Supplementary Materials for:

On the Convergence and Sample Complexity Analysis of
Deep Q-Network with Epsilon-Greedy Exploration

The structure of the appendix mainly follows the roadmap of the proof described in Section 4.4.

In Appendix A, we define the characterizable population risk function in (31) to approximate the
objective function. Also, some notations to simplify the analysis are introduced in Appendix A, and
we recommend the readers to refer to Table 3 for the major notations used in the proofs.

In Appendix B, we provide the proof for Lemma 1 and Theorem 1 following the steps as (1) Char-
acterization of the local convex region of population risk function (Lemma 2), (2) Characterization
of the distance between the population risk function and the objective function (Lemma 3), (3)
Characterization of the convergence of two consecutive iterations W (tm+1) and W Em) | and 4)
Mathematical induction over the ¢ and m to obtain the error bound between the convergent point
W (T0) and the desired point W*.

In Appendix C, we provide the preliminary lemmas and the whole proof for Lemma 2, which char-
acterizes the local convex region of the non-convex population risk function.

In Appendix D, we provide the preliminary lemmas and the whole proof for Lemma 3, which char-
acterizes the difference of g; and the gradient descent of defined population risk function in (31).

In Appendix E, we provide the proofs for the preliminary lemmas in proving Lemmas 2 and 3.
Before moving to the details, we provide an overview of the techniques in the proofs.

(P1.) The local convex region near W*. To characterize the local convex region, we first bound
the Hessian matrix of the defined population risk function in (31) at W*. Then, we derive the
changes in the Hessian matrix when the neuron weights move around the W*. Specifically, we
prove that when neuron weights W are not far away W™, then the Hessian matrix in this region
is always positive-definite, indicating that a local convex region near W*. [90] considers the one-
hidden-layer neural network, and the lower bound of the Hessian matrix only holds for Gaussian
input. Instead, in this paper, we consider multi-layer cases and need to derive a lower bound for
the Hessian matrix for all the layers. Instead, the input of the intermediate layer cannot be proved
to be Gaussian but belong to sub-Gaussian distribution. Therefore, we built the proof for the lower
bound of the Hessian matrix when the input belongs to the sub-Gaussian distribution. Compared
with Gaussian input, Sub-Gaussian does not have a closed form of the probability density function.
Instead of directly calculating the lower bound, we convert the problem into proving a series of
functions are linearly independent over a Hilbert space (see Lemma 7 and the proof in Appendix
E). Instead of directly calculating the distance of the population risk function in different points,
we characterize a Gaussian variable such that the distance over the sub-Gaussian distribution can be
upper bounded by the one over the Gaussian variable (see Lemma 6 and the proof in Appendix E).

(P2.) The difference between the gradient g; and the population risk function. With the local
convex region of the population risk function, we can characterize the convergence of the population
risk function. With Lemma 3, we can prove that the distance between the population risk function
and g; is small enough, the behaviors of the iterations via g; can be described by the ones in the
population risk function with some additional error terms. Compared with the proof in [90], We need
to address the extension from supervised learning settings to Q learning settings and the extension
from the one-hidden-layer neural networks to the multi-layer neural networks. First, similar to
challenges in (P.1), we provide a new concentration bound to characterize the distance between
the two functions for the intermediate layers (see 7 in the proof of Lemma 3). Second, the distance
between the two functions has an additional error term due to the inconsistency of the label defined in
(31) and (8) (see I in the proof of Lemma 3). Third, we need to develop a new concentration bound
to characterize the error term caused by the distribution shift when training samples are collected by
e-greedy policy (see I3 in the proof of Lemma 3).
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(P3.) The convergence analysis of Algorithm 1. When the initialization is not far away from W*,
the initialization lies in the local convex region of W* for the population risk function. When we
have enough samples N and a large enough ¢4, we can guarantee that the distance between the g;
and the gradient of the population risk function is small enough such that the iterations following g;
converges to a point nearby W* as well. However, if ¢, is too large, the convergent point nearby W*
can be even worse than the initial point. To avoid this issue, we have an upper bound for selecting
&, and the upper bound decreases as |[W (9 — W*|| decreases over t. Therefore, we build the
convergence analysis of Algorithm 1.

A Definitions and Notations

In this section, we implement the details of algorithms described in Algorithm 1, and some important
notations are defined to simplify the presentation of the proof.

A.1 Definition of the Empirical Risk Function and Its Corresponding Notations
Recall that the goal of @-learning is to find the Q*-function to minimize (6). Therefore, we have
Q*(s,a) :T(S7a) +f}/'IE:s’Lsx,a InaﬁQ*(Slaa/) for (8,(1) N,u'*' (29)
a’e
Since W* is the global minimal to (6), we have
QW™ s,a) =7r(s,a) +7-Eg|sq max QW™*;s' d). (30)
Tale
Therefore, the population risk function is defined as

2
f(W) = E(s,a)w/m* [Q(W7 S, a) - 7’(8, (L) -7 Es’\s,a glgﬁ Q(W*; 3/7 a/)]

(3D
N 2
= E(s,a)r\/u* [Q(W7 S, CL) - Q(W 38, a)} )
where p* is the distribution of the sampled data following the optimal policy 7*.
The gradient of the (31) is
Vw f(W) =Earp (QW3z) — 1(®) =7 Esrpe max Q" (s', a)) - VwQ(W;x)
(32)

“Eoprsrnpz  (QW3@) —r(2) =7 max QW 8',d')) - Vw Q(W; ).

As W™ is one of the ground truths to f(W), i.e., f(W™) achieves the minimum value as f(W™*) =
0 < f(W) for any other W. Given f is a smooth function, we have the gradient of f with respect
to any W, at the ground truth W* equals to zero, namely,

Vif(W*) :=Vw,f(W*) =0, Ve e [L). (33)
In addition, without special descriptions, o = [@{ , @ ,--+ , ] stands for any unit vector that

in RE«Ke—1 with a; € R}Y | (Ko = d). Therefore, we have

S
T T
[V ehll> = max [TV sh2 = max’zjlaj Sy |
J
- (34)
VZh||o = max la™VZhal, = max (; a; 8'ng)
A.2 Notations in Algorithm 1
Recall that the gradient in the ¢-th loop is
g(W) = ( Y (QWimn) —y) - VwQ(Wia,)
DI i
(35

N
Z W mn - r(:cn) v H}gﬁQ(W(t 1),sn,a )) : VWQ(van)
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Then, we define g,

(™) (W,; W) as the components of g{"™ (W) with respect to W;. Recall that in

(4) we have
W = [vec(W1)", vec(Wy)", -, vec(Wr)"]". (36)
Then, with the definition of g™ (W;; W), we have
g W) =g W w)T g W W)L g Ww)T]T (37)
To simplify the analysis, the update of W (™) is analyzed in the form of
W) — W) g™ (W W) gw ) - W) e (L) 38)

One can see that (38) returns the same W (-:»+1) as the gradient step at line 9 in Algorithm 1.

Table 3: Notations for the proofs

g:(W') | The gradient function at point W in the ¢-th outer loop, defined in (7).
9:(Wy; W) | The gradient function of g.(W') with respect to the components of Wp.
d Dimension of the feature mappings of the state-action pair (s,a) € S x A.
K Number of neurons in the hidden layer.
L Number of hidden layers.
W= The desired Weights for approximating the optimal Q function.
W (tm) | Model returned by Algorithm 1 at ¢-th outer loop and m-th inner loop.
f The population risk function defined in (31).
Vw f(W™*) | The full gradient of a function f at point W*.
V¢ f(W™) | The gradient of a function f with respect to the components of W, at point W*.
V2 f(W*) | The Hessian matrix of a function f with respect to the components of W, at
point W*,
n The dimension of W.
oY) The dimension of vectorized W,.
h()(W) |The input to the {-th layer, defined in (39).
Ky The dimension of h(©).
Jo(W) | A function in R — R, defined in (42).
Et The value of ¢ in the behavior policy at ¢-th outer loop.
C; The distribution shift between the optimal policy and behavior policy at iteration
t.
N The size of the experience replay buffer.
Riax The upper bound of the reward.

