. While this initial study showed 80

promising results, to the best of our knowledge, the approach has not been developed further. 81

Another line of work has applied deep learning more generally to directly learn algorithms and 82

when to use them [Khalil et al., 2016, Khalil et al., 2017, Dai et al., 2017]. As most deep learning 83

approaches, they require significant amounts of data and resources to train models compared to 84

other approaches to algorithm selection though. 85
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Addition after reviews: While there has been work on taking into the account additional

features from the algorithms, as shown in [Tornede et al., 2020], the approach presented in

the paper on extreme algorithm selection is much more limited than our approach in that

it requires an “extremely large” set of algorithms. To the best of our knowledge, is only

the case in this particular paper. The algorithm features are latent, similar to recommender

systems (as pointed out in the paper) and have no intrinsic meaning, as opposed to our

algorithm features.

Additionally, representing an algorithm by its hyperparameters is a well-established

way of taking information on the algorithm into account in the meta-algorithmic pro-

cess [Hutter et al., 2006], but it requires expert knowledge (the programmer must decide

which hyperparameters and value ranges to expose). In contrast, our approach does not

require this and is completely automated.

Finally, [Adriaensen and Nowé, 2016] made a general point on opening up the "black box"

in meta-algorithmics, in particular in the context of automated algorithm design. The paper

proposed, among other things, to analyze the source code of algorithms in order to achieve

their goal, but the authors did not present any results.

86

We open the black box of the algorithms that are being modeled. To the best of our knowledge, 87

there are no existing techniques that allow to automatically analyze the inner workings of algorithms 88

to facilitate per-instance algorithm selection. 89

3 Methodology 90

In many cases, the source code of an algorithm is available. The software engineering community 91

has developed ways of quantifying the complexity and other properties of source code for decades 92

– we can leverage their work for our purposes. Such source code features can be computed quickly 93

by readily-available tools for many different programming languages. 94

Our second source of information is the abstract syntax tree (AST) of the source code of an 95

algorithm that is constructed as part of the compilation process. It provides a higher-level view of 96

the algorithm and makes connections between its individual components explicit. Moreover, the 97

resulting graph structure can be analyzed and quantified using standard tools for the analysis of 98

graphs. Again, the tools are readily available and most features can be computed quickly. 99

Formally, following [Bischl et al., 2016], we have a set I of problem instances drawn from a 100

distribution D, a space of algorithms A, a vector of instance features FI of arity ∥I ∥, a vector 101

of algorithmic features FA of arity ∥A∥, and a performance measure𝑚 : I × A → R. The per- 102

instance algorithm selection problem with algorithm features is to find a mapping 𝑠 : FI ×FA → A 103

that optimizes E𝑖∼𝐷𝑚(𝑖, 𝑠 (𝑖)), i.e., the expected value of the performance measure for instances 𝑖 104

distributed according to D, achieved by running the selected algorithm 𝑠 (𝑖) for instances 𝑖 . The 105

difference to the original definition in [Bischl et al., 2016] is that the mapping includes both instance 106

(FI ) and algorithmic features (FA). 107

Addition after reviews: Following the definitions above, the single best algorithm, or

solver, is defined as the solver that has the best performance averaged across all instances,

while the virtual best solver is a solver that perfectly selects the best solver from A on

a per-instance basis. More formally, virtual best solver = {𝑎𝑟𝑔𝑚𝑖𝑛𝑎E𝑖∼𝐷𝑚(𝑖, 𝑠 (𝑖)) | 𝑖 ∈
I, 𝑎 ∈ A} where 𝑖 and 𝑎 are individual instances and algorithms that come from the

set of instances and algorithms, I and A, respectively. Similarly, single best solver =

𝑎𝑟𝑔𝑚𝑖𝑛𝑎

∑
𝑖∈I E𝑖∼𝐷𝑚 (𝑖,𝑠 (𝑖 ) )

∥I ∥ .

