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The structure of the appendix mainly follows the roadmap of the proof described in Section 4.4.

In Appendix A, we define the characterizable population risk function in (31) to approximate the
objective function. Also, some notations to simplify the analysis are introduced in Appendix A, and
we recommend the readers to refer to Table 3 for the major notations used in the proofs.

In Appendix B, we provide the proof for Lemma 1 and Theorem 1 following the steps as (1) Char-
acterization of the local convex region of population risk function (Lemma 2), (2) Characterization
of the distance between the population risk function and the objective function (Lemma 3), (3)
Characterization of the convergence of two consecutive iterations W (t,m+1) and W (t,m), and (4)
Mathematical induction over the t and m to obtain the error bound between the convergent point
W (T,0) and the desired point W ⋆.

In Appendix C, we provide the preliminary lemmas and the whole proof for Lemma 2, which char-
acterizes the local convex region of the non-convex population risk function.

In Appendix D, we provide the preliminary lemmas and the whole proof for Lemma 3, which char-
acterizes the difference of gt and the gradient descent of defined population risk function in (31).

In Appendix E, we provide the proofs for the preliminary lemmas in proving Lemmas 2 and 3.

Before moving to the details, we provide an overview of the techniques in the proofs.

(P1.) The local convex region near W ⋆. To characterize the local convex region, we first bound
the Hessian matrix of the defined population risk function in (31) at W ∗. Then, we derive the
changes in the Hessian matrix when the neuron weights move around the W ∗. Specifically, we
prove that when neuron weights W are not far away W ⋆, then the Hessian matrix in this region
is always positive-definite, indicating that a local convex region near W ∗. [90] considers the one-
hidden-layer neural network, and the lower bound of the Hessian matrix only holds for Gaussian
input. Instead, in this paper, we consider multi-layer cases and need to derive a lower bound for
the Hessian matrix for all the layers. Instead, the input of the intermediate layer cannot be proved
to be Gaussian but belong to sub-Gaussian distribution. Therefore, we built the proof for the lower
bound of the Hessian matrix when the input belongs to the sub-Gaussian distribution. Compared
with Gaussian input, Sub-Gaussian does not have a closed form of the probability density function.
Instead of directly calculating the lower bound, we convert the problem into proving a series of
functions are linearly independent over a Hilbert space (see Lemma 7 and the proof in Appendix
E). Instead of directly calculating the distance of the population risk function in different points,
we characterize a Gaussian variable such that the distance over the sub-Gaussian distribution can be
upper bounded by the one over the Gaussian variable (see Lemma 6 and the proof in Appendix E).

(P2.) The difference between the gradient gt and the population risk function. With the local
convex region of the population risk function, we can characterize the convergence of the population
risk function. With Lemma 3, we can prove that the distance between the population risk function
and gt is small enough, the behaviors of the iterations via gt can be described by the ones in the
population risk function with some additional error terms. Compared with the proof in [90], We need
to address the extension from supervised learning settings to Q learning settings and the extension
from the one-hidden-layer neural networks to the multi-layer neural networks. First, similar to
challenges in (P.1), we provide a new concentration bound to characterize the distance between
the two functions for the intermediate layers (see I1 in the proof of Lemma 3). Second, the distance
between the two functions has an additional error term due to the inconsistency of the label defined in
(31) and (8) (see I2 in the proof of Lemma 3). Third, we need to develop a new concentration bound
to characterize the error term caused by the distribution shift when training samples are collected by
ε-greedy policy (see I3 in the proof of Lemma 3).
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(P3.) The convergence analysis of Algorithm 1. When the initialization is not far away from W ⋆,
the initialization lies in the local convex region of W ⋆ for the population risk function. When we
have enough samples N and a large enough εt, we can guarantee that the distance between the gt
and the gradient of the population risk function is small enough such that the iterations following gt
converges to a point nearby W ⋆ as well. However, if εt is too large, the convergent point nearby W ⋆

can be even worse than the initial point. To avoid this issue, we have an upper bound for selecting
εt, and the upper bound decreases as ∥W (t,0) − W ⋆∥ decreases over t. Therefore, we build the
convergence analysis of Algorithm 1.

A Definitions and Notations

In this section, we implement the details of algorithms described in Algorithm 1, and some important
notations are defined to simplify the presentation of the proof.

A.1 Definition of the Empirical Risk Function and Its Corresponding Notations

Recall that the goal of Q-learning is to find the Q⋆-function to minimize (6). Therefore, we have
Q⋆(s, a) = r(s, a) + γ · Es′|s,amax

a′∈A
Q⋆(s′, a′) for (s, a) ∼ µ⋆. (29)

Since W ⋆ is the global minimal to (6), we have
Q(W ⋆; s, a) = r(s, a) + γ · Es′|s,amax

a′∈A
Q(W ⋆; s′, a′). (30)

Therefore, the population risk function is defined as

f(W ) = E(s,a)∼µ⋆
[
Q(W ; s, a)− r(s, a)− γ · Es′|s,amax

a′∈A
Q(W ⋆; s′, a′)

]2
= E(s,a)∼µ⋆

[
Q(W ; s, a)−Q(W ⋆; s, a)

]2
,

(31)

where µ∗ is the distribution of the sampled data following the optimal policy π⋆.

The gradient of the (31) is

∇W f(W ) =Ex∼µ⋆
(
Q(W ;x)− r(x)− γ · Es′∼pa

s,s′
max
a′∈A

Q⋆(s′, a′)
)
· ∇WQ(W ;x)

=Ex∼µ⋆,s′∼pa
s,s′

(
Q(W ;x)− r(x)− γ ·max

a′∈A
Q(W ⋆; s′, a′)

)
· ∇WQ(W ;x).

(32)

As W ⋆ is one of the ground truths to f(W ), i.e., f(W ⋆) achieves the minimum value as f(W ⋆) =
0 ≤ f(W ) for any other W . Given f is a smooth function, we have the gradient of f with respect
to any Wℓ at the ground truth W ⋆ equals to zero, namely,

∇ℓf(W
⋆) := ∇Wℓ

f(W ⋆) = 0, ∀ℓ ∈ [L]. (33)

In addition, without special descriptions, α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤ stands for any unit vector that
in RKℓKℓ−1 with αj ∈ RKℓ−1 (K0 = d). Therefore, we have

∥∇ℓh∥2 = max
α

∥α⊤∇ℓh∥2 = max
α

∣∣∣ K∑
j=1

α⊤
j

∂h

∂wℓ,j

∣∣∣,
∥∇2

ℓh∥2 = max
α

∥α⊤∇2
ℓ h α∥2 = max

α

( K∑
j=1

α⊤
j

∂h

∂wℓ,j

)2

.

(34)

A.2 Notations in Algorithm 1

Recall that the gradient in the t-th loop is

gt(W ) =
1

|D(m)
t |

∑
n∈D(m)

t

(Q(W ;xn)− y(t)n ) · ∇WQ(W ;xn)

=
1

N

N∑
n=1

(
Q(W ;xn)− r(xn)− γ ·max

a′∈A
Q(W (t−1); s′n, a

′)
)
· ∇WQ(W ;xn).

(35)
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Then, we define g(m)
t (Wℓ;W ) as the components of g(m)

t (W ) with respect to Wℓ. Recall that in
(4) we have

W = [vec(W1)
⊤, vec(W2)

⊤, · · · , vec(WL)
⊤]⊤. (36)

Then, with the definition of g(m)
t (Wℓ;W ), we have

g
(m)
t (W ) = [g

(m)
t (W1;W )⊤, g

(m)
t (W2;W )⊤, · · · , g

(m)
t (WL;W )⊤]⊤. (37)

To simplify the analysis, the update of W (t,m) is analyzed in the form of

W
(t,m+1)
ℓ = W

(t,m)
ℓ − η · g(m)

t (Wℓ;W
(t,m)) + β(W

(t,m)
ℓ −W

(t,m−1)
ℓ ), ∀ℓ ∈ [L]. (38)

One can see that (38) returns the same W (t,m+1) as the gradient step at line 9 in Algorithm 1.

Table 3: Notations for the proofs

gt(W ) The gradient function at point W in the t-th outer loop, defined in (7).

gt(Wℓ;W ) The gradient function of gt(W ) with respect to the components of Wℓ.

d Dimension of the feature mappings of the state-action pair (s, a) ∈ S ×A.

K Number of neurons in the hidden layer.

L Number of hidden layers.

W ⋆ The desired Weights for approximating the optimal Q function.

W (t,m) Model returned by Algorithm 1 at t-th outer loop and m-th inner loop.

f The population risk function defined in (31).

