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This appendix is organized as follows: We first present an additional literature review (Section A)
and then discuss additional details of the proposed approaches (Section B).We then provide further
experimental details (Section C), discuss additional results on Setups A-D (Section D) and finally
present results on additional benchmark datasets (Section E). We include the NeurIPS checklist in
Section F.

A Additional Literature Review

Here, we present a detailed overview of existing model-agnostic “meta-learner” strategies for CATE
estimation which can be implemented using any ML method, a notion originally introduced in [1] and
expanded on in [2, 3, 4]. As in the main text, we distinguish between indirect and direct estimators
for CATE, and will finally briefly discuss ML-based strategies that do not fall in the meta-learner
class because they rely on a specific ML-method.

Indirect Estimators The S- and T-learner discussed in [1] are two model-agnostic learning strategies
that estimate CATE indirectly. The S-learner fits a single regression model µ̂(x,w) by concatenating
the covariate vector X and the treatment indicator W into X ′ and then regressing Y on X ′, providing
a final CATE estimate indirectly as τ̂(x) = µ̂(x, 1) − µ̂(x, 0). The T-learner fits two regression
models (one µ̂w(x) = E[Y |W = w,X = x] for each treatment group) separately using only
observations for which W = w, and provides a final CATE estimate as τ̂(x) = µ̂1(x)− µ̂0(x).

Multi-stage Direct Estimators A number of meta-learners have been proposed recently which
target CATE directly through a multi-stage estimation procedure. We will first discuss four learning
strategies that rely on pseudo-outcome regression, and will then discuss [2]’s R-learner, which uses a
loss-based approach.

We follow the exposition in [4] distinguishing between three classes of pseudo-outcome regression-
based meta-learners, which use a first stage to obtain estimates η̂ of (a subset of) the nuisance
parameters η = (µ0(x), µ1(x), π(x)). Pseudo-outcome regression then proceeds by obtaining an
estimate of τ̂(x) by regressing a pseudo-outcome Ỹη̂ (based on nuisance estimates η̂) on X directly.
For all considered pseudo-outcomes it holds that EP[Ỹη|X = x] = τ(x) – they are unbiased for
CATE when η is known. Inspired by the well-known estimation strategies for the average treatment
effect (ATE), there are three straightforward strategies for doing so:

(1) Regression Adjustment (RA): The RA-learner [4] uses a regression-adjusted pseudo-outcome

ỸRA,η̂ = W (Y − µ̂0(X)) + (1−W )(µ̂1(X)− Y ) (1)

in the second stage. The X-learner proposed in [1] is a variant of this estimator: Instead of performing
one regression in the second stage, they perform two separate regressions for each term in the sum,
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leading to two CATE estimators τ̂1(x) and τ̂0(x) that are then combined into a final estimate using
τ̂(x) = g(x)τ̂1(x) + (1− g(x))τ̂0(x) for some weighting function g(x).

(2) Propensity Weighting (PW): The PW-learner uses a pseudo-outcome based on the Horvitz-
Thompson transformation [5]

ỸPW,η̂ =

(
W

π̂(X)
− 1−W

1− π̂(X)

)
Y (2)

(3) Doubly Robust (DR): [3]’s DR-learner has pseudo-outcome

ỸDR,η̂ =

(
W

π̂(X)
− (1−W )

1− π̂(X)

)
Y +

[(
1− W

π̂(X)

)
µ̂1(x)−

(
1− 1−W

1− π̂(X)

)
µ̂0(X)

]
(3)

which is based on the doubly-robust AIPW estimator [6] and is unbiased if either propensity score or
outcome regressions are correctly specified.

For two-stage estimators targeting the treatment effect directly using pseudo-outcomes, it can be
shown that εsq(τ̂(x)) ≤ εsq(τ̂η(x)) + R2

η̂(x) if appropriate sample splitting is used and the used
estimator fulfills some stability condition [3]. Here, εsq(τ̂η(x)) converges at the oracle rate, and R2

η̂

is a learner-specific remainder term. Two-stage learners thus converge at oracle rates if the remainder
term decays sufficiently fast, which is faster than indirect learners if τ(x) is simple. Due to the double
robustness property, the remainder term of the DR-learner always converges faster than the other two
learners, and it is in general unlikely that RA-learner can attain the oracle rate. For a comprehensive
overview of convergence of the different pseudo-outcome-based meta-learners, refer to [4].