A.3 Notations for the Deep Neural Networks.

Let n denote the dimension of W defined in (4). We denote n; as the dimension of the vectorized
neuron weights in the ¢-th layer, namely, n, = dim(vec(W)).

Then, let () (W) denote the input in the ¢-th layer (or the output in the (¢ — 1)-th layer) with respect
the neuron weights as W, and B = (s, a), where

ROW) = oW hC) = o = (W (Wi - (W @) ). (39)
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h() (W) may be shortened as h(*) when the neuron weights are clear from the contexts. Then, we
denote the dimension of h(® as K, where

K, if I4>1
Ke= {d, if (=1 “0)
Then, Q(W; s, a) can be written as
17 1"
QW s,a) = S=d(wg th") = — (W o(W[_hEY)), (41)

where wy , denotes the k-th neuron weights in the /-th layer. Then, we define a group of functions
J(W) € R" — R¥ such that

- T .
T(W) = 1T/ W/hEYW - ¢/ (W _ hE=DYW ] -/ (WL DYWL i 0> 1
1 if (=1
(42)
Then, the gradient of () can be represented as
oQ 1
o W) = g Ierx(W)¢' (w) O (W) RO (W), (43)

where J; ;. stands for the k-th component of 7.

A.4 Notations for Order-wise Analysis

Without loss of generality, we consider the case that d > K. If K > d, we can always switch the
order of K and d in the proof. Let o;(L) denote the i-th largest singular value of W} In this paper,
we consider the case that W} is will-conditioned and bounded, i.e., 01(L) and o1(L) /o (L) can
be viewed as the constant and will be ignored in the analysis. In addition, some constant numbers
will be ignored in most steps. In particular, we use hi(z) 2 (or <,~)ho(2) to denote there exists
some positive constant C' such that hy(z) > (or <,=)C - ha(z) when z € R is sufficiently large.

B Proof of Lemma 1 and Theorem 1

The main idea in proving Theorem 1 is to characterize the gradient descent term by the Mean Value
Theorem (MVT) in Lemma 4 as shown in (47) and (48). The MVT is not directly applied in g,
because it is not smooth. However, the population risk functions defined in (31), which are the
expectations over random variables, are smooth. Lemma 2 characterizes the bounds of the Hessian
matrix defined in (49). Lemma 3 characterizes the bounds of gradient differences between the
population risk function defined in (31) and ¢; in (7) as shown in (60). Furthermore, according
to Lemma 3, we know that the distance ||V, f(W') — V,f(W™*)||2 is upper bounded in the order
of |W — W*||y as shown in (60). Then, we can establish the connection between || W (t:+1) —
W*||5 and |W (™) — W*||5 as shown in (59). Then, by mathematical induction over m, one can
characterize the iteration of {||W (%9 — W*||3}]_, as shown in (65), which completes the proof
of Lemma 1. Finally, selecting ¢; based on (68) for all ¢ € [T], we derive the error bound of
W (T:0) — W™ ||, by mathematical induction over ¢, which completes the proof of Theorem 1.

Lemma 2. Given any W € R", let W satisfy
p-Cr 0K

W =W s — (44)
Sor some constant c; € (0, 1). Then, for the f defined in (31), we have
(L—cr)p 2 7
P v W) = . (43)

Lemma 3. Let f be the function defined in (31). Let g; be the function defined in (7). Then, we have
2—¢; |Ky-logq

_ . < . _ *
IVef(W) = ge(Wes W)llz S —5 N W — W*|;
1—,/2)-
n % WD — e, (46)
Rl’l’lax
+Ca- (Ce 4 (1= Cye) - —
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with probability at least 1 — ¢~ .

Lemma 4 (Mean Value Theorem). Let U C R% be open and f : U — R% be continuously
differentiable, and x € U, h € R vectors such that the line segment x + th, 0 < t < 1 remains
inU. Then we have:

1
flx+h)— f(x) = </ Vf(zx +th)dt> - h,
0
where V f denotes the Jacobian matrix of f.

Proof of Theorem 1. Let W, denote the neuron weights in the /-th layer. From Algorithm 1 and
(38), in the s-th iteration and ¢-th episode, we have

W = W g™ (W W) g w - W)
_ Z(t,m) . nvﬁf(W(t7m)> + 5(Wz(t’m) _ We(t,mfl)) (47)
- (Vef(WE™) — g™ (W W Em)),

From (31), we can see that W* is the global optimal to f because f(W™) achieves the minimum
value as 0. Therefore, we have V,f,(W™*) = 0. Since V,f is a smooth function W*, from the
Mean Value Theorem in Lemma 4, we have

Vef(WE™) =V, f(WE™)) -V, f(WF)

! (48)
- / V2 f(W(t’m) u- (WE™ - W*))du (W W),
0
For notational convenience, we use H to denote the integration as
1
H ::/ V(W e (W — W) ) du (49)
0
Then, we have
wtmt) W+ T —-nH BI| | Wtm — W
W(t,m) —W* - I 0 W(t,m—l) —W*
(50)
Vef (WEm) — g™ (Wi W)
’I’] .
0
Let H = SAST be the eigen-decomposition of H. Then, we define
ST o S 0 I-nA+p81 BI
A(p) = | ap) - . (51)
o S 0o S I 0
S o[ |ST o I o I-nA+p1 BI
Since = , we know A(f3) and K AL b share the same
S||o ST 0 I I 0

eigenvalues. Let Al(-A) be the i-th eigenvalue of H (e)’ then the corresponding i-th eigenvalue of (51),
denoted by AEA), satisfies

AP = =M + DXV (B) + 5 =0, (52)
By simple calculation, we have
VB, it B> (1—ymM)
a=m® 4 5)+ J - 1 )2 — a5

A ()| = (53)

, otherwise.

Specifically, we have

A (©0) > AM(B), for VB e (0,(1—nA™)?), (54)
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2
and )\z(»A) achieves the minimum )\,L(-A)* = ’1 —1/ nAEA)' when §* = (1 - n)\,EA)> . From Lemma

2, for any @ € R? with ||a|» = 1, we have
1
aTng(W(t’m))a:/ aTvzf(WW") Fu- (WEm W*))a»du
0
1
s/ N[22 = A,
0
1
a"Vf(Whm™)a = / aTVEf(W(t’m) +u- (WE™ W*))a - du
0

1
2/ mlnHaH dU—)\mina
0

where A\pax ~ %, and \,in, ~ %. Therefore, we have

N € RV N &

~

min K2 I’ max K N
Thus, when 7 < (M < K, ||A(5*)]]2 can be bounded by

~

1—01
A =1~ A0 <1/ L=

m * L —crnp m
vajt +1)_,pv%|b 5;(1._ Eggifiz‘f) _”vvét Wl

- [ Ve f(WEm™)) — gl (wrtm)|,

S(1- 0=/ 15) W - wi

+ - [Vef (W) — g™ (WE™)] .
Take the sum of (58) from ¢ = 1to ¢ = L, we have

||W(t,m+l) _ W*HQ S( (1 _ 7) /Kz) HW (t,m) _ W*H?