∇W f(W
⋆) The full gradient of a function f at point W ⋆.

∇ℓf(W
⋆) The gradient of a function f with respect to the components of Wℓ at point W ⋆.

∇2
ℓf(W

⋆) The Hessian matrix of a function f with respect to the components of Wℓ at
point W ⋆.

n The dimension of W .

nℓ The dimension of vectorized Wℓ.

h(ℓ)(W ) The input to the ℓ-th layer, defined in (39).

Kℓ The dimension of h(ℓ).

Jℓ(W ) A function in Rn −→ RK , defined in (42).

εt The value of ε in the behavior policy at t-th outer loop.

Ct The distribution shift between the optimal policy and behavior policy at iteration
t.

N The size of the experience replay buffer.

Rmax The upper bound of the reward.

A.3 Notations for the Deep Neural Networks.

Let n denote the dimension of W defined in (4). We denote nl as the dimension of the vectorized
neuron weights in the ℓ-th layer, namely, nℓ = dim(vec(Wℓ)).

Then, let h(ℓ)(W ) denote the input in the ℓ-th layer (or the output in the (ℓ−1)-th layer) with respect
the neuron weights as W , and h(1) = (s, a), where

h(ℓ)(W ) = ϕ(W⊤
ℓ−1h

(ℓ−1)) = · · · = ϕ
(
W⊤

ℓ ϕ
(
Wℓ−1 · · ·ϕ(W⊤

1 x)
))
. (39)
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h(ℓ)(W ) may be shortened as h(ℓ) when the neuron weights are clear from the contexts. Then, we
denote the dimension of h(ℓ) as Kℓ, where

Kℓ =

{
K, if ℓ > 1

d, if ℓ = 1.
(40)

Then, Q(W ; s, a) can be written as

Q(W ; s, a) =
1⊤

K
ϕ(w⊤

L,kh
(L)) =

1⊤

K
ϕ
(
W⊤

L ϕ(W
⊤
L−1h

(L−1))
)
, (41)

where wℓ,k denotes the k-th neuron weights in the ℓ-th layer. Then, we define a group of functions
Jℓ(W ) ∈ Rn −→ RK such that

Jℓ(W ) =

{[
1⊤ϕ′(W⊤

L h(L))W⊤
L · ϕ′(W⊤

L−1h
(L−1))W⊤

L−1 · · ·ϕ′(W⊤
ℓ+1h

(ℓ+1))W⊤
ℓ+1

]⊤
if ℓ > 1

1 if ℓ = 1.

(42)
Then, the gradient of Q can be represented as

∂Q

∂wℓ,k
(W ) =

1

K
Jℓ,k(W )ϕ′

(
w⊤
ℓ,kh

(ℓ)(W )
)
h(ℓ)(W ), (43)

where Jℓ,k stands for the k-th component of Jℓ.

A.4 Notations for Order-wise Analysis

Without loss of generality, we consider the case that d ≫ K. If K ≫ d, we can always switch the
order of K and d in the proof. Let σi(L) denote the i-th largest singular value of W ⋆

L. In this paper,
we consider the case that W ⋆

L is will-conditioned and bounded, i.e., σ1(L) and σ1(L)/σK(L) can
be viewed as the constant and will be ignored in the analysis. In addition, some constant numbers
will be ignored in most steps. In particular, we use h1(z) ≳ (or ≲,≂)h2(z) to denote there exists
some positive constant C such that h1(z) ≥ (or ≤,=)C · h2(z) when z ∈ R is sufficiently large.

B Proof of Lemma 1 and Theorem 1

The main idea in proving Theorem 1 is to characterize the gradient descent term by the Mean Value
Theorem (MVT) in Lemma 4 as shown in (47) and (48). The MVT is not directly applied in gt
because it is not smooth. However, the population risk functions defined in (31), which are the
expectations over random variables, are smooth. Lemma 2 characterizes the bounds of the Hessian
matrix defined in (49). Lemma 3 characterizes the bounds of gradient differences between the
population risk function defined in (31) and gt in (7) as shown in (60). Furthermore, according
to Lemma 3, we know that the distance ∥∇ℓf(W ) − ∇ℓf(W

∗)∥2 is upper bounded in the order
of ∥W − W ∗∥2 as shown in (60). Then, we can establish the connection between ∥W (t,m+1) −
W ∗∥2 and ∥W (t,m) −W ∗∥2 as shown in (59). Then, by mathematical induction over m, one can
characterize the iteration of {∥W (t,0) − W ∗∥2}Tt=1 as shown in (65), which completes the proof
of Lemma 1. Finally, selecting εt based on (68) for all t ∈ [T ], we derive the error bound of
∥W (T,0) −W ⋆∥2 by mathematical induction over t, which completes the proof of Theorem 1.
Lemma 2. Given any W ∈ Rn, let W satisfy

∥W −W ⋆∥2 ≲
ρ · cI · σK

K
(44)

for some constant cI ∈ (0, 1). Then, for the f defined in (31), we have
(1− cI)ρ

K2
⪯ ∇2

ℓf(W ) ⪯ 7

K
. (45)

Lemma 3. Let f be the function defined in (31). Let gt be the function defined in (7). Then, we have

∥∇ℓf(W )− gt(Wℓ;W )∥2 ≲
2− εt
K

√
Kℓ · log q

N
· ∥W −W ⋆∥2

+
(1− εt/2) · γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(46)
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with probability at least 1− q−Kℓ .
Lemma 4 (Mean Value Theorem). Let U ⊂ Rd1 be open and f : U −→ Rd2 be continuously
differentiable, and x ∈ U , h ∈ Rd1 vectors such that the line segment x + th, 0 ≤ t ≤ 1 remains
in U . Then we have:

f(x+ h)− f(x) =

(∫ 1

0

∇f(x+ th)dt

)
· h,

where ∇f denotes the Jacobian matrix of f .

Proof of Theorem 1. Let Wℓ denote the neuron weights in the ℓ-th layer. From Algorithm 1 and
(38), in the s-th iteration and t-th episode, we have

W
(t,m+1)
ℓ = W

(t,m)
ℓ − ηg

(m)
t (Wℓ;W

(t,m)) + β(W
(t,m)
ℓ −W

(t,m−1)
ℓ )

= W
(t,m)
ℓ − η∇ℓf(W

(t,m)) + β(W
(t,m)
ℓ −W

(t,m−1)
ℓ )

+ η ·
(
∇ℓf(W

(t,m))− g
(m)
t (Wℓ;W

(t,m))
)
.

(47)

From (31), we can see that W ⋆ is the global optimal to f because f(W ⋆) achieves the minimum
value as 0. Therefore, we have ∇ℓft(W

⋆) = 0. Since ∇ℓf is a smooth function W ⋆, from the
Mean Value Theorem in Lemma 4, we have

∇ℓf(W
(t,m)) =∇ℓf(W

(t,m))−∇ℓf(W
⋆)

=

∫ 1

0

∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
du · (W (t,m)

ℓ −W ⋆
ℓ ).

(48)

For notational convenience, we use H to denote the integration as

H :=

∫ 1

0

∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
du. (49)

Then, we have [
W (t,m+1) −W ⋆

W (t,m) −W ⋆

]
=

[
I − ηH βI

I 0

][
W (t,m) −W ⋆

W (t,m−1) −W ⋆

]

+ η

[
∇ℓf(W

(t,m))− g
(m)
t (Wℓ;W

(t,m))

0

]
.