Finally, [2] also propose a two-stage algorithm that estimates CATE directly but is based on a loss-
based strategy instead of pseudo-outcome regression. The R-learner is based on [7] approach for
semiparametric regression, and uses orthogonalization with respect to the nuisance functions π(x)
and µ(x) = E[Y |X = x] (the unconditional outcome expectation). Their first stage obtains estimates
π̂(x) and µ̂(x), which are then used in a second stage estimating τ(x) directly based on the following
loss:

arg min
τ

n∑
i=1

[{Yi − µ̂(Xi)} − {Wi − π̂(Xi)}τ(Xi)]
2

+R(τ(·)) (4)

Like the DR-learner, this learner is doubly robust due to orthogonalization with respect to both
outcome and propensity score estimate, and also arises from the perspective of ‘orthogonal statistical
learning’ [8].

For theoretical guarantees to hold for any of the two-stage learners, first and second stage have to be
performed on separate folds of the data, either by splitting the data or by using cross-fitting [9]. In
our experiments, we do use the full data for both stages as we found that sample splitting/cross-fitting
deteriorates performance, most likely due to the small sample sizes.

Model-specific CATE estimators Many methods proposed in related work do not fall within the
meta-learner class because they rely on the properties of a specific ML method. Some methods rely
on a strategy that can be seen as a hybrid between [1]’s S- and T-learner, sharing some information
between regression tasks but not all; this includes most multi-task approaches ([10] and extensions,
but also e.g. [11, 12]). GANITE [13], another popular strategy, relies on GANs to learn counterfactual
distributions instead of conditional expected values. Additionally, as discussed in the main text, [14]’s
LASSO for CATE estimation and [15]’s Bayesian Causal Forest rely a the reparametrization strategy
(while [16]’s popular BART-based CATE estimator is a simple S-learner). Finally, [17]’s Causal
Forest relies on a local moment equation inspired by the Robinson transformation, and could hence
be seen as a forest-based version of the R-learner.

B Additional discussion of proposed approaches

B.1 Hyperparameter tuning

It is a well-known problem in the CATE estimation literature that model selection is nontrivial due
to the absence of counterfactuals in practice. The testable implications of the shared structure bias,
as encoded by hyperparameters such as λ2, however, are different for (i) the PO estimation and (ii)
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the CATE estimation problems, which is a feature that we would suggest to exploit in choosing
hyperparameter settings. That is, while the usefulness of the inductive biases for estimation of
CATE cannot easily be verified, their usefulness for estimating the POs can be verified through
cross-validation on held-out factual observations.

Unfortunately, good performance on estimation of the POs is not sufficient. To see this, note that
the tuples of PO estimates (µ0(x) + e(x), µ1(x) + e(x)) and (µ0(x) + e(x), µ1(x)− e(x)) [where
e(x) is an error and µw(x) is the ground truth] will in expectation give exactly the same MSE when
evaluated using held-out factual observations. Yet, the first tuple will make no error in estimating
CATE, while the second tuple makes an error of 2e(x). This highlights that error can either compound
or cancel across the POs, therefore making it possible that a hyperparameter setting resulting in better
fit on the POs also results in worse fit on CATE, and vice versa. Because an estimators’ performance
on estimating CATE remains unobservable in practice, a good inductive bias is needed to choose
between models that have equal predictive performance on the POs. As we discuss in the paper, we
consider preferring shared structure (or a simple CATE) a reasonable choice for this in many practical
applications.

Suggested approach for setting hyperparameters. As a simple heuristic to set hyperparameters
such as λ2 in practice, we would thus recommend the following scheme that trades off between
imposing an assumption (“CATE is most likely simple”) and factual performance:

1. Start with λ2 small, and keep increasing it while held-out predictive performance does not
decrease.

2. Set λ2 to its largest value for which predictive performance did not deteriorate.

In a sufficiently flexible (overparameterized) model class in which multiple PO estimators induce the
same empirical performance, such a scheme allows to pick the hyperparameter setting resulting in
the least complex CATE while remaining compatible with factual observations.

Illustrative results In Fig. 1 we present illustrative results on Setup B with n0 = n1 = 2000,
and observe that following our heuristic of increasing λ2 until factual performance deteriorates
would almost always lead to choosing the best hyperparameter setting; for both hard and flexible
approach this suggests a switch from λ = 10−1 to λ2 = 10−2 as ρ increases1. Further, we note
that performance in terms of factual prediction is indeed often much closer than CATE estimation
performance 2.

Figure 1: Effect of λ2 on RMSE of estimating CATE and factual RMSE (test set), for regularization
(left), reparametrization (middle) and flexible (right) approach, by ρ in Setup B at n0 = n1 = 2000.
Avg. across 10 runs, one standard error shaded.