108

In addition to identifying sources of information about an algorithm, we need to develop ways of 109

taking this information into account during performance modeling and algorithm selection. Current 110

state-of-the-art approaches to empirical performance modeling build one model per algorithm and 111
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predict its performance based on the features of a problem instance to solve [Hutter et al., 2014]. 112

Simply adding the features of an algorithm to such models will not improve performance, as 113

the features will be constant for a given model and algorithm. However, the reason for building 114

individual models for each algorithm is that otherwise there is no way to distinguish between them. 115

Our proposed algorithm features provide a way to do exactly that, obviating the need for multiple 116

performance models – we can build a single, unified model for all algorithms. 117

One of the advantages to this approach is that the single model takes much more information 118

into account than individual models, making it possible, for example, to learn relationships between 119

algorithms that can improve the quality of performance predictions. Note that algorithm features 120

do not only permit to distinguish between different algorithms, but also quantifying how similar 121

they are – further useful information that a combined performance model can take into account. 122

We also consider models that predict the performance differences between pairs of algorithms 123

and take the difference between the features of the respective algorithms in addition to the instance 124

features into acocunt. Again, we are able to use just a single unified model for an entire portfolio of 125

algorithms. 126

4 Empirical Evaluation 127

To evaluate the promise of our approach, we leveraged the widely used ASlib benchmark li- 128

brary [Bischl et al., 2016], which provides algorithm selection scenarios from many different appli- 129

cation domains. All experiments were run on compute nodes with Intel Broadwell CPUs with 32 130

cores clocked at 2.1 GHz, 40 MB of CPU cache, and 128 GB of RAM, running Red Hat Enterprise 131

Linux 7.7. 132

4.1 Algorithm Selection Scenarios 133

As we require the source code for the algorithms to be available, we limited our empirical study 134

to ASlib scenarios that satisfy this constraint. Further, we created additional scenarios for our 135

evaluation and contributed these to ASlib. Table 1 gives a summary of the scenarios we used. 136

These scenarios represent a variety of different applications of algorithm selection. Starred ASlib 137

scenarios were modified to exclude algorithms for various reasons such as lack of available source 138

code in the submission, lack of support for a particular language in our tools, etc. 139

For further details on how scenarios were modified, we refer the interested reader to Appendix A. 140

Scenario Instances Algorithms

SAT03-16_INDU* 2000 8

SAT11-INDU 353 18

SAT11-RAND* 600 8

SAT11-HAND* 296 11

GRAPHS-2015* 5725 4

TSP-LION2015 3106 4

SAT18-EXP 353 37

GLUHACK-18 353 8

MAXSAT19-UCMS 572 7

Table 1: Overview of scenarios used in this paper with the number of problem instances and algorithms.

ASlib scenarios are at the top and our new scenarios at the bottom. Starred ASlib scenarios

were modified to exclude algorithms.
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4.2 Algorithm Features 141

For each algorithm, we extracted both source code and AST features. Table 2 summarizes the 142

algorithm features we use to evaluate the promise of our approach. 143

Our code features were computed using an open-source tool [Metrix++, 2019]. We computed 144

cyclomatic complexity, maxindent complexity, number of lines of code, and size in bytes, for the 145

entire source code of a given algorithm and the average values across different regions of the code. 146

The resulting feature set is computed within a few seconds for each of our algorithms. 147

Our AST features are based on the abstract syntax tree obtained during compilation of a given 148

algorithm; we generated the ASTs using the open-source compiler Clang [Clang, 2019] and collected 149

the proportion of nodes of each type (based on the Clang AST types); of edges that link each pair of 150

types; and of each data-types to which the operators nodes are applied. To generate graph features 151

from the AST, we used the NetworkX library [NetworkX, 2019]. We computed the number of nodes 152

and edges; degrees of the nodes; transitivity; clustering coefficient [Fagiolo, 2007]; and depth. For 153

degree and clustering coefficient, we compute minimum, maximum, mean, and variance across all 154

nodes. For depth, we compute these measures across all leaves. We also compute the entropy of 155

the distributions for degree and depth across the entire tree and the leaf nodes, respectively. The 156

clustering coefficient is often zero, for which the entropy cannot be computed. Computation of the 157

AST features takes from a few seconds up to hours per algorithm, but is a one-time expense. 158