(50)

Let H = SΛST be the eigen-decomposition of H . Then, we define

A(β) :=

[
S⊤ 0

0 S⊤

]
A(β)

[
S 0

0 S

]
=

[
I − ηΛ+ βI βI

I 0

]
. (51)

Since

[
S 0

0 S

][
S⊤ 0

0 S⊤

]
=

[
I 0

0 I

]
, we know A(β) and

[
I − ηΛ+ βI βI

I 0

]
share the same

eigenvalues. Let λ(Λ)
i be the i-th eigenvalue of H(ℓ)

t , then the corresponding i-th eigenvalue of (51),
denoted by λ(A)

i , satisfies

(λ
(A)
i (β))2 − (1− ηλ

(Λ)
i + β)λ

(A)
i (β) + β = 0. (52)

By simple calculation, we have

|λ(A)
i (β)| =


√
β, if β ≥

(
1−

√
ηλ

(Λ)
i

)2
,

1
2

∣∣∣∣(1− ηλ
(Λ)
i + β) +

√
(1− ηλ

(Λ)
i + β)2 − 4β

∣∣∣∣ , otherwise.
(53)

Specifically, we have

λ
(A)
i (0) > λ

(A)
i (β), for ∀β ∈

(
0, (1− ηλ

(Λ)
i )2

)
, (54)
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and λ(A)
i achieves the minimum λ

(A)⋆
i =

∣∣∣1−√
ηλ

(Λ)
i

∣∣∣ when β⋆ =
(
1−

√
ηλ

(Λ)
i

)2

. From Lemma

2, for any a ∈ Rd with ∥a∥2 = 1, we have

a⊤∇ℓf(W
(t,m))a =

∫ 1

0

a⊤∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
a · du

≤
∫ 1

0

λmax∥a∥22du = λmax,

a⊤∇ℓf(W
(t,m))a =

∫ 1

0

a⊤∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
a · du

≥
∫ 1

0

λmin∥a∥22du = λmin,

(55)

where λmax ≂ 1
K , and λmin ≂ ρ

K2 . Therefore, we have

λ
(Λ)
min ≂

(1− cI)ρ

K2
, and λ(Λ)

max ≂
1

K
. (56)

Thus, when η ≤ 1

2λ
(Λ)
max

≲ K, ∥A(β⋆)∥2 can be bounded by

∥A(β⋆)∥2 =1−
√
η · λ(Λ)

min ≤ 1−
√

(1− cI)ηρ

K2
. (57)

Therefore, we have

∥W (t,m+1)
ℓ −W ⋆

ℓ ∥2 ≤
(
1−

√
(1− cI)ηρ

K2

)
· ∥W (t,m)

ℓ −W ⋆
ℓ ∥2

+ η · ∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2

≲
(
1−

(
1− cI

2

)√ ηρ

K2

)
· ∥W (t,m)

ℓ −W ⋆
ℓ ∥2

+ η · ∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2.

(58)

Take the sum of (58) from ℓ = 1 to ℓ = L, we have

∥W (t,m+1) −W ⋆∥2 ≤
(
1−

(
1− cI

2

)√ ηρ

K2

)
· ∥W (t,m) −W ⋆∥2

+ η ·
L∑
ℓ

∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2.

(59)

From Lemma 3, we have∥∥∥∇ℓf(W
(t,m))− g

(m)
t (Wℓ;W

(t,m))
∥∥∥
2
≲
2− εt
K

√
Kℓ log q

Nt
· ∥W (t,m) −W ⋆∥2

+
(1− εt/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(60)

For some small constant cN ≥ 0, let

η · 1

K

√
Kℓ log q

Nt
≤ cN

L

√
ηρ

K2
, (61)

which requires

Nt ≳ c−2
N · ρ−1 · η−1 · L2 ·max

ℓ
Kℓ · log q

= c−2
N · ρ−1 · L · d · log q.

(62)
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Then, the sample complexity

N =

T∑
t=1

Nt ≳ c−2
N · ρ−1 · L · d · log q · T. (63)

Therefore, we have

∥W (t,m+1) −W ⋆∥2 ≤
(
1−

(
1− (2− εt)cN − cI

2

)√ ρ

TK2

)
· ∥W (t,m) −W ⋆∥2

+
√
η · (1− εt/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ η · Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(64)

By mathematical induction, when M = log γ−1 and η = 1/T = 1/Θ(N), we have

∥W (t,M) −W ⋆∥2

≲

√
K2

N
· Cd ·

(
Ct + (1− Ct)εt

)
· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2

≤
cN · Cd ·

(
Ct + (1− Ct) · εt

)
K

· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2

≤
cN · Cd ·

(
Cmax + (1− Cmax) · εt

)
K

· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2.

(65)

From Algorithm 1, we know that W (t+1,0) = W (t,M). To guarantee that iteration converge to the
ground truth W ⋆, namely, ∥W (t+1,0) −W ⋆∥2 < ∥W (t,0) −W ⋆∥, we need

εt ≤
(1− γ)2 ·K · ∥W (t,0) −W ⋆∥2

(1− Ct) · cN · Cd ·Rmax
− Ct

1− Ct
. (66)

To guarantee that εT ≥ 0, then we have

∥W (T,0) −W ⋆∥F ≳
CT · cN · Cd ·Rmax

(1− γ)2 ·K
. (67)

Specifically, let

εt =
cε ·K · ∥W (t,0) −W ⋆∥2
(1− Ct) · cN · Cd ·Rmax

− Ct
1− Ct

, (68)

we have
∥W (t+1,0) −W ⋆∥2 ≲ γ + cε(1− γ) · ∥W (t,0) −W ⋆∥2,

and ∥W (T,0) −W ⋆∥2 ≲
[
γ + cε(1− γ)

]T · ∥W (0,0) −W ⋆∥2,
(69)

which completes the proof.

C Proof of Lemma 2

Lemma 2 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of popu-
lation risk function in (31). According to Weyl’s inequality in Lemma 5, the eigenvalues of ∇2

ℓf(·)
at any fixed point W can be bounded in the form of (75). Therefore, we first provide the lower
and upper bounds for ∇2

ℓf at the desired ground truth W ⋆. Then, the bounds for ∇2
ℓf at any other

point W is bounded through (31) by utilizing the conclusion in Lemma 6. Lemma 6 illustrates the
distance between the Hessian matrix of f at W and W ∗. Lemma 7 provides the lower bound of
Ex

(∑K
j=1 α

⊤
j

∂Q
∂wℓ,k

(W ⋆)
)2

when x belongs to sub-Gaussian distribution, which is used in proving
the lower bound of the Hessian matrix in (76).
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Lemma 5 (Weyl’s inequality, [5]). Let B = A+E be a matrix with dimension m×m. Let λi(B)
and λi(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

|λi(B)− λi(A)| ≤ ∥E∥2, ∀ i ∈ [m]. (70)

Lemma 6. Let f(W ) be the population risk function defined in (31). If W is close to W ⋆ such
that

∥W −W ⋆∥2 ≲
ρ

K
(71)

we have

∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2 ≲

1

K
· ∥W −W ⋆∥2. (72)

Lemma 7. Suppose the following assumptions hold:

1. {wj}Kj=1 ∈ RKℓ are linear independent,

2. pH(h) : RKℓ −→ [0 1] be the probability density for h such that Eh∥h∥22 ≤ +∞.

Let α ∈ RK1K2 be the unit vector defined in (34), we have

ρ := min
∥α∥2=1

∫
R

( K∑
j=1

α⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh > 0, (73)

where R ⊂ RKℓ with
∫
R fH(h) > 0. Moreover, if further assuming P is Gaussian distribution and

R = RKℓ , we have ρ > 0.091.

Lemma 8. Let h(ℓ)(W ) be the function defined in (39). When W is sufficiently close to W ⋆, i.e.,
∥W −W ⋆∥2 is smaller than some positive constant c < 1, we have

∥h(ℓ)(W )∥2 ≲ ∥x∥2,
∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2 ≲ ∥W −W ⋆∥2 · ∥x∥2.

(74)

Proof of Lemma 2. Let λmax(W ) and λmin(W ) denote the largest and smallest eigenvalues of
∇2
ℓf(W ) at a point W , respectively. Then, from Lemma 5, we have

λmax(W ) ≤ λmax(W
⋆) + ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2,
λmin(W ) ≥ λmin(W

⋆)− ∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2.

(75)

Then, we provide the lower bound of the Hessian matrix of the population function at W ⋆. Let P
be the distribution for h(ℓ)(W ) when x ∼ µt with probability density function denoted as pH . For
any α ∈ RKℓK defined in (34) with ∥α∥2 = 1, we have

min
∥α∥2=1

α⊤∇2
ℓf(W

⋆)α

=
1

K2
min

∥α∥2=1
Eh∼P

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

=
1

K2
min

∥α∥2=1

∫
RKℓ−1

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

=
1

K2
min

∥α∥2=1

∫
{h(ℓ)|Jℓ,k ̸=0}

( K∑
j=1

α⊤
j h

(ℓ)ϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

≳
ρ

K2
,

(76)

where the last inequality comes from Lemma 7, and Lemma 7 holds since h(ℓ) belongs to sub-
Gaussian distribution and Wℓ is full rank.
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Next, the upper bound of ∇2
ℓf can be bounded as

max
∥α∥2=1

α⊤∇2
ℓf(W

⋆)α

=
1

K2
max

∥α∥2=1
Ex

( K∑
j=1

α⊤
j h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

=
1

K2
max

∥α∥2=1
Ex

K∑
j1=1

K∑
j2=1

α⊤
j1h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j1h

(ℓ)) ·α⊤
j2h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j2h

(ℓ))

=
1

K2

K∑
j1=1

K∑
j2=1

Exα
⊤
j1h

(ℓ) · Jℓ,kϕ′(w⋆T
ℓ,j1h

(ℓ)) ·α⊤
j2h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j2h

(ℓ))

≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1h

(ℓ))4 · E(ϕ′(w⋆⊤
ℓ,j1h

(ℓ)))4 · Ex(α
⊤
j2h

(ℓ))4 · Ex(ϕ
′(w⋆⊤

ℓ,j2h
(ℓ)))4

]1/4
≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1x)

4 · Ex(α
⊤
j2x)

4
]1/4

≤ 3

K2

K∑
j1=1

K∑
j2=1

∥αj1∥2 · ∥αj2∥2 ≤ 6

K2

K∑
j1=1

K∑
j2=1

1

2

(
∥αj1∥22 + ∥αj2∥22

)
=

6

K
.