B.2 FlexTENet as a generalization of existing architectures

As summarized in Table 1, existing architectures for CATE estimation arise as special cases of
FlexTENet (all of which heavily restrict the flow of information within the network): As we reduce
the width of all shared layers while increasing the width of private layers, FlexTENet approaches a
TNet. Conversely, if we increase the width of the bottom shared layers and do the reverse for the top

1Note that, as we discuss in section C.2, we fixed all hyperparameters throughout all experiments as tuning
would have been computationally prohibitive given the amount of experimental settings and models considered.
Throughout, we used λ1 = 10−4 and λ2 = 100λ1 = 10−2 to induce a substantial difference between the two.

2Note also that for factual evaluation observations have random normal noise with σ = 1, which explains
why RMSE(factual) > 1 while RMSE(CATE) < 1.

3



Table 1: Existing architectures for CATE estimation arise as special cases of FlexTENet

Method (nr,s, nr,0, nr,1) (nh,s, nh,0, nh,1) Communicat.
subspaces

FlexTENet (nr,s, nr,0, nr,1) (nh,s, nh,0, nh,1) Yes
TARNet (nr, 0, 0) (0, nh, nh) No
TNet (0, nr, nr) (0, nh, nh) No
SNet (nr,s, nr,0, nr,1) (0, nh, nh) No
Reparam. (nr, 0, nr) (nh, 0, nh) No

layers, FlexTENet becomes TARNet. Relative to TARNet, this architecture thus not only incorporates
inductive bias towards shared behavior in the output heads, but also explicitly anticipates the existence
of purely predictive features by allowing for both shared and PO-specific features instead of enforcing
one joint representation (which might erroneously discard features that are relevant only for one of
the POs). Therefore, FlexTENet also generalizes the SNet class discussed in [4], which includes
PO-specific feature spaces3. Finally, FlexTENet without private subspaces for µ0(x) and without
communication between shared and private subspaces is equivalent to the reparametrization approach.
Relative to existing strategies, we expect that such a general architecture should perform well on
average, given that it not only encompasses them, but also allows for more general forms of shared
structure which other architectures cannot exploit.

B.3 Pseudocode of a FlexTENet forward pass

Algorithm 1: FlexTENet forward pass.
Input :Testing data X

Trained FlexTENet flex
for i← 1:flex.n_layers do

if i==1 then
x_shared = flex.shared_layers[i](X)
x_po0 = flex.po0_layers[i](X)
x_po1 = flex.po1_layers[i](X)

end
else

x_po0 = flex.po0_layers[i](Concatenate(x_shared,x_po0)
x_po1 = flex.po1_layers[i](Concatenate(x_shared,x_po1)
x_shared = flex.shared_layers[i](x_shared)

end
end
if flex.binary_y then

y0_hat = Sigmoid(x_shared+x_po0)
y1_hat = Sigmoid(x_shared+x_po1)

end
else

y0_hat = x_shared+x_po0
y1_hat = x_shared+x_po1

end
return y0_hat, y1_hat

3The general SNet specification in [4] also includes propensity estimators as additional output heads, which
could be added to FlexTENet if needed.
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C Experimental details4

C.1 Simulation details

We considered setups A-D in the main text, as they allowed us to evaluate the performance of the
different approaches along axes that are most relevant to the problem we are trying to solve. Unlike
much related work (e.g. [10, 18, 19]) we therefore did not focus on varying the level of confounding,
but instead considered (i) the level of alignment between the PO functions and (ii) differences in data
availability between the two treatment groups. While (i) directly determines how applicable/useful
the underlying inductive biases are, (ii) is of interest because we wanted to test whether a large control
group allows to distill prognostic effects better, such that less treatment data is needed to determine
predictive effects.

Major differences across setups include that:

• in setups A, B, and D, the treatment effects are additive, while setup C inherits a non-additive
treatment effect from [16]’s IHDP simulation

• in setups A & B there is no confounding as treatment assignment is random, while in C &
D, there is confounding and incomplete overlap

• in setups A & B, the response surface includes only polynomial terms of the covariates (linear,
squares and first-order interactions) while in C & D the baseline outcome exponentiates a
linear predictor

• in setups A & D, µ0(x) is simpler than µ1(x), while the reverse is true in setups B & C.

Note that, while Setups C & D corresponded to one simulation setting each, setups A & B as presented
in Fig. 3 in the main text corresponded to 33 simulation settings (as ρ and n1 vary). By further
varying n0, we consider another 66 settings in section D.3. Below, we give further insight into the
data and data-generating processes (DGPs) we used.

