
Bounds all around: training energy-based models
with bidirectional bounds

— Supplementary Material —

Cong Geng, Jia Wang, Zhiyong Gao
Shanghai Jiao Tong University

{gengcong, jiawang, zhiyong.gao}@sjtu.edu.cn

Jes Frellsen∗, Søren Hauberg∗
Technical University of Denmark

{jefr, sohau}@dtu.dk

A Theoretical part

A.1 Proof of Theorem 1

Proof

log
[
Ex∼g(x) [f(x)]

]
− Ex∼g(x) [log f(x)] = log

∫
f(x)g(x)dx−

∫
(log f(x))g(x)dx

= log

[
f(η)

∫
g(x)dx

]
−
∫
(log f(x))g(x)dx = log f(η)

∫
g(x)dx−

∫
(log f(x))g(x)dx

=

∫
[log f(η)− log f(x)] g(x)dx =

∫
g(x)

∫ 1

0

d [log f(tη + (1− t)x)]
dt

dtdx

=

∫
g(x)

∫ 1

0

∇x̃ log f(x̃)(η − x)dtdx

≤
∫
g(x)

(∫ 1

0

|∇x̃ log f(x̃)|pdt
) 1

p
(∫ 1

0

|η − x|qdt
) 1

q

dx

≤
∫
g(x)|η − x|

(∫ 1

0

|∇x̃ log f(x̃)|pdt
) 1

p

dx

≤
(∫

g(x)

∫ 1

0

|∇x̃ log f(x̃)|pdtdx
) 1

p
(∫

g(x)|η − x|qdx
) 1

q

,

(1)
where x̃ = tη+(1− t)x. The second equation is derived by mean value theorem for definite integrals.
The first inequality is derived by Holder’s inequality, so p, q ≥ 1 and 1

p +
1
q = 1. Because g(x) has

finite support, there exists an M ≥ 0 that satisfying: |η − x| ≤M , then we can get:

log
[
Ex∼g(x) [f(x)]

]
− Ex∼g(x) [log f(x)] ≤M

(∫
g(x)

∫ 1

0

|∇x̃ log f(x̃)|pdtdx
) 1

p

≤M
(∫

g(x)|∇x̂ log f(x̂)|pdx
) 1

p

,

(2)

where x̂ = t0η + (1 − t0)x for a t0 (0 ≤ t0 ≤ 1) using the mean value theorem. Because f(x) is
L-Lipschitz continuous, then log f(x) is also Lipschitz continuous, so there exists an m ≥ 0 satisfying

|∇x̂ log f(x̂)|p ≤ |∇x log f(x)|p +m, for∀x, (3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

so we can get

log
[
Ex∼g(x) [f(x)]

]
− Ex∼g(x) [log f(x)] ≤M

(∫
g(x)|∇x log f(x)|pdx+m

) 1
p

≤M(Ex∼g(x) [|∇x log f(x)|p] +m)
1
p .

(4)

A.2 Proof of Eq. (18)

Proof For a vector u ∈ R1×n and a matrix J ∈ Rn×m, we have

|uJ |22 = uJJTuT = tr(JJTuTu)

≥ λ(JJT) tr(uTu),
(5)

where λ is the smallest eigenvalue of JJT . The inequality holds because JJT is a real symmetric
matrix and uTu is positive semidefinite (Neudecker, 1992). Then we set J = Jz,u = ∇xEθ(G(z)) +
∇G(z) log pg(G(z)), we can obtain:

|∇xEθ(G(z))Jz +∇G(z) log pg(G(z))Jz|22 ≥ λ(JzJ
T
z) tr(u

Tu)

= λ(JzJ
T
z)|u|22 = λ(JzJ

T
z)|∇xEθ(G(z)) +∇G(z) log pg(G(z))|22

(6)

Because λ(JzJ
T
z) is the square of the smallest singular value of Jz, which we represent by s1. So we

can obtain:

|∇xEθ(G(z)) +∇G(z) log pg(G(z))|2 ≤
|∇xEθ(G(z))Jz +∇G(z) log pg(G(z))Jz|2

s1
. (7)

This proves Eq. 18.

B Model Architecture

In order apply the change-of-variables formula to get a density for the generator, we assume that
G : Rd → RD spans an immersed d-dimensional manifold in RD. This assumption place some
restrictions on the architecture of the generator neural network.

The governing assumption is that the Jacobian of G exist and has full rank. Existence is ensured
as long as the chosen activation functions have at least one derivative almost everywhere. Smooth
activations naturally satisfy this assumption, but it is worth noting that e.g. the ReLU activation
function has a single point where the derivative is not defined. As long as the linear map preceding the
activation is not degenerate, then the non-smooth region has measure zero, and the change-of-variables
technique still applies.