L
0 Y Ve f (W) — g™ (W),
Y/

Therefore, we have

From Lemma 3, we have

m m m 2 - Kylogq m N
[Verwem) g Wi w )| SZ [ W —w
(1 €t/2)y (t,0) *
WO -
Rmax
+C’d(Ct+(1—Ct)£)71_7

For some small constant ¢ > 0, let
1 /Ke log 9 cN [ np
Ny K2

cJ_\,2 p bt L2 'IH?XK['Iqu

which requires

Ny

vV

CR,Q-;f1 -L-d-loggq.
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Then, the sample complexity

T
N=> N Zcy-p ' L-d-logq-T. (63)

t=1

Therefore, we have

C
Wi o (1 (1= 2 e - D)y ) IWE - Wl

2 TK?
1—¢4/2
R Eggggjéfggil. WO e, (64)
Rmax
+770d (Ct+(1_0t)€) 'ﬁ.

By mathematical induction, when M = logy~! andn = 1/T = 1/O(N), we have
W A0 — W

K2 Rlnax *
5\/;~Cd~ (Cot (1= Cer) - 725 401 —e/2)y - WO — W,
Ly (Cit(1-Cy) - (65)
cenCa t—I:( - Et)'fm+<1—6t/2>v-IIW“"”—W*HQ
-7
ey -Cy- Cmax+ ]-_Cmax + € Rmax *
_en - Cu l ) t>.1_7+<1_5t/m-|w<w>_w||2.

From Algorithm 1, we know that W (41,00 — W (t:M) Ty guarantee that iteration converge to the
ground truth W*, namely, ||W (10 — W ||, < |[WED) — W*||, we need

. (1— 7)2 K ||W(t,0) —W*|, B C, 66)
t= (1_Ct)'CN'Cd'Rmax 1_075.

To guarantee that e > 0, then we have
OT *CN Cd . Rmax

W(T,O) _ W* >

(67)

Specifically, let
K- (t,0) _ W*
L KW Wy G .
(1_Ct)'CN'Cd'Rmax 1—Ct

we have
(WD~ W o S vt e =) [WED — W,

and WP — W, < [y+e(1—7)]" - WO — W,

which completes the proof.

(69)

C Proof of Lemma 2

Lemma 2 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of popu-
lation risk function in (31). According to Wey!’s inequality in Lemma 5, the eigenvalues of V3 f(-)
at any fixed point W can be bounded in the form of (75). Therefore, we first provide the lower
and upper bounds for V? f at the desired ground truth W*. Then, the bounds for V7 f at any other
point W is bounded through (31) by utilizing the conclusion in Lemma 6. Lemma 6 illustrates the
distance between the Hessian matrix of f at W and W*. Lemma 7 provides the lower bound of

Ea ( Zj(zl a;'— afﬁk (W) * when z belongs to sub-Gaussian distribution, which is used in proving

the lower bound of the Hessian matrix in (76).
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Lemma 5 (Weyl’s inequality, [5]). Let B = A + E be a matrix with dimension m x m. Let \;(B)
and \;(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

(Ai(B) = Xi(A) < | El2, Vi€ [m]. (70)

Lemma 6. Let f(W) be the population risk function defined in (31). If W is close to W™ such
that

W — W72 < K (71
we have
IV2H(W) = 3 FW)s S - W — Wl 72
Lemma 7. Suppose the following assumptions hold:
1. {w;}<, € R¥ are linear independent,
2. pr(h) : RE¢ — [0 1] be the probability density for h such that Ep||h||3 < +oc.
Let o € RE K2 pe the unit vector defined in (34), we have
K 2
pi= H;Iﬁizril /R (Jz_:l aTth’(ijh)) pu(h)-dh >0, (73)

where R C RE¢ with fR fu(h) > 0. Moreover, if further assuming P is Gaussian distribution and
R = RE¢, we have p > 0.091.

Lemma 8. Let h') (W) be the function defined in (39). When W is sufficiently close to W*, i.e
|W — W*||2 is smaller than some positive constant ¢ < 1, we have
1RO W)l < ll2]l2,

) (74)
[ROW) — ROW )|y < [W = WHls - ||z]o-

Proof of Lemma 2. Let Apax(W) and A\pin(W) denote the largest and smallest eigenvalues of
V2 f(W) at a point W, respectively. Then, from Lemma 5, we have
Amax (W) < Amax (W) + [ VEF(W) = VEF (W) 2,
Amin(W) 2 Amin(W*) - HV%f(W) - v%f(W*)‘b
Then, we provide the lower bound of the Hessian matrix of the population function at W*. Let P

be the distribution for h(*) (W) when « ~ p; with probability density function denoted as pg. For
any a € RX¢K defined in (34) with ||a||2 = 1, we have

(75)

min a' Vif(W")a

llxll2=1

1

= KA, "”7’<Za RO T (wi )>

1 - 2
— mi > afh® "(wp T h®) h©) . dnh® 76
K2 ngﬁfil/mm (j=1 a; B Jekd (wi, )) pu(R) (76)

1 @ .— / ( “ © i ¢ ¢
2 Jall2=1 {h(D|7,.,#0} Z )) pu( )

> P
~ K2’

where the last inequality comes from Lemma 7, and Lemma 7 holds since h(©) belongs to sub-
Gaussian distribution and W, is full rank.
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Next, the upper bound of V? f can be bounded as
max a' VZf(W*)a

llee]l2=1

:%Hg\lﬁ . (Z"‘Thz) T/ (wi b )>2

Z Z aTh(Z) Tord (w *Tlh(é)) a) h(f) NATACH (f))

J1=1j2=1

K K
1 * *
=23 Z Z ]Ewa;rlh(é) . ¥7f,k¢/(w251h(é)) . a;zh(@) . L7Z,k:¢/(we;2h(é))

K2 lalamt

Jji=1j2=1
S T e) (0 T3 (04 *T 3 (04 1/4
<7 %, 20 0 [Belod W) B i RO Balo W) B0 )
K K
1 T o]l
SKT Al Z Z [ " Ea(ay,) }
6 o= o 1
<2 53 e lal < = 2 > 5 (llew I+ llews.13)
Jji1=1j2=1 Jj1=172=1
_6
N
(77)
Therefore, we have
6
Amax(W*) = max a'Vif(W*p)a <—. (78)
llafl2=1 K
Then, given (71), we have
2
W W < 2. (19)
Combining (79) and Lemma 6, we have
* P
IVEF W) = VEFW)]2 S 45 (80)
Therefore, from (80) and (75), we have
6 p 7
< * 2 2 * < < —
)\max(W) =~ )\max(W )+ ||v€f(W) ng(W )”2 =K + 2K2 >~ K7 (81)
* 2 2 * 14 14 _ P
)‘min(W) > )‘min(W ) - ||V£f(W) - sz(W )”2 > ﬁ - m = mv
which completes the proof. O

D Proof of Lemma 3

Before illustrating the whole proof, we first introduce some preliminary lemmas and definitions.
Lemma 9 is the concentration theorem for independent random matrices. The definitions of the
sub-Gaussian and sub-exponential variables are summarized in Definitions 3 and 4, and it is easy to
verify that any bounded variables belong to sub-Gaussian distribution. Lemmas 10 and 11 serve as
the technical tools in bounding matrix norms under the framework of the confidence interval.