C.1.1 Setups A and B

We use the data from the Collaborative Perinatal Project provided5 in the first Atlantic Causal
Inference Competition (ACIC2016) [20] for our first set of experiments. The original dataset has
d = 58 covariates, of which we exclude the 3 categorical ones. Of the remaining 55 covariates,
5 are binary, 27 are count data and 23 are continuous. We process all covariates according to
the transformations used in the competition6, which transforms count into binary covariates and
standardizes continuous variables. We use the transformed data for the simulations and as input to all
models.

As discussed in the main text, we simulate response surfaces in setup A according to

Yi = c+

d∑
j=1

βjXj +

d∑
j=1

d∑
l=1

βj,lXjXl +Wi

d∑
j=1

γjXj + εi (5)

where εi ∼ N(0, 1), βj ∼ B(0.6) and γj ∼ B(ρ). We include squared terms of all continuous
covariates and additionally include each variable randomly into one interaction term, for both of
which we then simulate coefficient βj,l ∼ B(0.3). We chose for each coefficient to be binary to avoid
large variances in the scale of POs and CATE across different runs of a simulation, such that RMSE
remains comparable across runs.

For setup B, we instead use γj = 0 and simulate

Yi = c+

d∑
j=1

βj(1−Wiωj)Xj +

d∑
j=1

d∑
l=1

βj,l(1−Wiωj,l)XjXl + εi (6)

where only ωj , ωj,l ∼ B(ρ) differ from above. While in setup A non-zero γj induce treatment effect
heterogeneity as µ1(x) has more terms than µ0(x), in setup B non-zero ωj induce treatment effect
heterogeneity, giving µ1(x) less terms than µ0(x).

4Code to replicate all experiments is available at https://github.com/AliciaCurth/CATENets
5We retrieve the data from https://jenniferhill7.wixsite.com/acic-2016/competition
6We use the code available at https://github.com/vdorie/aciccomp/blob/master/2016/R/

transformInput.R
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C.1.2 Setups C and D (IHDP)

For setups C & D, we build on the Infant Health and Development Program (IHDP) benchmark used in
[10] and extensions, created by [16]. The underlying dataset belongs to a real randomized experiment
targeting premature infants with low birth weight with an intervention, containing 25 covariates
(6 continuous, 19 binary) capturing aspects related to children and their mothers. The benchmark
dataset was created by excluding a non-random proportion of treated individuals (those with nonwhite
mothers). The final dataset consists of 747 observations (139 treated, 608 control), and overlap is not
satisfied (as π(x) is not necessarily non-zero for all observations in the control group). While the
covariate data is real, the outcomes in our setup “C” are simulated according to setup “B" described in
[16], which satisfies Y (0) ∼ N (exp((X +W )β), 1) and Y (1) ∼ N (Xβ − ω, 1) with W an offset
matrix, ω is set such that the average treatment effect on the treated is equal to 4, and the coefficient
β has entries in (0, 0.1, 0.2, 0.3, 0.4), where each entry is independently sampled with probabilities
(0.6, 0.1, 0.1, 0.1, 0.1). We use the 100 repetitions of the simulation provided by [10]7. For our setup
“D” we change only the response surface of the treated to Y (1) ∼ N (exp((X+W )β) +Xβ−ω, 1).

C.2 Implementation details

In our implementations, we use components similar to those used in [10] for all networks. In
particular, we use dense layers with exponential linear units (ELU) as nonlinear activation functions.
We train with Adam [21], minibatches of size 100, and use early stopping based on a 30% validation
split. As stated in the main text, we fixed equivalent hyperparameters across all methods within
any experiments to not conflate hyperparameter tuning with the value of the different strategies.
We set nr = 200 and nh = 100 throughout, and use dr = 1 and dh = 1 for setups A & B and
dr = 2 and dh = 2 for setups C & D (excluding one additional dense output layer) for all estimators
– i.e. for TARNet, but also for each other function (e.g. the second stage of a two-step learner is
parameterized by dr and dh layers of nr and nh units each). Note that TNet and TARNet with
similarity regularization share the identical architecture with their ‘vanilla’ counterparts, and differ
only in the regularization term and in that we initialise the Θhw

weights with the same random
initialisation for both heads. For FlexTENet we set nk,p = nk,s = 1

2nk for k ∈ {r, h}. Throughout,
we use λ1 = 0.0001, λ2 = 100λ1 (to induce a substantial difference) and λo = 0.1, where we chose
the magnitude of λo by testing it on toy data. Further, we use all two-step learners without sample
splitting or cross-fitting which we found to deteriorate performance, particularly in the smaller sample
sizes.