(77)

Therefore, we have

λmax(W
⋆) = max

∥α∥2=1
α⊤∇2

ℓf(W
⋆; p)α ≤ 6

K
. (78)

Then, given (71), we have

∥W −W ⋆∥2 ≲
2ρ

K
. (79)

Combining (79) and Lemma 6, we have

∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2 ≲

ρ

K2
. (80)

Therefore, from (80) and (75), we have

λmax(W ) ≤ λmax(W
⋆) + ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2 ≤ 6

K
+

ρ

2K2
≤ 7

K
,

λmin(W ) ≥ λmin(W
⋆)− ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2 ≥ ρ

K2
− ρ

2K2
=

ρ

2K2
,

(81)

which completes the proof.

D Proof of Lemma 3

Before illustrating the whole proof, we first introduce some preliminary lemmas and definitions.
Lemma 9 is the concentration theorem for independent random matrices. The definitions of the
sub-Gaussian and sub-exponential variables are summarized in Definitions 3 and 4, and it is easy to
verify that any bounded variables belong to sub-Gaussian distribution. Lemmas 10 and 11 serve as
the technical tools in bounding matrix norms under the framework of the confidence interval.

The error bound between ∥∇ℓf − gt∥2 is divided into bounding I1, I2, and I3 as shown in (91). I1
in (92) represent the deviation of the mean of several random variables to their expectation, which
can be bounded through concentration inequality, i.e, Chernoff bound. I2 in (93) come from the
inconsistency of ”noisy” label in (8) and the ”ground truth” label in the population risk function
(31). I3 in (94) come from the data distribution shift defined in Definition 1.
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Lemma 9 ([72], Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that such a random matrix satisfies

E(Zk) = 0 and ∥Zk∥ ≤ R almost surely.
Define

δ2 := max
{∥∥∥∑

k

E(ZkZ⊤
k )

∥∥∥,∥∥∥∑
k

E(Z⊤
k Zk)

∥∥∥}.
Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Definition 3 (Definition 5.7, [74]). A random variable X is called a sub-Gaussian random variable
if it satisfies

(E|X|p)1/p ≤ c1
√
p (82)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2∥X∥2
ψ2
s2 (83)

for all s ∈ R and some constant c2 > 0, where ∥X∥ϕ2 is the sub-Gaussian norm of X defined as
∥X∥ψ2

= supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional
marginal α⊤X is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as
∥X∥ψ2

= sup∥α∥2=1 ∥α⊤X∥ψ2
.

Definition 4 (Definition 5.13, [74]). A random variable X is called a sub-exponential random
variable if it satisfies

(E|X|p)1/p ≤ c3p (84)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4∥X∥2
ψ1
s2 (85)

for s ≤ 1/∥X∥ψ1
and some constant c4 > 0, where ∥X∥ψ1

is the sub-exponential norm of X
defined as ∥X∥ψ1

= supp≥1 p
−1(E|X|p)1/p.

Lemma 10 (Lemma 5.2, [74]). Let B(0, 1) ∈ {α
∣∣∥α∥2 = 1,α ∈ Rd} denote a unit ball in Rd.

Then, a subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to
within ξ by some point α ∈ B(0, 1), i.e., ∥z −α∥2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ
satisfies

|Sξ| ≤ (1 + 2/ξ)d. (86)
Lemma 11 (Lemma 5.3, [74]). Let A be an d1 × d2 matrix, and let Sξ(d) be a ξ-net of B(0, 1) in
Rd for some ξ ∈ (0, 1). Then

∥A∥2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|α⊤
1 Aα2|. (87)

Proof of Lemma 3. From (7), we know that
gt(wℓ,k;W )

=
1

N

N∑
n=1

(
Q(W ; sn, an)− y(t)n

)
· ∂Q(W ; sn, an)

∂wℓ,k

=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an) + γ ·max

a
Q(sn, a;W

⋆)

− γ ·max
a

Q(sn, a;W
(t,0))

)
· ∂Q(W ; sn, an)

∂wℓ,k

=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

+
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k
.

(88)
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From (31), we know that

∂f

∂wℓ,k
(W ) = E(s,a)∼µ⋆

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k
. (89)

Then, from (88) and (89), we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W ) = gt(wℓ,k;W )− E(s,a)∼Dtgt(wℓ,k;W )

+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ),

(90)

where Dt and µt are equivalent because of Assumption 2. Then, we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=

[
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼µt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

]
+

[
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k

]
+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ).

(91)

For convenience, we define I1, I2, and I3 in the following ways with xn := (sn, an) be the feature
mapping of state-action pair (sn, an).

Then, I1 is defined as

I1 :=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼Dt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k
,

(92)

I2 is defined as

I2 :=
1

N

N∑
n=1

γ ·
(
max
a

Q(s′n, a;W
⋆)−max

a
Q(s′n, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k
, (93)

and I3 is defined as

I3 := E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ), (94)

where
∂Q(W ; sn,an)

∂wℓ,k
=

1

K
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ(W ) (95)

from (43). Therefore, we have∥∥∥gt(wℓ,k;W )− ∂ft
∂wℓ,k

(W )
∥∥∥
2
≤ ∥I1∥2 + ∥I2∥2 + ∥I3∥2. (96)

Next, we will provide the bound for ∥I1∥2, ∥I2∥2, and ∥I3∥2.

Bound of I1. We first divide the data in Dt into two parts, namely, Dt,1 and Dt,2. Dt,1 includes the
state-action pair (s, a) such that an is randomly selected from action space A, and Dt,2 includes the
state-action pair (s, a) such that an is selected based on the greedy policy with respect toQ(W (t,0)).

27



Then, we define a random variable Z(ℓ,1) =
(
Q(x;W ) − Q(x;W ⋆)

)
· Jℓ,k · αTh(ℓ)(W ) with

x ∼ Dt,1 and Z(ℓ,1)
n =

(
Q(xn;W ) −Q(xn;W

⋆)
)
· Jℓ,k · αTh(ℓ)

n (W ) as the realization of Z(1)
ℓ

for n = 1, 2 · · · , N , where α ∈ Rd is any fixed unit vector with ∥α∥2 ≤ 1. We know that s and a
are independent for x ∼ Dt,1. Let Σ1 denote the covariance matrix of x ∼ Dt,1. Moreover, x(s, a)
is bounded by 1, then we have ∥Σ1∥2 ≤ 1.

Similar toZ(ℓ,1), we define a random variableZ(ℓ,2) =
(
Q(x;W )−Q(x;W ⋆)

)
·Jℓ,k ·αTh(ℓ)(W )

with x ∼ Dt,2 and Z(ℓ,2)
n =

(
Q(xn;W ) −Q(xn;W

⋆)
)
· Jℓ,k · αTh(ℓ)

n (W ) as the realization of
Z(ℓ,2) for n = 1, 2 · · · , N . Differ from Z(ℓ,1), s and a are dependent for x ∼ Dt,2. Let Σ2 denote
the covariance matrix of x ∼ Dt,1. Then, we have ∥Σ2∥2 ≤ 1 + maxj ρxj ,a ≤ 2, where ρxj ,a
denotes the correlation between a and xj .

According to the definition of (92), we can rewrite I1 as

I1 =
1

K

[
1

N

N∑
n=1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

]
=

1

K

[
1

N

( ∑
n∈Dt,1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

+
∑

n∈Dt,2

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

)
−
(
εEx∼Dt,1

(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

+ (1− ε)Ex∼Dt,2
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

)]
=

1

K2

[
ε ·

( 1

εN

∑
n∈Dt,1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt,1
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

)
+ (1− ε)

( 1

(1− ε)N

∑
n∈Dt,2

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt,2
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

]

(97)

Then, for any p ∈ N+, we have(
E|Z(1)|p

)1/p
=
(
Ex∼Dt,1 |Q(W ;x)−Q(W ⋆;x)|p · |Jℓ,kϕ′(w⊤

ℓ,kx)| · |αThℓ|p
)1/p

≤
(
Ex∼Dt,1 |Q(W ;x)−Q(W ⋆;x)|p · |αThℓ|p

)1/p

≤
(
Ex∼Dt,1

∣∣∣∥W −W ⋆∥2 · ∥x∥2
∣∣∣p · ∣∣αTx∣∣p)1/p

≤C1 · ∥W −W ⋆∥2 · p

(98)

where C1 is a positive constant.