The error bound between ||V, f — g¢||2 is divided into bounding I, I3, and I3 as shown in (91). I
in (92) represent the deviation of the mean of several random variables to their expectation, which
can be bounded through concentration inequality, i.e, Chernoff bound. Is in (93) come from the
inconsistency of “noisy” label in (8) and the “ground truth” label in the population risk function
(31). I3 in (94) come from the data distribution shift defined in Definition 1.
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Lemma 9 ([72], Theorem 1.6). Consider a finite sequence { Zy} of independent, random matrices
with dimensions di X ds. Assume that such a random matrix satisfies

E(Zy) =0 and |Zy|]| <R almost surely.

52 = max{H ZE ZoZ)) Tzk)H}.
Then for all t > 0, we have
—t2/2
Prob{ ZZk FEp Ty Rt/3)'

Definition 3 (Definition 5.7, [74]). A random variable X is called a sub-Gaussian random variable
if it satisfies

Define

> t} d1+d2)exp(

(E|X[P)? < e1v/p (82)
forall p > 1 and some constant c; > 0. In addition, we have
Res(X—EX) < 602|\X\|fpzs2 83)

for all s € R and some constant co > 0, where || X ||, is the sub-Gaussian norm of X defined as
X1l = supyy p~ /2 (EIX[P)V/P.

Moreover, a random vector X € R¢ belongs to the sub-Gaussian distribution if one-dimensional
marginal " X is sub-Gaussian for any o € R%, and the sub-Gaussian norm of X is defined as
HX”’l/JQ = SUP||a||p=1 ||aTX||¢2

Definition 4 (Definition 5.13, [74]). A random variable X is called a sub-exponential random
variable if it satisfies

(BIX[P)P < egp (84)
for all p > 1 and some constant c3 > 0. In addition, we have
Ees(X—EX) < eC4HXH30132 (85)

for s < 1/||X||y, and some constant cs > 0, where || X ||y, is the sub-exponential norm of X
defined as || X ||y, = sup,», p~ " (E[X[P)!/7.

Lemma 10 (Lemma 5.2, [74]). Let B(0,1) € {al|a|lz = 1, € R?} denote a unit ball in RY.
Then, a subset S¢ is called a &-net of B(0,1) if every point z € B(0,1) can be approximated to
within & by some point o € B(0,1), i.e alla < & Then the minimal cardinality of a &-net S¢
satisfies

[Sel < (1+2/¢)". (86)
Lemma 11 (Lemma 5.3, [74]). Let A be an di X dy matrix, and let S¢(d) be a &-net of B(0,1) in
R for some & € (0,1). Then
Al <(1=-871 max o] Aas|. 87
H ||2 - ( 5) alGSE(dl),OQESg(dQ)' ! 2‘ ( )
Proof of Lemma 3. From (7), we know that
ge(we ;s W)

N
! aQ(W Sn an)
N W;sn,an) — ®)y ., 2=\ "o on)
N;(Q( i Sn, Q) yn) Far s
1 N
NZ ( W;Sn7an) _Q(W*;snvan)+’7'maXQ(5n;a; W*)
n=1
’ 88
— v -max Q(s,, a; W<t70>)> L 0Q(W; 80, a5) (88)
@ 8wz’k

IQ(W'; 8, an)
awg,k

(Q(Wa Snyan) — QW™ 85, an)) ’

I
=
WE

3
Il
-

8Q(W, Sn, an)
owy i, '

2 \

N
Z . (maXQ Sp,a; W*) — mng(sn,a; W(t’o))) .
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From (31), we know that

of x IQ(W:s,a)
=E x ; — ; C— .
G0 W) = Bt (QUW3s,0) = QW5 s,0)) - =E50E (89)
Then, from (88) and (89), we have
0
gr(we s W) — 8wf (W) = gi(wer; W) — E(g,0)~p, gt (We,r; W)
0,k o (90)
+ E 8,a)~ Lt Wy, ;W )
(s,0)~pe It (Wek ) — 8w4k( )
where D, and p; are equivalent because of Assumption 2. Then, we have
. of
gt(wf,kv W) 8’1,0@ f
N
_ 1 . *. 8Q(W;3n7an)
- |:N nz::l (Q(W7 sn»an) - Q(W 75naan)> T&k
0Q(W; s, a)
— E(s,0)~ ;s,a) — s,a)) s ————
(s (QUW3 ,0) = QU3 ,0)) - =50 oD
0Q(W; 8y, an)
max Q(s,,a; W*) — max Q(s,, a; W*0))) . =2 n)
+x Zv( o )~ max Qs )
of
+ E(s,a)mpu, 9t (We s W) = Jwer (W).

For convenience, we define I, I, and I3 in the following ways with x,, := (s, a,,) be the feature
mapping of state-action pair (8, a,,).

Then, I; is defined as

N
1 . . 0Q(W; s, an)
Iimy 3 (QUW3oman) = QU8 0n) - = s
n=1 ' 92)
. . 0Q(W;s,a)
- E(s,a)N'Dt (Q(W7 870‘) - Q(W ,s,a)) : TLI@’
I, is defined as
N
I, :—]1[“;7~ (mgx@(s;l,a;W ) — maxQ( s, a; W(t’o))) ~W (93)
and I3 is defined as
I3 :=FE (wer; W) — of (W) 94
3 = Li(s,a)~p: Gt \We k5 awl,k ) €L}
where 20(W ) )
38n, Qn _ / T pl\ptl
Gt = o e (w] OB (W) ©5)
from (43). Therefore, we have
of
ge(wes W) = 52 (W)|| < [l + | Ells + | Esll. 96)
Wy, k 2

Next, we will provide the bound for ||I1 |2, || I2]|2, and || I5]|2.

Bound of I,. We first divide the data in D; into two parts, namely, D; 1 and D; o. D; ; includes the
state-action pair (s, a) such that a,, is randomly selected from action space A, and D, o includes the

state-action pair (s, a) such that a,, is selected based on the greedy policy with respect to Q(W (:0)),
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Then, we define a random variable Z(“V) = (Q(z; W) — Q(z; W*)) - Joi, - aTh(D) (W) with
z ~ Dy and ZY = (Q(@; W) — Q(@n; W) - Tuk - &ThY) (W) as the realization of 2"
forn =1,2---, N, where @ € R? is any fixed unit vector with ||| < 1. We know that s and @
are independent for x ~ Dy ;. Let X denote the covariance matrix of  ~ D, ;. Moreover, x(s,a)
is bounded by 1, then we have ||21]2 < 1.

Similar to Z(»1), we define a random variable Z(“?) = (Q(z; W) —Q(x; W*))- Ty - h(O (W)
with @ ~ D; 5 and Z\"? = (Q(@; W) — Q(@; W*)) - Tox - &Th') (W) as the realization of
Z®2) forn = 1,2---, N. Differ from Z(“Y), s and a are dependent for 2 ~ D; 5. Let X5 denote

the covariance matrix of & ~ Dy 1. Then, we have || Xzl < 1+ max; p,; o < 2, where pu; 4
denotes the correlation between a and ;.

According to the definition of (92), we can rewrite I as

r N
L= 3 (QWiz,) — QW5 2,)) Toxd (w] B
n=1

1
K|N

Ean, (QW:a) — QW™ az))ag,m’(wzkh‘)hﬂ

171 * ’
- N(; (QUW32,) = QW*s.)) Tesd (w] i) b,
+ Y (QWsa,) — QW) Tod (w] bt )
n€Dy 2
— (Eomp,, (QW:2) = QW*:2)) Tosd (w] B ) o7
(1 2B, (QUW ) — QW) s (] 1|
1 1 /
e (o 3 (@Wien) — QW) Jd (i,
- EM, (QW:2) - QW™ 2)) Tosd (w] k)R
S0y X QW) - QU ) s (] B,
n€Dy 2
B, QW) — QW) Juse (] kW |
Then, for any p € NT, we have
1/
(EIZDP) 7 =(Banp, ,[QW;2) = QW5 2)P - | To i (wl2)] - [aTh! )
1/
<(Bann,, QW 2) — QW) - o hP) 08)
1/
< (Banm,, [IW = Wl a| o ])

<Cr-[W =W7l2-p
where C] is a positive constant.