All models were implemented in our own python codebase, using jax [22]. All experiments were
conducted using Python 3.8 on Ubuntu 20.04 OS with a Intel i7-8550U CPU with 4 cores. Creating
the results in Figure 3 and Table 1 (main text) took about 12h each.

D Additional results (setups A-D)

Below, we present additional results. First, we consider additional baselines: we compare the
performance of different two-stage learners across setups A & B (D.1) and consider further indirect
learners as baselines (DragonNet and SNet, D.2). Then, we consider the effect of n0 in setups A &
B (D.3), present additional results on PO estimation (D.4), and then move to analyzing the learned
weights of a FlexTENet (D.5). We also consider the effect of using our approaches as first-stage
(nuisance) estimators for two-step learners (D.6). Finally, we discuss the necessity of scaling the
results in setups C & D (D.7)

D.1 Comparison of two-stage learners across setups A and B

When comparing the performance of DR-learner, R-learner, RA-learner and X-learner (Fig 2), we
observe that the DR-learner shows best performance on average – which is why we used it as a
baseline in the main text. Nonetheless, the R-learner can outperform it for small ρ, while the X-learner
can outperform it for large ρ.

7Available at https://www.fredjo.com/
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Figure 2: RMSE of CATE estimation for two-step learners using TNet as baseline by ρ for different
n1 with n0 = 2000 for setup A (µ0(x) is simpler) and B (µ1(x) is simpler). Recall that, in each
graph, as ρ increases τ(x) becomes more complex because µ1(x) becomes less (more) sparse. Avg.
across 10 runs, one standard error shaded.

D.2 Experiments with additional indirect learners

In Fig. 3, we present additional results using DragonNet [23] and SNet [4] on setups A & B. As
there is no confounding in these setups, the propensity head of DragonNet does not contribute to
performance, such that TARNet and DragonNet perform virtually equivalently across all settings,
and the soft approach improves also the performance of DragonNet.

Figure 3: RMSE of CATE estimation using DragonNet (top) and SNet (bottom) as additional
baselines, by ρ for multiple n1 at n0 = 2000, for setup A and B. Avg. across 10 runs, one standard
error shaded.

For SNet, to facilitate comparison, we consider a variant of the original formulation in [4] without
propensity head, such that SNet reduces to having only 3 feature spaces - a shared and two PO-specific
feature spaces just like FlexTENet. As such, SNet and FlexTENet differ mainly in their output heads.
Further, we implement SNet using the same orthogonal regularizer as FlexTENet to allow for fair
comparison (this differs from the original orthogonal regularizer used in [4], which induces more
sparsity as it relied on a l1-norm). We observe that the soft approach improves also the performance
of SNet, and that FlexTENet substantially outperforms SNet despite their similarities; highlighting
that hard-sharing in the output heads is useful.

Table 2: Normalized in- & out-of-sample RMSE of CATE estimation
for additional benchmarks and selected methods, setup C & D. Avg.
across 100 runs, standard error in parentheses.

C, in C, out D, in D, out

TNet 0.320 (.008) 0.337 (.008) 0.290 (.007) 0.290 (.008)
TNet + reg 0.301 (.008) 0.324 (.008) 0.260 (.005) 0.262 (.006)
TARNet 0.294 (.008) 0.315 (.008) 0.225 (.007) 0.226 (.007)
TARNet + reg 0.285 (.008) 0.306 (.008) 0.205 (.006) 0.205 (.006)
FlexTENet 0.268 (.009) 0.293 (.009) 0.224 (.005) 0.230 (.006)
DragonNet 0.289 (0.008) 0.310 (0.008) 0.222 (0.006) 0.223 (0.007)
DragonNet + reg 0.282 (0.008) 0.304 (0.008) 0.203 (0.006) 0.203 (0.006)
SNet 0.327 (0.014) 0.356 (0.013) 0.261 (0.008) 0.266 (0.009)
SNet + reg 0.316 (0.013) 0.345 (0.012) 0.252 (0.008) 0.258 (0.009)

Results for Setups C and
D are presented in table
2. We observe that Drag-
onNet once more performs
very similar to TARNet;
here it does perform slightly
better, possibly due to the
presence of confounding in
this dataset. However, as
µw(x) and π(x) are not
well-aligned, the gains are
marginal. SNet performs
poorly overall, which is to
be expected as there are no
µw(x)-specific features in these setups. Further, both baselines benefit from the addition of the soft
approach.
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D.3 The effect of n0 in setups A and B

In Fig. 4 we investigate the effect of having a smaller number of control samples, n0 = 200, 500, 1000
instead of n0 = 2000 as in the main text, at n1 = 200. We observe that in setup A, increasing n0
leads to convergence of performance of both regularization and DR-learner as well as of FlexTENet
and reparametrization. Interestingly, in setup B, we observe divergence of the different methods.