From Definition 4, we know that Z(ℓ,1) belongs to sub-exponential distribution with ∥Z(ℓ,1)∥ψ1 ≤
C1∥W −W ⋆∥2. Therefore, by Chernoff inequality, we have

P
{∣∣∣ 1
N

N∑
n=1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣ < t

}
≤ 1− e−C(C1∥W−W ⋆∥2)

2·Ns2

eNst
(99)

for some positive constant C and any s ∈ R.
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Let t = C1∥W −W ⋆∥2
√

d log q
N and s = 2

C∥W−W ⋆∥2
· t for some large constant q > 0. Then, we

have ∣∣∣ 1
N

N∑
n=1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣ ≲ C1∥W −W ⋆∥2 ·
√
d log q

N
(100)

with probability at least 1− q−d.

Similar to (98), we have (
E|Z(ℓ,2)|p

)1/p

≤ C2 · ∥W −W ⋆∥2 · p, (101)

where C2 = 2 · C1. Then, we have∣∣∣ 1
N

N∑
n=1

Z(ℓ,2)
n (j)− EZ(ℓ,2)(j)

∣∣∣ ≲ 2C1∥W −W ⋆∥2 ·
√
d log q

N
(102)

with probability at least 1− q−d.

From Lemma 11 and (97), we have

∥I1∥2 ≤2 · 1

K2

[
ε ·

∣∣∣ 1

εN

∑
n∈Dt,1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣
+ (1− ε) ·

∣∣∣ 1

(1− ε)N

∑
n∈Dt,2

Z(ℓ,2)
n (j)− EZ(ℓ,2)(j)

∣∣∣]

≲
2− ε

K2
∥W −W ⋆∥2 ·

√
d log q

N

(103)

with probability at least 1− |S 1
2
(d)| · q−d.

From Lemma 10, we know that |S 1
2
(d)| ≤ 5d. Therefore, the probability for (103) holds is at least

1−
(
q
5

)−d
. Because q ≫ 5, we denote the probability as 1− q−d for convenience.

Bound of I2. Let a⋆n = argmaxa∈AQ(W ⋆; s′n,a). While for Q(W ), we have
max
a

Q(W ; s′n,a) ≥ Q(W ; s′n,a
⋆). (104)

Then, we have
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a) =Q(W ⋆; s′n,a
⋆
n)−max

a
Q(W ; s′n,a)

≤Q(W ⋆; s′n,a
⋆
n)−Q(W ; s′n,a

⋆
n).

(105)

Similarly to (105), let us define ã⋆n = argmaxaQ(W ; sn,a). Then, we have
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a) ≥Q(W ⋆; s′n, ã
⋆
n)−Q(W ; s′n, ã

⋆
n). (106)

Combining (105) and (106), we have∣∣∣max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
∣∣∣ ≤ max

a

∣∣∣Q(W ⋆; s′n,a)−Q(W ; s′n,a)
∣∣∣. (107)

Following the definition of Z(ℓ,1) in (98), we define

Z(ℓ,3)(j) =
(
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
)
· Jℓ,kϕ′(w⊤

ℓ,kh
(ℓ)) ·α⊤h(ℓ).

Therefore, from (105) and (106), we know

(E|Z(3)|p)1/p ≤
(
Ex∼Dt

∣∣∣max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
∣∣∣p

·
∣∣∣Jℓ,kϕ′(w⊤

ℓ,kh
(ℓ))

∣∣∣p · |α⊤h(ℓ)
n

∣∣p)1/p

≤
(
Ex∼Dt max

a

∣∣∣Q(W ⋆; s′n,a)−Q(W ; s′n,a)
∣∣∣p · |α⊤h(ℓ)

n |p
)1/p

≲ (2− ε) ·
∥∥W −W ⋆

∥∥
2
· log |A| · p.

(108)
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Following the steps in (98) to (100), we have

∥I2∥2 ≲
(1− ε/2)γ

K
·
(
∥W −W ⋆∥2 ·

√
d · log q · log |A|

N
+ EZ(ℓ,3)

)
≲
(1− ε/2)γ

K
·
(
∥W −W ⋆∥2 ·

(√d · log q · log |A|
N

+ C
)

≲
(1− ε/2)γ

K
· ∥W −W ⋆∥2

(109)

with probability at least 1− q−d, where the last inequality holds when N ≳ d · log q · log |A|.
Bound of I3. We have

I3

=E(s,a)∼µt gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=E(s,a)∼µt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆
(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

=E(s,a)∼µt

(
Q(W ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

Q(W ⋆; s′, a′)
)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆
(
Q(W ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

Q(W ⋆; s′, a′)
)
· ∂Q(W ; s, a)

∂wℓ,k

=E(s,a)∼µt,s′∼pa
s,s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆,s′∼pa
s,s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

(110)

Then, we have

|I3| =
∣∣∣∣ ∫

(s,a)

∫
s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

·
(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣∣
≤
∣∣∣Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

∣∣∣ · ∣∣∣∂Q(W ; s, a)

∂wℓ,k

∣∣∣
·
∣∣∣∣ ∫

(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣∣
=
∣∣∣Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

∣∣∣ · ∣∣∣∂Q(W ; s, a)

∂wℓ,k

∣∣∣
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣]
≤Rmax

1− γ
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣].

(111)
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Then, we have∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt,1(ds)πt,1(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt,1(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt,1(ds)

(
πt,1(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣
≤|A| · Ct.

(112)

Therefore, the bound of I3 can be found as

|I3| ≲
Rmax

1− γ
· |A| ·

(
(1− ε)Ct + ε · Ct

)
=Cd ·

(
Ct + (1− Ct)ε

)
· Rmax

1− γ
,

(113)

where Cd = |A|.
In conclusion, let α ∈ RKd and αj ∈ Rd with α = [αT1 ,α

T
2 , · · · ,αTK ]T , we have

∥gt(W )−∇ft(W )∥2

=
∣∣∣αT (gt(W )−∇ft(W )

)∣∣∣
≤

K∑
k=1

∣∣∣αTk (gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

)∣∣∣
≤

K∑
k=1

∥∥∥gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

∥∥∥
2
· ∥αk∥2

≤
K∑
k=1

(∥I1∥2 + ∥I2∥2 + ∥I3∥2) · ∥αk∥2

≤2− ε

K

√
d log q

N
· ∥W −W ⋆∥2 +

(1− ε/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ

(114)

with probability at least 1− q−d.

E Additional proof of the lemmas in Appendix C

E.1 Proof of Lemma 6

The distance of the second order derivatives of the population risk function f(·) at point W and W ⋆

can be converted into bounding P1, P2, which are defined in (116). The major idea in proving P1 is
to connect the error bound to the angle between W and W ⋆ given h(ℓ) belongs to the sub-Gaussian
distribution.

Proof of Lemma 6. From the definition of f in (31), we have

∂2f

∂wℓ,j1∂wℓ,j2

(W ⋆) =
1

K2
ExJℓ,kϕ′(w⋆⊤

j1 h) · Jℓ,kϕ′(w⋆⊤
j2 h) · h⋆h⋆⊤,

and
∂2f

∂wℓ,j1∂wℓ,j2

(W ) =
1

K2
Exϕ

′J ⋆
ℓ,k(w

⊤
ℓ,j1h) · J

⋆
ℓ,kϕ

′(w⊤
ℓ,j2h) · hh

⊤,

(115)
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where h = h(ℓ)(W ) and h⋆ = h(ℓ)(W ⋆).

Then, we have
∂2f

∂wℓ,j1∂wℓ,j2

(W ∗)− ∂2f

∂wℓ,j1∂wℓ,j2

(W )

=
1

K2
Ex

[
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)h⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j1h)Jℓ,kJℓ,kϕ

′(w⊤
ℓ,j2h)hh

⊤]
=

1

K2
Ex

[
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)h⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j2h)hh

⊤)
+ Jℓ,kϕ′(w⊤

ℓ,j2h)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h)h

⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j1h)hh

⊤)]
:=

1

K2
(P1 + P2).