To investigate whether the algorithm features serve a purpose beyond purely distinguishing 159

between different algorithms, i.e. to assess to which degree they are useful for algorithm selection 160

for a given problem instance, we include a third set containing only a single dummy feature that 161

represents a unique identifier of the algorithm. 162

Type Name Explanation # Features

Code Lines of code 2

Cyclomatic complexity number of independent execution

paths [McCabe, 1976]

2

Maxindent complexity maximum level of indenta-

tion [Tornhill, 2018]

2

Size of the sources 2

Number of files 1

AST Node count number of nodes in the AST 1

Edge count number of edges in the AST 1

Degrees of the nodes 5

Transitivity number of triangles on three connected

nodes

1

Clustering coefficient measure the local connectivity of a

node [Fagiolo, 2007]

4

Depth distance from the root node to each leaf 5

Node type based on Clang AST 6

Edge type transition based on Clang AST 36

Operation type data types operators are applied to 7

Dummy ID identifier of algorithm 1 per algorithm

Table 2: Algorithm features considered in our study, grouped by type.
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4.3 Algorithm Selection 163

There are different approaches to algorithm selection; we focus on the two methods described in 164

Section 3 – models to predict the performance of each individual algorithm and models to predict 165

the performance difference between pairs of algorithms. These models take our new algorithm 166

features for individual algorithms and the difference of those features for pairs of algorithms into 167

account. Dummy identifier features are encoded in a one-hot way with a one indicating that a 168

particular algorithm or pair of algorithms was measured, with features for all other algorithms or 169

pairs of algorithms set to zero. 170

Each ASlib scenario defines 10 cross-validation folds to ensure repeatable and robust perfor- 171

mance evaluation. The performance models are trained on the data from nine folds and their 172

performance is evaluated on the remaining fold. This is repeated for each combination of train- 173

ing and testing folds, for a total of ten iterations. We report the average performance across all 174

folds and the standard deviation. We use random forest regression models to predict the per- 175

formance of each algorithm and imputed missing instance feature values in all scenarios by the 176

mean value across all non-missing values for numeric features, and NA for categorical features, 177

following [Bischl et al., 2016]. 178

We performed basic hyperparameter optimization of the random forest models. Specifically, we 179

varied the number of trees in the random forest from 10 to 200, and the number of features used at 180

each split when growing trees from 1 to 30. The hyperparameters and ranges are the same as in 181

those used by [Bischl et al., 2016]. We performed a random search in this parameter space with 182

250 samples and a nested cross validation with ten outer and three inner folds, selecting the model 183

with the lowest average PAR10 across the outer cross-validation folds for our comparison. 184

We consider two metrics for evaluating the performance of algorithm selection systems – 185

misclassification penalty (MCP) and penalized average running time with a factor of 10 (PAR10). 186

The misclassification penalty is defined as the additional cost incurred because a sub-optimal 187

algorithm was chosen, i.e. additional running time or decreased accuracy of a given machine 188

learning model. PAR10 is defined as the average running time over a given set of problem instances, 189

with timeouts counted as ten times a user-specified cutoff time. 190

We compare to the single and virtual best solvers, which provide bounds on the performance of 191

an algorithm selection system – it cannot be better than the virtual best solver (VBS) and should not 192

be worse than the single best solver (SBS), as there is no performance gain from algorithm selection 193

otherwise. We normalize the performance of an algorithm selection system to the fraction of the 194

gap closed between single and virtual best (see e.g. [Bischl et al., 2016]). This allows to directly 195

compare performance across different scenarios. 196

Due to the size of the scenario and the amount of computation required, we were unable to 197

consider all algorithms for SAT18-EXP when using models that predict performance difference. 198

Therefore we modified SAT18-EXP to exclude seven solvers. However all other scenarios were 199

used without modifications, and the full SAT18-EXP scenario was used for experiments where the 200

performance of each algorithm is predicted directly and a selection is made based on this predicted 201

performance. For further details on what solvers were excluded and the motivation behind this 202

decision can be found in Appendix B. 203

5 Results 204

We now present the results of our experiments, demonstrating the promise of our algorithm features 205

and the performance improvements that can be achieved. 206

5.1 Algorithm Selection 207

Figure 1 shows the results of our experiments for algorithm selection in terms of the MCP metric. 208