Figure 4: RMSE of CATE estimation by ρ for n0 = 200, 500, 1000 for setup A and B with n1 = 200
using TNet as baseline. Avg. across 10 runs, one standard error shaded.

Additionally, we consider increasing the number of observations in treatment and control group
equally, i.e. n0 = n1, for nw ∈ {200, 500, 1000} in Fig. 5 (n0 = n1 = 2000 is included in the
results in the main text). As briefly discussed in the main text, the gain of using each approach is
much smaller in the balanced than in the imbalanced setting, but the conclusions regarding the relative
performance of each approach remain largely the same. Most salient is the strong performance of
the DR-learner for small ρ (often outperforming all other methods) and in setup B throughout (often
matching the performance of FlexTENet for large ρ).

Figure 5: RMSE of CATE estimation by ρ for n0 = n1 = 200, 500, 1000 for setup A and B, using
TNet (top row) and TARNet (bottom row) as baseline. Avg. across 10 runs, one standard error
shaded.

D.4 Additional results for PO estimation

In Fig. 6, we observe that the impact of all approaches on µ0(x) estimation is negligible for small
n1 (at n0 = 2000), but that there are some improvements for n1 = 2000. Further, the inability of
reparametrization to handle setup B is even more apparent for n1 = 2000.

D.5 Analysis of FlexTENet weights

In Fig. 7 we analyze what the FlexTENet learns by considering the average L2-norm of the weights of
each hidden unit for each layer and subspace. We observe that in the lower layers, most weight is on
the shared component for all ρ, and that the weight on the µ1(x)-specific (µ0(x)-specific) component
increases with increasing ρ in setup A (B), as expected. Further, while in the output layer the weight
on the shared layer remains approximately constant with ρ in setup A, it decreases in setup B where
the shared component becomes sparser as ρ increases.

D.6 Using the the approaches as improved first-stage estimators for two-stage learners

While meta-learners are usually implemented using vanilla first-stage estimators (i.e. in our case a
separate neural network for each nuisance estimation task), we investigate here whether our improved
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Figure 6: RMSE of µw(x) estimation by ρ for n1 = 500 (top) and n1 = 2000 (bottom) for setup A
and B at n0 = 2000. Avg. across 10 runs, one standard error shaded.

Figure 7: Average L2-norm of the weights of each hidden unit for each layer and subspace of the
FlexTENet by ρ, for setup A (left) and B (right) at n0 = n1 = 2000. Avg. across 10 runs, one
standard error shaded.

indirect estimators can be used to improve performance of two-stage learners, here X- and DR-
learner. In Fig. 8 for the X-learner and Fig. 9 for the DR-learner, we find that, while there are some
performance increases, improvements in the second stage are much smaller than improvements to
the first stage and, for the case of FlexTENet, the second stage does not improve upon the first-stage
estimate. As discussed in section C.2, we did not use sample-splitting in our experiments as we found
this to deteriorate performance for all meta-learners (especially in smaller sample sizes); this might
be one reason for this finding.

Figure 8: RMSE of CATE estimation for the X-learner using different methods as first-stage estima-
tors, by ρ for different n1 with n0 = 2000 for setup A & B. Avg. across 10 runs, one standard error
shaded.
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Figure 9: RMSE of CATE estimation for the DR-learner using different methods as first-stage
estimators, by ρ for different n1 with n0 = 2000 for setup A & B. Avg. across 10 runs, one standard
error shaded.

D.7 Scaling of IHDP results (setups C & D)

In setups C & D, we observed that the scale of RMSE of CATE estimation varied by orders of
magnitude across different runs of the simulation due to the exponential regression specification in
the response surface, making performance in terms of RMSE incomparable across runs. We found
that by averaging RMSE across runs, the relative performance was dominated by runs with high
variance in factual outcomes (which arise in runs in which many variables enter the exponential
specification). Therefore, we report RMSE normalized by standard deviation of the observed factual
training data in the main text. As Figure 10 highlights for the example of TARNet, this leads to much
more well-behaved distributions of RMSE in both setups.