From Definition 4, we know that Z(“"1) belongs to sub-exponential distribution with || Z*1)||,,, <
C1||W — W*||5. Therefore, by Chernoff inequality, we have

e~ C(C1|W-W"||3)*.Ns®

N
1 , .
IP’{‘N S 20 () - ]Ezu,l)(j)‘ < t} <1- e (99)
n=1

for some positive constant C' and any s € R.
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Lett = C1||W — W*||2 dl}’vgq and s = W - t for some large constant ¢ > 0. Then, we
have

‘ ZZ(Z () —EZED (5 )’ <O [W — W, - dl;;gq (100)
with probability at least 1—q %
Similar to (98), we have
1/p
(E|Z(“)\P) <Oy ||W — WHs - p, (101)
where Cy = 2 - (1. Then, we have
dlo
LS 200) 202 ()| < 20 W — W -2 (102)
n=1
with probability at least 1 — ¢~ .
From Lemma 11 and (97), we have
(f,l) 7Y (evl) y
Inle <2 g5 | |5y & 200 - 52090)
n€Dy,1
+(1—¢) ‘ = Yz ]EZ(“)(j)H (103)

n€Dy 2

2—c¢ dlogq
SS W = W[ 8

with probability at least 1 — Sy (d)[ - ¢~

From Lemma 10, we know that |S1 (d)| < 5. Therefore, the probability for (103) holds is at least

1-— (%) ~¢ Because q > 5, we denote the probability as 1 — ¢~¢ for convenience.

Bound of I5. Let o), = arg maxq,c4 Q(W™*; s, a). While for Q(W), we have

’n7

mng( ;sh,a) > QWi s, a”). (104)

Then, we have
mng(W sl a)— mL?XQ(W's' a) =Q(W%*;s! a )—maXQ(W sl a)

1¥n r¥Yn r<no

<QW?;s,,a;) — QW s, ar).

7nan 1 9n

(105)

Similarly to (105), let us define a, = arg maxaQ(W'sn, a). Then, we have
max Q(W*; s, a) - maxQ(W; s, a) >2Q(W"; s,,a;) — Q(W; s, ;). (106)
Combining (105) and (106), we have
mng(W ;8h,a) — mng(W,sn,a)‘ < mgx’Q(W ish,a)—Q(Wish a)|l. (107)

Following the definition of Z (£:1) in (98), we define
Z09(j) = (maxQ(W;s),,a) — max QW s),,a)) - T/ (w] b)) - aThY.

1 n)

Therefore, from (105) and (106), we know
(E|Zz®)p)/p <( oD,

maXQ( *is.a) — mgXQ(Ws a)’

) 9On)

» 1/p
| Terd (k)| o R ”)
‘ k¢ (w  h )| la )| (108)

IN

1/p
<Em~wnax!Q(W*;s;, a) - QWis.a)| ~|aTh£f>|p)

S(2—¢)- ||W— W*||2-log|A\ - .
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Following the steps in (98) to (100), we have

1—-¢/2 -1 -1
Il SUZL2Y (e[ LT R )
(1—¢/2)y d-logq - log |A| (109)
[ S St A _ x| . @-10g g - 10g |A|
S (I wr e )

(1—-¢/2)y
<A W W
S | ll2

with probability at least 1 — g%, where the last inequality holds when N > d - log ¢ - log | A|.
Bound of Is5. We have

I3
of
:E(s,a)r\/ut gt(wé,k; W) - OU)&]C (W)
N 0Q(W:s,a
Bl (QWis,0) — QW s5,0)) - 2L

— Egsa)nr (Q(W; s,a) — Q(W*;s, a)) : W
=E(s,0)~pie (Q(W; s,0) = 7(s,0) =7 Byrope |, maxQ(W*; s, a/)) . W (110)
— E(s,a)~op (Q(W; s,a) —7(s,a) =7 Esnpr H}Lf}XQ(W*; s, a,)) . %@;:,@
“Ew i, (QW:,0) = r(s,0) =1 max QW™ ') - %
(ot srmps, (Q(Wss,0) = 1(s,0) =7 - max QW 8',a) ) - %

Then, we have

S/, a/)) ) GQ(W, S, CL)

8w57k

b= [ [ (@Wss0 (a0 - mpx oW

- (p*(ds,da)P(ds'|s, a) — p(ds, da)P(ds']s, a))‘

‘8Q(W;s,a)’
Owy i,

S‘Q(W; s,a) —r(s,a) —v-maxQ(W*;s',d")| -

‘/( 3 / (1*(ds,da)P(ds'|s, a) — p(ds, da)P(ds'|s, a))

‘8Q(W;s,a)’

wn s (111)

:‘Q(W; s,a) —r(s,a) —v-maxQ(W*;s',d")| -
. {(1 o) | /( | (0 (s da)P(ds]s.a) s (ds. da)P(ds'| .|
+e- ‘/ / *(ds,da)P(ds'|s,a) — ut72(ds,da)77(ds'|s,a))”

<Riax { (1—¢) ’/ / *(ds,da)P(ds'|s,a) — pt71(ds,da)73(ds'|s,a)))

+e- ‘ / / (1*(ds,da)P(ds'|s,a) — p,2(ds, da)P(ds'|s, a)) H
(s,a) J s’
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Then, we have

/s Y / *(ds,da)P(ds'|s,a) — ut’l(ds,da)P(dsﬂs,a))‘
= /s ) /S (P*(ds)m*(da|s)P(ds'|s,a) — Pt,l(ds)wt,l(da\ds)P(dSq&a))‘

3

< / / (P*(ds) = P,1(ds))7* (dals)P(ds'|s,a) (112)
(s,a) J s’
+ / / Pia(ds)(me1(dalds) —ﬂ*(da|ds))73(ds’|s,a)‘
(s,a) Js'
<|Al- C.
Therefore, the bound of I3 can be found as
Rm'x
|75 < 17& Al (1 =e)Cr+e-C)
-
R (113)
:Cd . (Cf + (1 - Ct)é') . m,
where Cy = |AJ.
In conclusion, let & € RE? and a; € R? witha =[], @, - -+, a%]T, we have
l9:(W) = V fi(W)]2
:‘aT gu(W) = V(W)
of
< ’a wy s W) — w ‘
; i (gt (we ks W) awm( )
K
of
< W) — w H .
<3 atewnss W) = o W)l i
K
<D (e + 122 + [1E3l2) - el
k=1
2— dlogq e/2)y
N e
Rm'x
L Co (Gt (1 ) - Fma
I—vy
with probability at least 1 — ¢—¢. O

E Additional proof of the lemmas in Appendix C

E.1 Proof of Lemma 6

The distance of the second order derivatives of the population risk function f(-) at point W and W*
can be converted into bounding P, P», which are defined in (116). The major idea in proving P; is
to connect the error bound to the angle between W and W* given h(©) belongs to the sub-Gaussian
distribution.