(116)
For any a ∈ RKℓ with ∥a∥2 = 1, we have

a⊤P1a =ExJ ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
)
. (117)

Then, we have

|a⊤P1a| =
∣∣∣ExJ ⋆

ℓ,kϕ
′(w⋆T

ℓ,j1h
⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
)∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − J ⋆
ℓ,kϕ

′(w⋆⊤
ℓ,j2h

⋆)(a⊤h)2
∣∣∣

+ Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆⊤
ℓ,j2h

⋆)(a⊤h)2 − Jℓ,kϕ′(w⋆⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

+ Ex

∣∣∣Jℓ,kϕ′(w⋆⊤
ℓ,j2h)(a

⊤h)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

≲∥W −W ⋆∥2 + ∥W −W ⋆∥2

+ Ex

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⋆⊤

ℓ,j2h)
)
· (a⊤h)2

∣∣∣
≲∥W −W ⋆∥2 + Ex

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⋆⊤

ℓ,j2h)
)
· (a⊤h)2

∣∣∣.

(118)

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized or-
thonormal vectors denoted as B = {a, b, c,a⊥

4 , · · · ,a⊥
d } ∈ Rd. This set forms an orthogonal

and normalized basis for Rd, wherein the subspace spanned by a, b, c includes a,wℓ,j2 , and w∗
ℓ,j2

.
Then, for any x ∈ Rd, we have a unique z = [z1, z2, · · · , zd]⊤ such that

h = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Because (i) a,wℓ,j2 , and w∗
ℓ,j2

belongs to the subspace spanned by vectors {a, b, c} and (ii)
a⊥
4 , · · · ,a⊥

d , · · · are orthogonal to a, b, and c. Then, we know that

w⋆⊤
ℓ,j2h =w⋆⊤

ℓ,j2(z1a+ z2b+ z3c+ · · ·+ zda
⊥
d )

=z1w
⋆⊤
ℓ,j2a+ z2w

⋆⊤
ℓ,j2b+ z3w

⋆⊤
ℓ,j2c+ · · ·+ zdw

⋆⊤
ℓ,j2a

⊥
d

=z1w
⋆⊤
ℓ,j2a+ z2w

⋆⊤
ℓ,j2b+ z3w

⋆⊤
ℓ,j2c+ 0

=w⋆⊤
ℓ,j2(z1a+ z2b+ z3c)

:=w⋆⊤
ℓ,j2h̃.

(119)

where h̃ = z1a+ z2b+ z3c. Similar to (119), we have w⊤
ℓ,j2

h = w⊤
ℓ,j2

h̃ and a⊤h = a⊤h̃.

Then, we define I4 as

I4 :=Eh

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⊤

ℓ,j2h)
)
·
(
a⊤h

)∣∣∣
=

∫
Rh

|ϕ′
(
w⊤
ℓ,j2h

)
− ϕ′

(
w⋆T
ℓ,j2h

)
| · |a⊤h|2 · fH(h)dh

=

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h

)
− ϕ′

(
w⋆T
ℓ,j2h

)
| · |a⊤h|2 · fZ(z) · |Jh(z)|dz

(120)
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where |Jh(z)| is the determinant of the Jacobian matrix ∂h
∂z . Since z is a representation of h based

on an orthogonal and normalized basis, we have |Jh(z)| = 1. According to (119), I4 can be
rewritten as

I4 =

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆T
ℓ,j2h̃

)
| · |a⊤h̃|2 · fZ(z)dz

=

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆T
ℓ,j2h̃

)
| · |a⊤h̃|2 · fZ(z1, z2, z3)dz1dz2dz3

(121)

where in the last equality we abuse fZ(z1, z2, z3) to represent the probability density function of
(z1, z2, z3) defined in region Rz .

Next, we show that z is rotational invariant over Rz . Let R = [a b c · · · a⊥
d ], we have h = Rz.

For any z(1) and z(2) with ∥z(1)∥2 = ∥z(2)∥2. We define h(1) = Rz(1) and h(2) = Rz(2). Since
x is rotational invariant and ∥h(1)∥2 = ∥h(2)∥2 = ∥z(1)∥2 = ∥z(2)∥2, then we know h(1) and
h(2) has the same distribution density. Then, z(1) and z(2) has the same distribution density as well.
Therefore, z is rotational invariant over Rz .

Then, we consider spherical coordinates with z1 = Rcosϕ1, z2 =
Rsinϕ1sinϕ2, z3 = Rsinϕ1cosϕ2. Hence, we have

I4 =

∫
|ϕ′

(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆⊤
ℓ,j2h̃

)
| · |R cosϕ1|2 · fZ(R,ϕ1, ϕ2) ·R2 sinϕ1 · dRdϕ1dϕ2. (122)

Since z is rotational invariant, we have that

fZ(R,ϕ1, ϕ2) = fZ(R). (123)

Then, we have

I4 =

∫
|ϕ′

(
w⊤
ℓ,j2(h̃/R)

)
− ϕ′

(
w⋆T
ℓ,j2(h̃/R)

)
| · |R cosϕ1|2 · fZ(R)R2 sinϕ1dRdϕ1dϕ2

=

∫ ∞

0

R4fz(R)dR

∫ ψ1(R)

0

∫ ψ2(R)

0

| cosϕ1|2 · sinϕ1

· |ϕ′
(
w⊤
ℓ,j2(h̃/R)

)
− ϕ′

(
w⋆T
ℓ,j2(h̃/R)

)
|dϕ1dϕ2

≤
∫ ∞

0

R4fz(R)dR

∫ π

0

∫ 2π

0

sinϕ1 · |ϕ′
(
w⊤
ℓ,j2 x̄

)
− ϕ′

(
w⋆T
ℓ,j2 x̄

)
|dϕ1dϕ2,

(124)

where the first equality holds because ϕ′
(
w⊤
i,,j2

h
)

only depends on the direction of h, and x̄ :=
h/R = (cosϕ1, sinϕ1 sinϕ2, sinϕ1 cosϕ2) in the last inequality.

Because z belongs to the sub-Gaussian distribution, we have Fz(R) ≥ 1−2e−
R2

σ2 for some constant
σ > 0. Then, the integration of R can be represented as∫ ∞

0

R4fZ(R)dR =

∫ ∞

0

R4d
(
1− Fz(R)

)
≤
∫ ∞

0

4R3
(
1− Fz(R)

)
dR

≤
∫ ∞

0

8R3e−
R2

σ2 dR

≤ 32√
2π
σ

∫ ∞

0

R2e−
R2

σ2 dR

=32σ2

∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR,

(125)

where the last inequality comes from the calculation that∫ ∞

0

2R2e−
R2

σ2 dR =
√
2πσ3,∫ ∞

0

2R3e−
R2

σ2 dR = 4σ4.

(126)
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Then, we define x̃ ∈ RKℓ belongs to Gaussian distribution as x̃ ∼ N (0, σ2I). Therefore, we have

I4 ≤ 32σ2 ·
∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR

∫ π

0

∫ 2π

0

sinϕ1 · |ϕ′
(
w⊤
ℓ,j2 x̄

)
− ϕ′

(
w⋆⊤
ℓ,j2 x̄

)
|dϕ1dϕ2

= 32σ2 · Ez1,z2,z3
∣∣ϕ′(w⊤

ℓ,j2 x̃
)
− ϕ′

(
w⋆⊤
ℓ,j2 x̃

)
|

≂ Ex̃

∣∣ϕ′(w⊤
ℓ,j2 x̃

)
− ϕ′

(
w⋆T
ℓ,j2 x̃

)
|,

(127)

where x̃ belongs to Gaussian distribution.

Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a
Gaussian distribution. In the following contexts, we provide the upper bound of Ex̃

∣∣ϕ′(w⊤
ℓ,j2

x̃
)
−

ϕ′
(
w⋆T
ℓ,j2

x̃
)
|.

Define a set A1 = {x|(w⋆⊤
ℓ,j2

x̃)(w⊤
ℓ,j2

x̃) < 0}. If x̃ ∈ A1, then w⋆⊤
ℓ,j2

x̃ and w⊤
ℓ,j2

x̃ have different
signs, which means the value of ϕ′(w⊤

ℓ,j2
x̃) and ϕ′(w⋆⊤

ℓ,j2
x̃) are different. This is equivalent to say

that

|ϕ′(w⊤
ℓ,j2 x̃)− ϕ′(w⋆⊤

ℓ,j2 x̃)| =
{

1, if x̃ ∈ A1

0, if x̃ ∈ Ac
1

. (128)

Moreover, if x̃ ∈ A1, then we have

|w⋆T
ℓ,j2 x̃| ≤|w⋆T

ℓ,j2 x̃−w⊤
ℓ,j2 x̃| ≤ ∥w⋆

ℓ,j2 −wℓ,j2∥2 · ∥x̃∥2. (129)

Let us define a set A2 such that

A2 =
{
x̃
∣∣∣ |w⋆T

ℓ,j2
x̃|

∥w∗
ℓ,j2

∥2∥x̃∥2
≤

∥w∗
ℓ,j2

−wℓ,j2∥2
∥w∗

ℓ,j2
∥2

}
=
{
θx̃,w∗

ℓ,j2

∣∣∣| cos θx̃,w⋆
ℓ,j2

| ≤
∥w⋆

ℓ,j2
−wℓ,j2∥2

∥w⋆
ℓ,j2

∥2

}
.