Figure 10: In-sample RMSE of TARNet by standard deviation of factual outcomes in training sample,
histogram of in-sample RMSE across runs and histogram for normalized in-sample RMSE across
runs for Setup C (top) and Setup D (bottom)

In Table 3 we report unnormalized results on the two IHDP setups for completeness. The results
for TARNet differ from those reported in [10] for three main reasons: First, we used the IHDP-100
benchmark, and not the 1000 replications used in [10]. Second, as we highlighted above, the RMSE
scores are clearly not normally distributed with the same mean such that some runs have much larger
influence than others, and reported standard errors do not necessarily reflect the right confidence levels.
Third, we used our own implementations and hyperparameter settings/architectural specification for
these experiments, which differ slightly from those used in [10].
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Table 3: Unnormalized in- and out-of-sample RMSE of CATE estimation on the two IHDP setups.
Averaged across 100 runs, standard error in parentheses.

C, in C, out D, in D, out

TNet 1.572 (0.134) 1.775 (0.198) 2.857 (0.438) 2.854 (0.445)
TNet + reg 1.418 (0.107) 1.720 (0.193) 2.355 (0.285) 2.382 (0.293)
DR (+TNet) 1.681 (0.134) 1.924 (0.198) 1.764 (0.171) 1.740 (0.158)
TARNet 1.384 (0.107) 1.690 (0.196) 1.772 (0.188) 1.804 (0.204)
TARNet + reg 1.350 (0.107) 1.657 (0.197) 1.623 (0.164) 1.647 (0.181)
DR (+TARNet) 1.574 (0.125) 1.801 (0.183) 1.463 (0.128) 1.448 (0.121)
Reparam. 2.136 (0.219) 2.297 (0.269) 1.394 (0.098) 1.392 (0.092)
FlexTENet 1.226 (0.099) 1.536 (0.182) 1.966 (0.239) 2.057 (0.261)

E Additional benchmark datasets

Below we present results on additional benchmark datasets: in section E.1 we consider the original
response surfaces simulated for ACIC2016, and in section E.2 we consider performance on the Twins
dataset with real outcomes. Throughout, we use the same hyperparameters as for setups A & B.

E.1 Original ACIC2016

As an additional benchmark dataset, we consider performance on the original simulations of
ACIC2016 [20]. The 77 settings vary in the complexity of response surfaces and the degrees
of confounding, overlap and TE heterogeneity. They are based on the same covariates as simulations
A and B, but differ in treatment assignment and response surfaces. In the competition, covariates
were provided to participants without preprocessing, hence we start with the unprocessed dataset and,
similar to [19], we standardize all covariates and drop the three categorical variables as none of the
considered methods are well-suited to handle them. We report results on 20% test-sets for each of the
77 settings (averaging across 10 repetitions each).

In Fig. 11, we present results. Due to high variation in RMSE across the simulation runs (even within
the same setting), we report RMSE(method)/RMSE(baseline) for TNet and TARNet as baseline. We
note that our original findings on relative performance of the approaches from the main text hold up
across a majority of settings. Apart from that, we found little meaningful insights into sources of
performance variation across different settings, possibly due to the very high variation in simulated
response surfaces within and across settings.

Figure 11: RMSE relative to TNet (left) and TARNet (right) on the 77 simulation settings from
ACIC2016. Averaged across 10 runs each.

E.2 Twins

Evaluation of treatment effect estimators on real data is usually prohibited by the absence of ground-
truth treatment effects and counterfactuals in practice. Twin studies in which each twin is assigned a
different treatment therefore present an interesting exception: under the assumption of equivalence
between two twins, realisations of both potential outcomes are observed. The Twins dataset considered
by [24, 13] contains one-year mortality outcomes for 11400 pairs of twins with 39 relevant covariates8.

8We obtained the preprocessed dataset used in [13] from the authors, which is derived from the data provided
by [25]
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Here, the treatment is ‘being heavier at birth’, so that this data can be used to evaluate the effect of
birthweight on infant mortality.

The outcome in this dataset is binary and (fortunately) imbalanced; mortality rates over the full data
are 16.1% and 17.7% for treated and untreated, respectively. Due to the binary nature of the data and
this imbalance, the signal for the presence of treatment effects (which necessitates observing opposite
outcomes for pairs of twins), is relatively weak and noisy. Therefore, we use a large test set and hold
out 50% (5700 pairs of twins) for testing. For training, we randomly select one twin from each pair
with (constant) probability ptreat ∈ {0.1, 0.25, 0.5, 0.75, 0.9} to investigate the performance of each
method on imbalanced data as in the main text, but now with real data. Additionally, we vary the
number of training examples ntrain ∈ {500, 1000, 2000, 4000, 5700} to assess the sample efficiency
of different methods; leading to 25 different settings considered for the Twins data.