Adding solver features improves algorithm selection for the majority of the scenarios we considered; 209
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Figure 1: Impact of algorithm features on the performance of algorithm selection based on regres-

sion and pairwise regression models. The top value in each cell is the average percentage

value of the gap closed between single best (0) and virtual best solver (100) in in terms

of misclassification penalty (MCP) across cross-validation folds; the bottom value is the

standard deviation. Values greater than zero indicate that performance is better than the

single best solver, negative numbers indicate that it is worse. Average values have been

rounded to integers and standard deviations to two decimal places. Starred ASlib scenarios

were modified to exclude some algorithms. The two columns on the left show the baselines

to which we compare; instance features only (I) and instance and dummy ID features (II).

The algorithm feature sets we consider are instance and code features (IC), instance and AST

features (IA), and instance, code, and AST features (ICA). The best value for a particular

scenario is shown in bold.

8 out of 9 scenarios for regression models and 6 out of 9 for pairwise regression models with an 210

additional scenario resulting in a tie. While adding algorithm features does not help for all scenarios, 211

we do see substantial performance improvements in some cases, with improvements of up to 26% 212

for regression models and 28% for pairwise regression models. 213

For the TSP-LION2015 scenario, adding solver features improves algorithm selection perfor- 214

mance to the point where it is better than the single best solver, closing an additional 26% between 215

single and virtual best solver in terms of MCP for the regression model and 28% for the pairwise 216

regression model. For GRAPHS-2015, we close an additional 15% of the gap for regression and 7% 217
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for pairwise regression. For SAT11-INDU, we close an additional 10% of the gap to the virtual best 218

solver for regression and a more modest 6% of the gap for the pairwise regression model. We also 219

see impressive results in MAXSAT19-UCMS, where we close an additional 9% and 10% of the gap 220

for regression and pairwise regression, respectively. For other scenarios where we improve, the 221

performance difference is smaller, from 2% to 9% for regression and from 6% to 7% for pairwise 222

regression. We note that algorithm selection performance improves by several percentage points 223

on the GLUHACK-18 scenario, where all algorithms are modifications of a common code base. Even 224

when the code bases are very similar, the features we extract add useful information for algorithm 225

selection. For the scenarios where adding algorithm features decreases performance, we observe 226

smaller changes. On SAT18-EXP, we tie for pairwise regression. For SAT11-RAND, the decrease is 227

1% in the gap closed for both regression and pairwise regression approaches. 228

For comparison, we use dummy algorithm features that allow us to assess to what extent 229

the performance improvements we see are because we train a single model that can take the 230

performance information of all algorithms into account or because algorithm features genuinely 231

help to make the models more predictive. The results for performance predictions we presented in 232

the previous section already strongly indicate that algorithm features genuinely help. Adding the 233

dummy features decreases performance in the majority of cases. In most of the few cases where 234

performance improves compared to only instance features, the differences are small – including 235

our proposed algorithm features improves performance more often and by a larger amount. This 236

conclusively demonstrates that algorithm features are useful for per-instance algorithm selection. 237

We see a similar trend in the results for the experiments when we consider PAR10 scores 238

(Figure 2 in the appendix), where adding algorithm features improves performance for 6 out of 239

9 scenarios for both regression and pairwise regression approaches, with one tie. To determine 240

statistical significance of our results, we used the Friedman test on the ranks achieved by every 241

approach on each problem instance in a given scenario (total 45 cases), along with a Nemenyi 242

post-hoc test. The difference in ranks between the baseline and our proposed approaches was 243

statistically significant at 5% level for all scenarios, except in one case with regression models. 244

The difference between instance features and our features was not statistically significant for the 245

GRAPHS-2015 scenario. For pairwise regression models, the differences were statistically significant 246

at the same level for all but five cases for the MAXSAT19-UCMS, SAT03-16_INDU, SAT11-HAND, 247