Proof of Lemma 6. From the definition of f in (31), we have
0*f
8’11)@7]-1 (9’11)[7]‘2

0% f 1
dwr o W) = ket Tik(wigh) - Tid (w/s,h) - BhT
©5J1 €1J2

1
(W) = ﬁleJe,m%w;f h) - Joid (wh) - h*R*T,
(115)
and

31



where h = h() (W) and h* = h()(W™).
Then, we have
0? 0?
/ W) — f

Owy, j, Owy j, dwy,j, 0wy, j,

1
= Em [jlfkgbl( Z]lh*)\% k¢ ( ijh*)h*h*—r \-7Z,k¢/(w2j1h)‘-ﬁ,k%,kd)/(ijQh)hhT]

(W)

]' / * * * /
=— B [T (wih ) (T30 (w) 5, R )R R T — T (w/ ;,h)hh ")
+ Jg,kqs’(wg,jzh) (T e’ (wﬁl h)h*h*" — ﬂ,kd(wzjlh)hhT)]
1
ZF(I'H + P).
(116)

For any a € RX¢ with ||lal|2 = 1, we have

o Pia =B, 77,0 (i, h*) (776 (wil,h*) (@ h*)? = Tl (w] k) (@ R)?). (117)

Then, we have

" Pa| = (wih, 1) (T2 (Wi, k) (@ W) = Tod! (w],h) (@” h)?)|
(wi T, b )@ h)? — ﬂ,kas'(wzhh)(a%)?\
<Eo| T/ (i, W) (@ hY)? = Tl (wi ], h) (@ R

+E, Jem(wm NaTh)? = T (], h) (@ h)?|
+ o |Toi! (w7 ], ) (@ h)? = T (w], h) (@ )|
SIW = W+ W = W3
+ Eq| (¢/(wi,h) — ¢/ (wi ) - (@ h)?
SIW = W™ + Ea| (¢ (wi ], h) — o (wi ], b)) - (a"h)?|.

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized or-

(118)

thonormal vectors denoted as B = {a,b,c,ai, - ,a;} € RY This set forms an orthogonal
and normalized basis for R, wherein the subspace spanned by a, b, ¢ includes a, wy ;,, and w; ja-
Then, for any € R?, we have a unique z = [21, 23, ---, 24]' such that

h:zla+22b—|—23c+~~~+zdaj‘.

Because (i) a,wy ;,, and ijz belongs to the subspace spanned by vectors {a,b,c} and (ii)

at, - ,az,--- are orthogonal to a, b, and c. Then, we know that

wy ph =wy; Jz(zla + 2ob + 23¢ + - + zqa7)
:zlwgma + zzwz;-zb + zgw}f};c + et zdwfj; ajl‘
:zlw;}—za + zng—jzb + z3wj j,Zc +0 (119)
:wlf—jrz (z1@ + 29b + z3¢€)
*wzgzh
where b = z;a + 29b + z3c. Similar to (119), we have ijQh = thﬁ anda"h =ah.

Then, we define I, as
I =En|(¢/(w} k) — &/ (w] ,h) - (aT )

= [ 16wl m) = i) laTRIE ()i (120)

- / 16 (wf, ) — & (wi T h)| - [aThI - f2(2) - | Tn(2)]dz
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where |Jp, ()| is the determinant of the Jacobian matrix 2%. Since z is a representation of h based
on an orthogonal and normalized basis, we have |J,(z)| = 1. According to (119), I, can be
rewritten as

e [ )~ )T
R - (121)
z/ |¢’(wzj2h) ¢ (w?r‘; )| \a—rh|2 f7(z1, 22, 23)dz1dz2d 23

z

where in the last equality we abuse fz(z1, 22, 23) to represent the probability density function of
(21, 22, 23) defined in region R ,.

Next, we show that z is rotational invariant over R,. Let R = [abec --- aJ], we have h = Rz.
For any z(1) and 2(?) with |2V |y = ||2(?||o. We define h() = Rz() and h(®? = Rz(®. Since
 is rotational invariant and |||y = ||R®) |y = |2V ]2 = [|2?|2, then we know h()) and

h(?) has the same distribution density. Then, z(!) and z(?) has the same distribution density as well.
Therefore, z is rotational invariant over R .

Then, we consider spherical coordinates with 23 = Rcospr, zo =
Rsingisings, 23 = Rsingicosgpo. Hence, we have

14:/|¢’(w2jjz)—¢>’( w; ] h)| - [Recos g1 [? - f2(R, ¢1,¢2) - R?sin ¢y - dRdprdgs. (122)
Since z is rotational invariant, we have that
[z(R,¢1,02) = fz(R). (123)

Then, we have

I :/|¢’(wzj2(ﬁ/3)) — (wm(h/R))| -|Rcos ¢1]? - fz(R)R?sin ¢p1dRde do

S P1(R)  p2(R)
= R*f.(R)dR 2 g
/0 f(~) /0 / | cos ¢1]° - sin ¢y
¢ (w/,(h/R)) — ¢’ (wi%, (R/R))|d¢1des
27
/ R'f.(R dR// sin ¢y - ¢ %2) (wm ) |derdoo,

where the first equality holds because ¢’ (wi” iz h) only depends on the direction of h, and T :=
h/R = (cos ¢1, sin ¢; sin ¢, sin ¢1 cos o) in the last inequality.

(124)

. . _R2
Because z belongs to the sub-Gaussian distribution, we have F,(R) > 1—2e™ =2 for some constant
o > 0. Then, the integration of R can be represented as

/ T R (R)dR = / " Rid(1- F.(R))
0 0
3 —
S/O 4R?(1— F.(R))dR

S 2
< / SR~ % dR (125)
O
R2
S—a R26_72dR
21
3202 32 ! e AR
= g 2 y
0 V2mo?

where the last inequality comes from the calculation that

/ 2R% T dR = /275,
o . (126)

/ 2R3 27 dR = 404,
0
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Then, we define z € R¥¢ belongs to Gaussian distribution as Z ~ N (0, o1 ). Therefore, we have

') 1 _R2 T 27 ] -
Iy < 3207 - RQWe o dR/ / sin gy - ¢ (wy , @) — ¢ (w} }, &) |dprdo
0

= 3202 . Ezl,zg,zg |¢/ wz—j2£> (b (wz(}; )|
~Ezle' (w/;,7) — ¢ (w7}, )],

(127)

where & belongs to Gaussian distribution.

Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a
Gaussian distribution. In the following contexts, we provide the upper bound of Ez {¢’ (ijQ %) —

¢/ (we 2J2 )|

Define a set A; = {z|(w} s sc)('w ) <0}.Ifz e .Al, then w*T Z and 'wz . @ have different

signs, which means the value of ¢’ ( , ) and ¢'(wy ; x) are dlfferent This is equivalent to say
that
~ 1,ifzeA
/ T _ ) 1
|¢'(wy ;, @) — (we LX) = { 0. if &€ A (128)

Moreover, if £ € A;, then we have

*T~

w5, @] <|wih,@ —w/l @] < |w;, —we 2 |22 (129)

Let us define a set A5 such that
{ ‘ w;’ Z - HwZ,jg—wé,szz}
w20zl = flwg |2

|wy ;, — we |2 }
lwg j, 2

(130)
:{giw* ) ‘|COSQE w | <
YD) P52

Hence, we have that

Ezl¢' (w/ ;,®) — ¢ (w;”,Z)|* =Ez|¢ (w/ ;,&) — ¢ (w; ], &)|
=Prob(z € A;) (131)
<Prob(x € A).