(130)

Hence, we have that

Ex̃|ϕ′(w⊤
ℓ,j2 x̃)− ϕ′(w⋆T

ℓ,j2 x̃)|
2 =Ex̃|ϕ′(w⊤

ℓ,j2 x̃)− ϕ′(w⋆T
ℓ,j2 x̃)|

=Prob(x̃ ∈ A1)

≤Prob(x̃ ∈ A2).

(131)

Since x̃ ∼ N (0, ∥a∥22I), θx̃,w⋆
ℓ,j2

belongs to the uniform distribution on [−π, π], we have

Prob(x̃ ∈ A2) =
π − arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2

∥w⋆
ℓ,j2

∥2

π
≤ 1

π
tan(π − arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

)

=
1

π
cot(arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

)

≤ 2

π

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

≤∥W ⋆
ℓ −Wℓ∥2

(132)

Hence, (124) and (132) suggest that

I4 ≲ ∥Wi −W ⋆
i ∥2 · ∥a∥22,

and ∥P1∥2 ≤ ∥W −W ⋆∥2 + I4 ≲ ∥W −W ⋆∥2,
(133)

The same bound that is shown in (133) holds for P2 as well.
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Therefore, we have

∥∇2
ℓf(W

⋆)−∇2
ℓf(W )∥2 = max

∥α∥2≤1

∣∣∣α⊤
(
∇2
ℓf(W

⋆)−∇2
ℓf(W )

)
α
∣∣∣

≤ 1

K2

K∑
j1=1

K∑
j2=1

∥P1 + P2∥2 · ∥αj1∥2 · ∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥W −W ⋆∥2 · ∥αj1∥2∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥W −W ⋆∥2 ·
(∥αj1∥22 + ∥αj2∥22

2

)
≲

1

K
· ∥W ⋆ −W ∥2,

(134)

where α ∈ RKd and αj ∈ RKℓ with α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤.

E.2 Proof of Lemma 7

We aim to prove that
∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero
for any α. Therefore, the ρ in (2) is strictly greater than zero. The proof is inspired by

Theorem 3.1 in [22]. It is obviously that
(∑K

j=1 α
⊤hϕ′(w⊤

ℓ,jh)
)2

is greater or equal to

zero. Given
(∑K

j=1 α
⊤hϕ′(w⊤

ℓ,jh)
)2

is continuous, we only need to show that α such that∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh) ̸= 0 for any α, namely, {hϕ′(w⊤

ℓ,jh)}Kj=1 are linear independent. Com-
pared with Theorem 3.1 in [22], we need to address two challenges: (1) the neuron weights w is the
random variable in [22] while the input h is the random variable in this paper and (2) the random
variable belongs to Gaussian distribution in [22] while the random variable belongs to sub-Gaussian
distribution in this paper.

Proof of Lemma 7. Let H be a Hilbert space on RKℓ , and the inner product of H is defined as

⟨f, g⟩ =
∫
R
f(h)⊤g(h)fH(h) · dh, ∀f, g ∈ H, (135)

where the Lebesgue measure of R over RKℓ is non-zero. Instead of directly proving∫
R

(∑K
k=1 α

⊤hϕ′(w⊤
k h)

)2

fH(h) · dh > 0 for any α, we note that it is sufficient to prove that

{hϕ′(w⊤
k h)}k∈[K] are linear independent over the Hilbert space H. Namely, if {hϕ′(w⊤

k h)}k∈[K]

are linear independent, we have

α⊤hϕ′(w⊤
k h) ̸= 0 almost everywhere. (136)

Therefore, we can know that
∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero.

Next, we provide the whole proof for that {xϕ′(w⊤
k h)}k∈[K] are linear independent over the Hilbert

space H.

We define a group of functions {ψj(h)}Kj=1, where ψj(h) = hϕ′(w⊤
j h). From the assumption in

Lemma 7, we can justify that Eh∼D|ψj(h)|2 ≤ Eh∼D|h|2 <∞.

Let Xi = {h | w⊤
i h = 0} for any i ∈ [K]. For any fixed k, we can justify that Xk cannot be

covered by other sets {Xk}j ̸=k as long as wk does not parallel to any other weights wj with j ̸= k.
Namely, Xk ̸⊂ ∪j ̸=kXj . The idea of proving the claim above is that the intersection of Xj and Xk
is only a hyperplane in Xk. The union of finite many hyperplanes is not even a measurable space
and thus cannot cover the original space. Formally, we provide the formal proof for this claim as
follows.
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Let λ be the Lebesgue measure on Xk, then λ(Xk) > 0. When wj does not parallel to wk, Xk ∩Xj
is only a hyperplane in Xk for j ̸= k. Hence, we have λ(Xj ∩ Xk) = 0. Next, we have

λ
(
Xk ∩ (∪j ̸=kXk)

)
≤

∑
j ̸=k

λ(Xk ∩ Xj) = 0. (137)

Therefore, we have

λ
(
Xk/(∪j ̸=kXk)

)
= λ(Xk)− λ

(
Xk ∩ (∪j ̸=kXk)

)
= λ(Xk) > 0. (138)

Therefore, we have Xk/(∪j ̸=kXj) is not empty, which means that Xk ̸⊂ ∪j ̸=kXj .
Next, Since Xk/(∪j ̸=kXj) is not an empty set, there exists a point zk ∈ Xk/(∪j ̸=kXj) and r0 > 0
such that

B(zk, r) ∩ Dj = ∅ with ∀r ≤ r0 and j ̸= k, (139)
where B(zk, r) stands for a ball centered at zk with a radius of r. Then, we divide B(zk, r) into two
disjoint subsets such that

B+
r = B(zk, r) ∩ {h | w⊤

k h > 0},
B−
r = B(zk, r) ∩ {h | w⊤

k h < 0}.
(140)

Because zk is a boundary point of {h|w⊤
k h = 0}, both B+

r and B−
r are non-empty.

Note that ψj(h) is continuous at any point except for the ones in Xj . Then, for any j ̸= k, we know
that ϕj(w⊤

k h) is continuous at point zk since zk ̸∈ Xj . Hence, it is easy to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = ψk(zk). (141)

While for ψk, we know that ψk(h) ≡ 0 for h ∈ B−
r , (ii) ψk(h) = h for h ∈ B+

r . Hence, it is easy
to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = zk

lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = 0.

(142)

Now let us proof that {ψj}Kj=1 are linear independent by contradiction. Suppose {ψj}Kj=1 are linear
dependent, we have

K∑
j=1

αjψj(h) ≡ 0, ∀h. (143)

Then, we have

lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

(144)

Then, we have

0 = lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh− lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh

=αkzk

(145)

where the last equality comes from (141) and (142).

Note that zk cannot be 0 because zk ̸∈ Xj . Therefore, we have αk = 0. Similarly to (145), we
can obtain that αj = 0 by define zj following the definition of zk for any j ∈ [K]. Then, we know
that (143) holds if and only if α = 0, which contradicts the assumption that {ψj}Kj=1 are linear
dependent.

In conclusion, we know that {ψj}Kj=1 are linear independent, and∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero.
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E.3 Proof of Lemma 8

Proof of Lemma 8. From the definition of (39), we have

∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2
=∥ϕ

(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

=∥ϕ
(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
+ ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

≤∥ϕ
(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
∥2

+ ∥ϕ
(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

≤∥Wℓ−1 −W ⋆
ℓ−1∥2 · ∥h(ℓ−1)(W )∥2 + ∥h(ℓ−1)(W )− h(ℓ−1)(W ⋆)∥2.

(146)

With the assumption in the Lemma 8 such that W is close enough to W ⋆, we have

∥Wi∥2 ≤ ∥W ⋆
i ∥2 + ∥Wi −W ⋆

i ∥2 ≲ 1. (147)

Therefore, we have

∥h(i)(W )∥2 ≤ ∥Wi∥2 · · · ∥W1∥2 · ∥x∥2 ≲ ∥x∥2. (148)

Then, we have

∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2
≤∥Wℓ−1 −W ⋆

ℓ−1∥2 · ∥x∥2 + ∥h(ℓ−1)(W )− h(ℓ−1)(W ⋆)∥2

≤
ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥x∥2 + ∥h(1)(W )− h(1)(W ⋆)∥2

=

ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥x∥2 + ∥x− x∥2

=

ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥h(i−1)(W )∥2

≤∥W −W ⋆∥2 · ∥x∥2,

(149)

which completes the proof.