SAT11-INDU, and TSP-LION2015 scenarios. 248

5.2 Algorithm Feature Importance 249

To provide additional insight into the usefulness of our algorithm features and to investigate the 250

potential for further improvements, we conducted feature selection experiments for our algorithm 251

features. Specifically, we performed forward selection without hyperparameter tuning to reduce 252

experimental cost, following [Bischl et al., 2016]. We only considered our algorithm features for 253

selection and always use the full set of instance features; we made this choice to keep the ex- 254

perimental effort manageable, and because results for feature selection experiments on instance 255

features are available in the literature [Bischl et al., 2016], showing that a small number of instance 256

features are sufficient to achieve good performance. We performed this analysis for both types of 257

approaches; regression models and pairwise regression models. 258

The selected features for regression models are shown in Table 3, results for pairwise regression 259

models are shown in Table 6 in the appendix. They are not consistent across scenarios. Features 260

that measure the complexity of the algorithm in some way, such as average cyclomatic complexity, 261

indentation, degree of AST nodes, and depth of AST leaves, are often chosen. Intuitively, it makes 262

sense that they are predictive of the algorithm’s performance – more complex code might indicate 263

more sophisticated heuristics, but also more complex computation. 264

Tables 4 and 5 in the appendix show the percent gap closed between single and virtual best 265

solvers for the full and reduced feature sets. Our results show that performance can improve when 266
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Scenario Selected Features

GLUHACK-18 average cyclomatic complexity

variance of AST node degrees

fraction of AST nodes that represent a type

GRAPHS-2015 average maximum indent

MAXSAT19-UCMS fraction of AST nodes that represent a statement

fraction of AST edges that link a type node to a declaration node

SAT03-16_INDU fraction of operators applied on long long
fraction of operators applied on float

SAT11-HAND entropy of the distribution of the degree of AST nodes

SAT11-INDU average cyclomatic complexity

fraction of AST edges that link a type node to a statement node

SAT11-RAND average cyclomatic complexity

SAT18-EXP total lines of code

TSP-LION2015 entropy of the distribution of the depth of AST leaves

Table 3: Feature sets chosen by forward selection for each scenario, optimizing PAR10 score for

regression models.

Scenario Algorithm Features Gap Closed (PAR10)

Full Set Reduced Set

GLUHACK-18 75→ 3 48 57

GRAPHS-2015 75→ 1 53 72

MAXSAT19-UCMS 75→ 2 38 57

SAT03-16_INDU 75→ 2 46 53

SAT11-HAND 75→ 1 46 56

SAT11-INDU 75→ 2 27 50

SAT11-RAND 75→ 1 89 91

SAT18-EXP 75→ 1 59 66

TSP-LION2015 75→ 1 26 12

Table 4: Algorithm feature selection results, showing number of selected features and percent gap

between single and virtual best solver closed in terms of PAR10 for the full and reduced

feature sets. We performed forward selection with regression on the entire set of code and

AST features. Numbers were rounded to the nearest integer. Note that hyperparameters have

not been optimized and results may be different to the algorithm selection results shown

previously.

irrelevant features are removed, and even a very small set of features is often sufficient for obtaining 267

good performance – in no case, more than five features are selected, and in many cases just a 268

single one. This echoes similar findings for the number of instance features in [Bischl et al., 2016]. 269

For TSP-LION2015, performance is worse with the reduced set of features for regression models. 270

Adding a second feature to the one chosen previously does not improve performance and the feature 271

selection process stops. There is likely a feature set that would lead to an increase in performance, 272

but we were unable to exhaustively test all feature subsets because of the computational cost. 273
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5.3 Discussion 274

Addition after reviews: We posit that the features we extracted from algorithms give some

information about those algorithms. However, this is at a relatively low level that does not,

for example, allow to conclude what type of approach or algorithm was used. There is no

intrinsic reason that any of the features should be related directly to the performance of the

algorithm on particular inputs, just like there is no intrinsic reason that, for example, the

number of connected components in a constraint graph should tells us anything about how

difficult the problem instance is to solve. We do see that algorithm selection performance

improves, which in itself provides a motivation for our approach, again similar to how

algorithm selection in general is motivated by the success of using instance features. Of

course, our approach (like algorithm selection and, indeed, automated machine learning)

does not always work, but we do show its promise through our experimental results.