Since  ~ N(0, ||a||31), 03w; , belongs to the uniform distribution on [—7, 7], we have

1wz, j, —we,j, |I2

T — arccos — wr . — wy
Prob(z € As) = i, 12 <= tan(m — arccos —H b2 . Z’th)
™ ™ lwg j, ll2
|wy ;, — w&j2||2
== cot(arccos ——2 "7
llwg j, Il2 (132)
<2 w5, — wel2
™ ||wz g ll2
<[[W{ = W2
Hence, (124) and (132) suggest that
15 Wi~ W7 - a3, 1)

and  [|Pylz < [W = W72 + I S [|[W = W7,

The same bound that is shown in (133) holds for P; as well.
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Therefore, we have

IV27(W") = VEf(W)[2 = max |aT (VEF(W*) - VE(W))al

llell2<1

K K
1
SEDIDI LR LR PR A E

J1=1j2=1
1 K K
St 2 2 W =Wzl lzllev, |2 (134)
Jji=1j2=1
K K
1 i (o3 + e, 13
gt 2 2 W W ()
Ji=17J2=

1
S IWE =W,
where a € R¥? and o; € RE: with e = [af , g , -+ ,a ] T. O

E.2 Proof of Lemma 7

2
We aim to prove that [, (Zjil aTh¢’(ijh)) pr(h) - dh is strictly greater than zero

for any . Therefore, the p in (2) is strictly greater than zero. The proof is inspired by

2
Theorem 3.1 in [22]. It is obviously that (Z;iloﬁhqb’ (ijh)) is greater or equal to

2
zero. Given (Z;il a'he' (w;jh)) is continuous, we only need to show that o such that

ZJKZI a'h/(w/ ;h) # 0 for any c, namely, {h¢'(w/ ;h)}!, are linear independent. Com-
pared with Theorem 3.1 in [22], we need to address two challenges: (1) the neuron weights w is the
random variable in [22] while the input h is the random variable in this paper and (2) the random
variable belongs to Gaussian distribution in [22] while the random variable belongs to sub-Gaussian
distribution in this paper.

Proof of Lemma 7. Let H be a Hilbert space on R%¢, and the inner product of 7 is defined as
(o) = [ SO o) (k) -db. VFg € M (135)

where the Lebesgue measure of R over RX¢ is non-zero. Instead of directly proving
2
Jr (Z,ﬁil aThgé’(w,;rh)) fu(h) - dh > 0 for any «, we note that it is sufficient to prove that

{h¢'(w)] h)},e(k) are linear independent over the Hilbert space H. Namely, if {h¢/(w, h)} e[k
are linear independent, we have

a'h¢'(w) h) #0 almost everywhere. (136)

2
Therefore, we can know that [/, ( Zfil a'h¢' (wzjh)) pr(h) - dh is strictly greater than zero.

Next, we provide the whole proof for that {z¢’ (w, h)}xe (k] are linear independent over the Hilbert
space H.

We define a group of functions {t;(h)}I<,, where 1;(h) = h¢'(w, h). From the assumption in

Lemma 7, we can justify that Ep,p|;(h)|*> < Epuplh|? < cc.

Let X; = {h | w/h = 0} for any i € [K]. For any fixed k, we can justify that X} cannot be
covered by other sets { X}, } ;1 as long as wj, does not parallel to any other weights w; with j # k.
Namely, X}, ¢ U, X;. The idea of proving the claim above is that the intersection of &; and A},
is only a hyperplane in X;. The union of finite many hyperplanes is not even a measurable space
and thus cannot cover the original space. Formally, we provide the formal proof for this claim as
follows.
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Let X be the Lebesgue measure on A}, then A(X}) > 0. When w; does not parallel to wy, X3 N X
is only a hyperplane in X}, for j # k. Hence, we have A\(X; N Aj) = 0. Next, we have

A(Xk N (Ujeee)) <D A(Xe N X)) = 0. (137)
J#k
Therefore, we have
M/ (Ujrdi)) = M Xe) = M X N (UjerXi)) = MXx) > 0. (138)
Therefore, we have A}, /(U;j£x ;) is not empty, which means that Xy ¢ U;j;X;.
Next, Since Xy /(U X;) is not an empty set, there exists a point 2z € X%/ (U2, X;) and 79 > 0

such that
B(zi,r)ND; =0 with Vr <rgandj#k, (139)
where B(zj, ) stands for a ball centered at zj, with a radius of r. Then, we divide B(zy, r) into two
disjoint subsets such that
B = B(z,r) N {h | w] h >0},
£ =Bz 0 (b wlh>0) 50
B, = B(zx,r) N{h | w, h < 0}.
Because zj, is a boundary point of {h|w,; h = 0}, both B;" and B,  are non-empty.

Note that 1; (h) is continuous at any point except for the ones in X;. Then, for any j # k, we know
that ¢; (w,;rh) is continuous at point zy, since z;, & X;. Hence, it is easy to verify that

. 1
7,1_1{& A(B,T)/B;r Yr(h)dh = lim / Vi (h)dh = i (zk). (141)

While for ¢, we know that i, (h) = 0 for h € BT_, (11) Y (h) = h for h € B;". Hence, it is easy
to verify that

P ) S PO

(142)
lim h)dh = 0.
50- ABr ) Jis , Vr(h)
Now let us proof that {% , are linear mdependent by contradiction. Suppose {’(/JJ} ; are linear
dependent, we have
Z a;i;(h) =0, Vh. (143)
Then, we have
5 / 3 =
(144)

h)dh =0

T’—>0+ B+

Then, we have

=%, B85 B+ / Zaﬂ% G A / Z oih (145)

B j=1 B j=1
=2k
where the last equality comes from (141) and (142).

Note that z;, cannot be 0 because z;, ¢ X;. Therefore, we have ay, = 0. Similarly to (145), we
can obtain that a;; = 0 by define z; following the definition of zj, for any j € [K]. Then, we know
that (143) holds if and only if & = 0, which contradicts the assumption that {¢; }le are linear
dependent.

In conclusion, we know that {v h jK: 1 are linear independent, and

2
Jr (ZjK:l aThgi)’(ijh)) pu (k) - dh is strictly greater than zero. O
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E.3 Proof of Lemma 8

Proof of Lemma 8. From the definition of (39), we have
1RO (W) — RO (WH)]|2
=lo(W,L A W) — o(W LAY (W) 2
=lo(W,L D W) — o(W LR (W)
+ oW LR W) = o(WLRED (W) 2 (146)
<[p(W,L h D (W) — (W RED (W)l
+lo(W LD (W) — g(W LA D (W) |2
<[Weer = Wiz - [RED (W)l + [RED (W) — RED (W) 2.
With the assumption in the Lemma 8 such that W is close enough to W*, we have
[Willa < [Will2 + [Wi = Wiz S 1. (147)
Therefore, we have
RO W)[l2 < [Willa - [[Wilz - |22 S l]l2. (148)

Then, we have
IR (W) = hOW™)]

<[ Wit = Wiy ll2 - llzll2 + |70 (W) — D (W)
-1
< Z Wi = Wil - [|zl|2 + [R5 (W) — RO (W) 2
i=1
-1 ) (149)
:Z (Wi = W2 [z]l2 + ||z — |2
i—1
-1 _
:Z Wi = W72 - [RED (W)
i=1

<[W = W7ls - [|z]|2,
which completes the proof. O

F Additional experiments

In this section, we provide numerical justification that our theoretical findings are aligned with
DDQN through the Atari Breakout game The neural network follows the same architecture as the
one used in Section 5. The algorithm terminates if the average score over the recent 100 episodes
does not improve or the algorithm reaches the maximum episode set as 200, which is around 4 x 10°
training steps. The testing score is calculated based on a similar setup as the training process by
fixing the maximum memory size [N as 2000 and greedy policy, i.e., € = 0. Each point in the plot is
averaged over 10 experiments with an error bar representing the standard deviation.