F Additional experiments

In this section, we provide numerical justification that our theoretical findings are aligned with
DDQN through the Atari Breakout game The neural network follows the same architecture as the
one used in Section 5. The algorithm terminates if the average score over the recent 100 episodes
does not improve or the algorithm reaches the maximum episode set as 200, which is around 4×105

training steps. The testing score is calculated based on a similar setup as the training process by
fixing the maximum memory size N as 2000 and greedy policy, i.e., ε = 0. Each point in the plot is
averaged over 10 experiments with an error bar representing the standard deviation.

Estimation errors with respect to the sample complexity N . We follow the setup in Section 5
to use the expected cumulative reward as the estimation error of the learned model to the optimal
Q-value function. The εt in ε-greedy policy decreases geometrically from 1 to 0.01. We vary the
number of samples in the replay buffer from 3000 to 10000. Figure 4 shows that the test error is al-
most linear in 1/

√
N , which is consistent with our characterization in (20). In addition, experiments

with a large N have a shorter error bar indicating a more stable learning performance with a large
sample complexity as shown in (12).

Convergence with different selections of ε. Figure 5 illustrates the convergence rate when εt in the
ε-greedy policy changes. For each point, ε0 is selected as the value in the x-axis, and we decrease
εt geometrically as the iteration t increases. Each point is averaged over 10 independent trials. We
can see that the convergence rate is a linear function of cε, matching our findings in (19).
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Figure 5: The convergence rate against the value
of cε.

G Extension to non i.i.d. samples

Assumption 3. At any fixed outer iteration t, the behavior policy πt and transition kernel Pt satisfy

sup
s∈S

dTV
(
P(sτ ∈ ·) | s0 = s),Pt

)
≤ λντ , ∀ τ ≥ 0 (150)

for some constant λ > 0 and ν ∈ (0, 1), where dTV denotes the total-variation distance between
the probability measures.

Assumption 3 assumes the Markov chain {st} induced by the behavior policy, i.e., εt-greedy policy
at t-th outer loop, is uniformly ergodic with the corresponding invariant measure Pt. Compared
with i.i.d. cases, we need to handle an additional error term when bounding the distance between
the gt and ∇f as shown in (91). Therefore, the upper bound in Lemma 3 changes, which suggests
an additional term in the final bound.

We present the major theoretical findings for non-i.i.d. samples in Theorem 2. The major proofs in
this context follow similar steps to the proof of Theorem 1, with slight changes in the error bound
between the sequences gt and ∇f . In this section, we omit the details of the proof for Theorem 2
but provide the proof for Lemma 3 under the assumptions outlined in Assumption 2 to simplify the
presentation.
Theorem 2 (Convergence for non-i.i.d. case). Suppose Assumption 1 and (143) hold, the buffer
size N satisfies (13). Let us define Cmax be a constant that is larger than Ct for 1 ≤ t ≤ T and
Cd = |A| · (1 + logν λ

−1 + 1
1−ν ), when εt satisfy

εt =
cε ·Θ(

√
N) · et

(1− Cmax) · Cd ·Rmax
− Cmax

1− Cmax
(151)

for a fixed constant cε ∈ (0, (1− γ)2], and the initialization satisfies

||W (0,0) −W ⋆||F ≤ O
(
1− 1− cε

Θ(
√
N)

)
· ρ · ∥W

⋆∥F
K

. (152)

Then, with the high probability of at least 1− T · q−d, we have

(C1) The learned weights decay geometrically with

||W (t+1,0) −W ⋆||F ≤
(
γ + cε · (1− γ)

)
· ||W (t,0) −W ⋆||F +

(2 + γ)Rmaxτ
⋆

(1− γ)Θ(N)
, (153)

(C2) the returned model Q(W (T,0)) exhibits an estimation error as

sup
(s,a)

∣∣Q(W (T,0))−Q⋆
∣∣ ≤ Cmax · Cd ·Rmax

(1− γ)2 ·Θ(
√
N · T )

+
(2 + γ)Rmaxτ

⋆

(1− γ)Θ(N · T )
, (154)

where τ⋆ = min{t | λνt ≤ 1/(N · T )}.
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Proof of Lemma 3 under Assumption 2. Recall that in (91), we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=

[
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼Dt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

]
+

[
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k

]
+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

+ E(s,a)∼Dt,P
[
gt(wℓ,k;W )− E(s,a)∼µt,Pgt(wℓ,k;W )

]
:=I1 + I2 + I3 + I4.

(155)

Bound of I1 and I2. Compared with (91), the upper bound for I1 and I2 is the same as those shown
in (103) and (109), respectively.

Bound of I3. Following (111), the upper bound of I3 can be characterized as

∥I3∥2 ≤Rmax

1− γ
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣]. (156)

and ∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt,1(ds)πt,1(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt,1(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt,1(ds)

(
πt,1(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣.
(157)

From Theorem 3.1 in [49], we know that∣∣∣ ∫
(s,a)

(
P⋆(ds)− Pt,1(ds)

)∣∣∣ ≤ |A|(logν λ−1 +
1

1− ν
)Ct

and
∥∥πt,1(da|ds)− π⋆(da|ds)

∥∥ ≤ Ct.

(158)

Therefore, the bound of I3 can be found as

∥I3∥2 ≤ Rmax

1− γ
· |A| ·

(
(1− ε)Ct + ε · Ct

)
· (1 + logν λ

−1 +
1

1− ν
)

=Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
,

(159)

where Cd = |A| · (1 + logν λ
−1 + 1

1−ν ).

Bound of I4. I4 is the bias of the data because the data (s, a) at iteration t depends on the neural
network parameters W . Let us define ḡt as

ḡt(wℓ,k;W ) = Eµt,P gt(wℓ,k;W ) (160)

and
∆t = gt(wℓ,k;W )− ḡt(wℓ,k;W ). (161)

39



It is easy to verify that

∥gt(wℓ,k;W )− gt(w̃ℓ,k; W̃ )∥ ≤ (1 + γ) · ∥W − W̃ ∥,

∥ḡt(wℓ,k;W )− ḡt(w̃ℓ,k; W̃ )∥ ≤ (1 + γ) · ∥W − W̃ ∥,

and ∥gt∥ ≲
Rmax

1− γ
.

(162)

Then, we have
∆t(W )−∆t(W̃ ) ≲ (1 + γ) · ∥W − W̃ ∥2. (163)

Therefore, we have

∆t(W
(t,0)) ≤ ∆t(W

(t−τ,0)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi. (164)

Then, we need to bound δt(W (t−τ,0)).

Let us define the observed tuple Ot(s, a, s′) as the collection of the state, action, and the next state
at the t-th outer loop. Note that

W (t−τ,0) −→ st−τ −→ st −→ Ot (165)

forms a Markov chain introduced by the policy πt−τ .

Let W̃ (t−τ,0) and Õt be independently drawn from the marginal distributions of W̃ (t−τ,0) and Ot,
respectively.

With Lemma 9 in [4], we have

E∆t(W
(t−τ,0), Ot)− E ∆t(W̃

(t−τ,0), Õt) ≲ 2 sup
w,O

|∆t(W , O)| · λ · ντ . (166)

By definition, we have E ∆t(W̃
(t−τ,0), Õt) = 0 and

|∆t(W , O)| ≤ 2 Rmax

1− γ
. (167)

Therefore, we have

E∆t(W
(t,0)) ≤E∆t(W

(t−τ,0)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi

≤Rmax

1− γ

(
λ · ντ + (1 + γ) · τ · ηt−τ

)
,

(168)

where the last inequality comes from the fact that the step size ηt is non-increasing.

Choose τ⋆ = min
{
t = 0, 1, 2, · · · | λντ ≤ ηT

}
. When t ≤ τ⋆, we choose τ = t and have

E∆t(W
(t,0)) ≤ Rmax

1− γ
· τ⋆ · η0. (169)

When t > τ⋆, we can choose τ = τ⋆ and obtain

E∆t(W
(t,0)) ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ . (170)

Combining (169) and (170), we have

|I4| ≤
Rmax

1− γ
· (1 + γ)τ⋆ · ηmax{0,t−τ⋆}, (171)

where τ⋆ = min{t | λνt ≤ ηT }.
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