275

6 Conclusions and Future Work 276

We presented, to the best of our knowledge, the first approach that uses features characterizing 277

software for algorithm selection. These features can be extracted automatically, using off-the- 278

shelf analysis software – as long as the source code for the given set of algorithms is available, 279

our approach can be applied. We hence retain one of the main advantages of current black-box 280

meta-algorithmic techniques – their broad availability. The results from our experiments clearly 281

demonstrated that using these additional features can yield significant performance improvements 282

for algorithm selection. 283

We also showed that only a small subset of the rich set of algorithm features we considered is 284

required for achieving these improvements. While our approach does not improve performance 285

for all scenarios we considered in our study, we achieved improvements on average across a wide 286

variety of scenarios. These results demonstrate the promise of our approach and the potential for 287

algorithm features to improve algorithm selection and other meta-algorithmic techniques. 288

Our work can be extended in various directions. It would be interesting to consider scenarios 289

where the performance metric of interest is the solution quality rather than runtime such as in 290

machine learning. This could potentially extend our approach into the domain of automated 291

machine learning. 292

Furthermore, the type of software features we consider here is mostly limited to algorithm 293

selection – for parameter tuning and algorithm configuration, where the difference a parameter 294

makes is often not directly reflected in the code base and becomes only apparent at execution time, 295

different software analysis techniques will be required to effectively distinguish between parameter 296

configurations. While this requires significant further work, the ability to predict the performance 297

of a parameter configuration more accurately has very substantial potential for impact across many 298

areas of AI. 299

Addition after reviews: Finally, a more in-depth analysis of the relationship between soft-

ware features, instance features, and the performance of a given algorithm on a given prob-

lem instance could provide insight into how the novel features we propose here facilitate

improved algorithm selection.

300
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references (llama and aslib) with our approach. Please do not check the libraries to ensure 319
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(c) Did you include scripts and commands that can be used to generate the figures and tables 324

in your paper based on the raw results of the code, data, and instructions given? [No] [We 325
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approach. Please do not check the libraries to ensure anonymity.] 327
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(h) Did you use the same evaluation protocol for the methods being compared? [Yes] [See 339
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A Algorithm Selection Scenarios 482

We require the source code for the algorithms to be available, and hence limited our empirical study 483

to ASlib scenarios for which we were able to obtain source code. As this ruled out quite a few of 484

the benchmarks, we created additional scenarios for our evaluation and contributed them back to 485

ASlib. We focus on scenarios that predict the runtime of algorithms in this paper; the methodology 486

extends to scenarios with other performance measures as well though. 487

We performed experiments on six pre-existing ASlib scenarios – TSP-LION2015, SAT11-RAND, 488

SAT11-HAND, SAT11-INDU, SAT03-16_INDU, and GRAPHS-2015. These scenarios represent a 489

variety of different applications of algorithm selection. 490

For four ASlib scenarios, we had to exclude some of the solvers. In particular, for SAT11-RAND, 491

we excluded sattime2011_2011.03.02, because wewere unable to identify the source code and version 492

corresponding to the scenario; for SAT11-HAND, we excluded jMiniSat_2011, sattime._2011.03.02, 493

and sattime_2011.03.02 for the same reason. We also excluded Sol_2011.04.04, as our algorithm 494

analysis tools currently do not support C# code. For the SAT03-16_INDU scenario, we excluded 495

cominisatps and riss5, again because we were unable to identify the exact version of the source 496

code used for the scenario. 497

The Glasgow algorithms from the GRAPHS-2015 scenario were four parameterizations of the 498

same underlying algorithm. Therefore, we excluded three versions of Glasgow from the scenario. 499

B Algorithm Selection 500

Due to the size of the scenario and the amount of computation required, we were unable to consider 501

all algorithms for SAT18-EXP when using models that predict performance difference (666 models 502

would be required for the full scenario to compare to existing approaches; our proposed approach 503

does not suffer from this limitation and we omit solvers only to be able to compare to other 504

approaches). We removed seven solvers that were the best on fewer than six out of 343 problem 505

instances: Candy, Minisat.v2.2.0.106.ge2dd095, Lingeling, Riss7.1.fix, Sparrow2Riss.2018.fixfix, 506

glucose3.0, and expGlucose. The first two of these were never the best for any of the instances. 507