Estimation errors with respect to the sample complexity N. We follow the setup in Section 5
to use the expected cumulative reward as the estimation error of the learned model to the optimal
Q-value function. The ¢, in e-greedy policy decreases geometrically from 1 to 0.01. We vary the
number of samples in the replay buffer from 3000 to 10000. Figure 4 shows that the test error is al-
most linear in 1/ /N, which is consistent with our characterization in (20). In addition, experiments
with a large N have a shorter error bar indicating a more stable learning performance with a large
sample complexity as shown in (12).

Convergence with different selections of <. Figure 5 illustrates the convergence rate when ¢; in the
e-greedy policy changes. For each point, €¢ is selected as the value in the x-axis, and we decrease
€, geometrically as the iteration ¢ increases. Each point is averaged over 10 independent trials. We
can see that the convergence rate is a linear function of c., matching our findings in (19).
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G Extension to non i.i.d. samples

Assumption 3. Ar any fixed outer iteration t, the behavior policy 7y and transition kernel P, satisfy

sup dry (P(ST €)|so= s),’Pt) <X, ¥Y1r>0 (150)
seS

Sfor some constant X > 0 and v € (0,1), where dry denotes the total-variation distance between
the probability measures.

Assumption 3 assumes the Markov chain {s; } induced by the behavior policy, i.e., €;-greedy policy
at ¢-th outer loop, is uniformly ergodic with the corresponding invariant measure P;. Compared
with i.i.d. cases, we need to handle an additional error term when bounding the distance between
the ¢g; and V f as shown in (91). Therefore, the upper bound in Lemma 3 changes, which suggests
an additional term in the final bound.

We present the major theoretical findings for non-i.i.d. samples in Theorem 2. The major proofs in
this context follow similar steps to the proof of Theorem 1, with slight changes in the error bound
between the sequences g; and V f. In this section, we omit the details of the proof for Theorem 2
but provide the proof for Lemma 3 under the assumptions outlined in Assumption 2 to simplify the
presentation.

Theorem 2 (Convergence for non-i.i.d. case). Suppose Assumption 1 and (143) hold, the buffer
size N satisfies (13). Let us define Cyax be a constant that is larger than Cy for 1 < t < T and
Ca=|A]l- (141log, A" + 11), when e, satisfy

Ce * @(\/ﬁ) © €t Cmax

= — 151
ot (]- - Cmax) : Cd N Rmax 1- Cmax ( )
for a fixed constant c. € (0, (1 — ~)?], and the initialization satisfies
l—cc\ p [WHF
w0 _wHp < o(1- =) . 152
I le<o(t-g75) % (152)
Then, with the high probability of at least 1 — T - g%, we have
(C1) The learned weights decay geometrically with
24+ ) RmaxT*
WL W | < - (1—7)) - WD) — W+ C47) B 153
I lr < (y+ee-(1=7) -] Ir+ T yemy (59
(C2) the returned model Q(W (T:0)) exhibits an estimation error as
C'max -Cq - Rmax 2 + RmaxT*
d ( ) (154)

sup QW) — Q*| <
(s,a) (1

where 7% = min{t | \v' <1/(N-T)}.

—9)2-0(V/N-T) (1—7)O(N-T)
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Proof of Lemma 3 under Assumption 2. Recall that in (91), we have

) of
gr(wep; W) — 8'wék( )
N
1 * 8@ W; Sn,an
= |:N Z (Q(W;Snaan) - Q(W ;Snaan)) . %
n=1 (,
. 0Q(W; s,
— E(sapop, (Q(W; s,a) — Q(W*; s, a)) . W}
’ (155)
{ Zv (max Q(sn, @ W) — max Q(sn, a; W) W
@ 0,k
of
+ E(s,a)wutgt(wé,h W) 6wg .

+ E(s,a)~,, P [9t (We ks W) = E(s 0y, PGt (W s W)
2211 + 12 + 13 + 14.

Bound of 7; and /5. Compared with (91), the upper bound for I; and I5 is the same as those shown
in (103) and (109), respectively.

Bound of I5. Following (111), the upper bound of I35 can be characterized as

Rmax * / /
175]]2 Sli . [(1 —g)- ‘/ / (u (ds,da)P(ds'|s,a) — pi,1(ds, da)P(ds |s,a))‘
- (s,a) Js'
(156)
+e- ‘ / / (1*(ds,da)P(ds'|s,a) — p.2(ds, da)P(ds'|s, a)) H
(s,a) Js'
and
/ / *(ds,da)P(ds'|s,a) — pe1(ds, da)P(ds'|s, a))‘
= / / (P*(ds)n*(da|s)P(ds'|s,a) — Py1(ds)m,1(dalds)P(ds']s, a))‘
(s,a) J s’ (157)
< / (P*(ds) — Pri(ds))7*(da|s)P(ds’|s, a)‘
s,a) Js’

_|_

/ P.1(ds) (Wt’l(da|ds) — w*(da|ds))73(ds'|s, a)‘.
(s,a) /s’
From Theorem 3.1 in [49], we know that

(ds) - G,
‘/(s’a) (P*(ds) 'Pt,l(ds))‘ < |A|(log, A7t + — U)Ot .
and ||7Tt71(da|ds) — ﬁ*(da|d3)|| < C,.

Therefore, the bound of I3 can be found as

Rmax — 1
HI3||2 S . ‘A| . ((1—6)Ct+€ct) (1+10gl,)\ 1+ )
1—7 1—-v
R (159)
:Cd . (Ct + (1 — Ct)E) . 1 Taj;,

where Cy = [A] - (1 +1log, A1 + 1).

Bound of ;. I, is the bias of the data because the data (s, a) at iteration ¢ depends on the neural
network parameters W. Let us define g, as

Gi(we s W) =Eu, p gi(wep; W) (160)

and
At = gi(wek; W) — ge(wer; W). (161)
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It is easy to verify that

g (we ks W) — g (s W) < (1 +79) - [W = W],
9t (we,1; W) — ge(we; W) < (147) - [W - W],
Rmax

and llgell < ﬁ

Then, we have . N
A(W) = A(W) S (1+7) [W = W]|s.
Therefore, we have
At(W(t’O)) < At(W(tf-r,O)) LT 1+ Y Rmax . Z ;.
< 1=

i=t—T

Then, we need to bound &; (W (*=7-0)),

(162)

(163)

(164)

Let us define the observed tuple Oy(s, a, s) as the collection of the state, action, and the next state

at the ¢-th outer loop. Note that
W(t_T’O) — St—7r —> St — Ot

forms a Markov chain introduced by the policy 7y .

(165)

Let W9 and 5t be independently drawn from the marginal distributions of W (t=70) and Oy,

respectively.
With Lemma 9 in [4], we have

EA(WET0 0,) —EA,(WET9 0,) < 2sup |[A((W,0)] - - 1.
w,0

By definition, we have E At(W (t=7.0) 0,) = 0 and

2 Rmax

<
AW.0) < S

Therefore, we have

EAt(W(t7O)) SEAt(W(tiT’O)) + 1—'—77 Riax - Z i

1—
i=t—T
Rl’ﬂdx
S1fﬂy()‘ v+ (+) T'm”)’

where the last inequality comes from the fact that the step size 7, is non-increasing.
Choose 7* = min {t =0,1,2,--- | W < 77T}- When t < 7*, we choose 7 = ¢ and have

Rmax *

EAt(W(t’O)) < ST 1.

1=

When ¢ > 7*, we can choose 7 = 7* and obtain
Rmax *
EA, (W) < T (L )T
-

Combining (169) and (170), we have

Ry
‘I4|< — ( +’7) " Nlmax{0,t—7*}>

where 7* = min{t | Avt < nr}.
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