Metrics As the true τ(x) and µw(x) are unobserved, we can only use realisations of Y (w) to evaluate
all models. First, as [13] we consider the RMSE on the observed counterfactual difference, i.e.√

1
n

∑n
i=1

(
(yi(1)− yi(0))− (µ̂1(xi)− µ̂0)

)2
, as a metric to evaluate the quality of the treatment

effect estimate. Because Y is binary, yi(1)− yi(0) ∈ {−1, 0, 1} while µ̂1(xi)− µ̂0 is not, and this
metric is very noisy. Therefore, we additionally consider Y (1) − Y (0) as the target in a 3-class
classification problem, where

P(Y (1)− Y (0) = t|X = x) =


µ0(x)× (1− µ1(x)) if t = −1

(1− µ0(x))× µ1(x) if t = 1

µ0(x)× µ1(x) + (1− µ0(x)× (1− µ1(x)) if t = 0

(7)

if we assume that the two potential outcomes are conditionally independent. We can compute
P̂(Y (1)− Y (0) = t|X = x) for all models which predict potential outcomes using (7), and evaluate
its fit on the real data using standard classification metrics. Here, we report the area under the
receiver-operating curve (henceforth: AUC). Further, similar to [24], we also evaluate predictive
performance on each of the POs separately through the AUC.

E.2.1 Performance on estimating CATE

In Fig. 12 and Fig. 13, we present results on performance of estimating the counterfactual difference,
measured by RMSE and AUC, respectively. We observe that Reparametrization and FlexTENet
perform almost equivalently and best throughout as measured by both metrics. Both are most robust
to changes in ptreat, and, contrary to most other methods, perform close to optimal already with only
500 samples. Further, the regularization approach improves upon its baselines also in this setting.
The conclusions on relative performance made in the main text thus largely hold up also here; the
main difference is that here FlexTENet performs very well also for small ntrain. This, and the
near-equivalence of FlexTENet and reparametrization approach, might indicate that there is both
significant shared structure and relevant (additive) heterogeneity between the (unknown) POs in the
Twins dataset.

Figure 12: RMSE on the counterfactual difference (lower is better), by ptreat for different ntrain
using TNet (top) and TARNet (bottom) as baseline. Avg. across 10 runs, one standard error shaded.
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Figure 13: AUC on the counterfactual difference (higher is better), by ptreat for different ntrain
using TNet (top) and TARNet (bottom) as baseline. Avg. across 10 runs, one standard error shaded.

E.2.2 Performance on estimating the POs

Finally, we consider performance on estimating the POs separately in Fig. 14. In the left panels we
plot AUC on each potential outcome for different levels of ptreat, and observe that all approaches
can significantly improve the performance on estimating the POs when there is imbalanced treatment
assignment; most likely this is because they provide additional supervision for the underrepresented
treatment arm. In the right panels we plot AUC for underrepresented treatment arms by different levels
of ntrain, and observe that FlexTENet and the reparametrization approach provide such supervision
most sample-efficiently: they reach near-optimal performance with a fraction of the available samples.

Figure 14: AUC on the potential outcomes (higher is better), by ptreat (left) and by ntrain (right)
using TNet (top) and TARNet (bottom) as baseline. Avg. across 10 runs, one standard error shaded.

F NeurIPS Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] (1) In Section 2.1, we discuss
that the ability to interpret treatment effects as causal always relies on assessment
of the plausibility of assumptions, which should be conducted by a domain expert.
(2) We highlight that the conclusions we make here using neural networks should be
consolidated using other base-methods in future work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See answer
(1) above. The limitation of all methods trying to infer causal effects from observational
data is the presence of strong identifying assumptions; if such assumptions are not
properly assessed by domain experts prior to deployment, the conclusions drawn using
such methods may be misleading.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
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(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Code is
provided at https://github.com/AliciaCurth/CATENets

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All training details are specified in appendix C, and provided
within the code at https://github.com/AliciaCurth/CATENets

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] All training details are specified in
appendix C

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] All sources of data
are listed in appendix C

(b) Did you mention the license of the assets? [N/A] No explicit license was provided with
the data.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
All code is provided in the supplement.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Data is publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Data was previously de-identified

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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