This leaves us with 30 algorithms in this scenario for 435 pairwise performance models; the overall 508

performance did not change significantly. The mean MCP for the single best solver (the individual 509

solver that performs best on average across all problem instances) decreased from the original 510

1220.06 to 1211.12 CPU seconds, and the mean PAR10 score for the virtual best solver (the oracle 511

that for each problem instance determines, without error, the best algorithm for solving it) increased 512

from the original 9841.23 to 9850.17 CPU seconds. The PAR10 score for the single best solver and 513

MCP for the VBS remained the same. All other scenarios were used without modifications, and the 514

full SAT18-EXP scenario was used for experiments where the performance of each algorithm is 515

predicted directly and a selection is made based on this predicted performance. 516

C Results 517

When considering results in terms of PAR10 scores, we see the largest performance improvements 518

for TSP-LION2015, where we close additional 71% and 48% of the gap for regression and pairwise 519

regression models, respectively. For SAT11-INDU, we close 19% more of the gap for both regression 520

and pairwise regression models; 3% and 18% more compared to dummy features. For MAXSAT19- 521

UCMS, we close additional 10% and 8% gap for regression and pairwise regression, respectively. 522
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Figure 2: Impact of algorithm features on the performance of algorithm selection based on regression

and pairwise regression models. The top value in each cell is the average percentage value of

the gap closed between single best (0) and virtual best solver (100) in in terms of PAR10 scores

across cross-validation folds; the bottom value is the standard deviation. Values greater than

zero indicate that performance is better than the single best solver, negative numbers indicate

that it is worse. Average values have been rounded to integers and standard deviations to

two decimal places. Starred ASlib scenarios were modified to exclude some algorithms. The

column on the left shows the baselines to which we compare – instance features only (I)

and dummy ID features (II). The algorithm feature sets we consider are instance and code

features (IC), instance and AST features (IA), and instance, code, and AST features (ICA).

The best value for a particular scenario is shown in bold.
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Scenario Algorithm Features Gap Closed (PAR10)

Full Set Reduced Set

GLUHACK-18 75→ 3 46 57

GRAPHS-2015 75→ 1 54 72

MAXSAT19-UCMS 75→ 2 25 57

SAT03-16_INDU 75→ 2 41 53

SAT11-HAND 75→ 1 50 56

SAT11-INDU 75→ 2 27 50

SAT11-RAND 75→ 1 81 91

SAT18-EXP 75→ 5 42 63

TSP-LION2015 75→ 1 0 12

Table 5: Algorithm feature selection results, showing number of selected features and percent gap

between single and virtual best solver closed in terms of PAR10 for the full and reduced

feature sets. We performed forward selection with pair regression on the entire set of code

and AST features. Numbers rounded to integers. Note that hyperparameters are not tuned

and results may be different to the algorithm selection results shown previously.

Scenario Selected Features

GLUHACK-18 average cyclomatic complexity

variance of AST node degrees

fraction of AST nodes that represent a type

GRAPHS-2015 average maximum indent

MAXSAT19-UCMS fraction of AST nodes that represent a statement

fraction of AST edges that link a type node to a declaration node

SAT03-16_INDU fraction of operators applied on long long
fraction of operators applied on float

SAT11-HAND entropy of the distribution of the degree of AST nodes

SAT11-INDU average cyclomatic complexity

fraction of AST edges that link a type node to a statement node

SAT11-RAND average cyclomatic complexity

SAT18-EXP entropy of the distribution of the degree of AST nodes

mean of the AST clustering coefficient

variance of the AST clustering coefficient

maximum depth of AST leaves

fraction of AST nodes that represent a literal

TSP-LION2015 entropy of the distribution of the depth of AST leaves

Table 6: Feature sets chosen by forward selection for each scenario, optimizing PAR10 score for

predicting the performance difference between two algorithms.
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