We cannot guarantee that the Jacobian has full rank through clever choices of neural architectures.
However, we note that one requirement is that no hidden layer may have dimensionality below
the d dimensions of the latent space. This is a natural requirement for the generator anyway. In
our model, we aim to maximize the entropy of the generator, which encourages the generator to
create as diverse samples as possible. In practice this ensures that the Jacobian has full rank as a
degenerate Jacobian implies a reduction of entropy. Note that this is not a theoretical guarantee
against degenerate Jacobians during optimization, but in practice we have at no point experienced
problems in this regard.

B.1 Practical experimental settings

For the toy and MNIST datasets, we use multi-layer perceptrons (MLPs) networks, while for CIFAR-
10 and ANIMEFACE datasets, we use a DCGAN network and Resnet architecture, respectively.

C Training Details

In Table 6, we specify the hyperparameters used when training our models for each dataset. We
choose p = 2 in Eq (20) for our implementation. We normalize the data to be in [-1, 1] and do not

2

Table 1: The network architecture trained for toy datasets

Operation Input Output
Energy

Linear, PReLU 2 100
Linear, PReLU 100 100

Linear 100 1
Generator

Linear, PReLU, BN 2 100
Linear, PReLU, BN 100 100

Linear 100 2

Table 2: The network architecture trained for MNIST dataset

Operation Input Output
Energy

Linear, PReLU 2352 2000
Linear, PReLU 2000 1000
Linear, PReLU 1000 500
Linear, PReLU 500 250
Linear, PReLU 250 250

Linear 250 1
Generator

Linear, BN, PReLU 128 500
Linear, BN, PReLU 500 1000
Linear, BN, PReLU 1000 2000

Linear, Tanh 2000 2352

Table 3: The network architecture for CIFAR-10 dataset

Operation Kernel Strides Channels Output size
Energy

Conv2D, LReLU 3 1 64 32
Conv2D, LReLU 4 2 64 16
Conv2D, LReLU 3 1 128 16
Conv2D, LReLU 4 2 128 8
Conv2D, LReLU 3 1 256 8
Conv2D, LReLU 4 2 256 4
Conv2D, LReLU 3 1 512 4

Flatten 8192
Linear 1

Generator
Linear 8192

Reshape 512 4
ConvTranspose2D, BN, ReLU 4 2 256 8
ConvTranspose2D, BN, ReLU 4 2 128 16
ConvTranspose2D, BN, ReLU 4 2 64 32

Conv2D, Tanh 3 1 3 32

3

Table 4: The energy network architecture for ANIMEFACE dataset

Operation Kernel Strides Channels Output size
(ResBlock0)

Left: Conv2D, BN, LReLU 3 1 64 64
Conv2D 3 1 64 64

AvgPool2D 2 2 64 32
Right: AvgPool2D, BN 2 2 3 32

Conv2D 1 1 64 32
Overall: Add 64 32

(ResBlock1)
Left: BN, LReLU,Conv2D 3 1 128 32

BN, LReLU,Conv2D 3 1 128 32
AvgPool2D 2 2 128 16

Right: BN, Con2D 1 1 128 32
AvgPool2D 2 2 128 16

Overall: Add 128 16
(ResBlock2)

Left: BN, LReLU,Conv2D 3 1 256 16
BN, LReLU,Conv2D 3 1 256 16

AvgPool2D 2 2 256 8
Right: BN, Con2D 1 1 256 16

AvgPool2D 2 2 256 8
Overall: Add 256 8

(ResBlock3)
Left: BN, LReLU,Conv2D 3 1 512 8

BN, LReLU,Conv2D 3 1 512 8
AvgPool2D 2 2 512 4

Right: BN, Con2D 1 1 512 8
AvgPool2D 2 2 512 4

Overall: Add 512 4
(ResBlock4)

Left: BN, LReLU,Conv2D 3 1 1024 4
BN, LReLU,Conv2D 3 1 1024 4

Right: BN, Con2D 1 1 1024 4
Overall: Add 1024 4

LReLU 1024 4
Sum 1024

Linear 1

use dequantization. During training we augment only using random horizontal flips. For cifar10
we used the official train-test split from PyTorch, and for animeface we used a 85:15 train-test split.
For our upper bound, we set M

s21
= 0.001

zdim
, where s1 is the smallest singular value of Jacobian and

zdim is the latent dimension. We observe this setting can get a satisfying generation for all datasets.
If we replace the zdim with ‖v‖22 in high-dimensional data, where v is a random vector sampled in
Eq 19, it will further improve the generation. For out-of-distribution detection and capacity usage,
we set M

s21
= 0.1

zdim
, because if we increase this value, it will help the density estimation of the energy

function. We also observe that the network’s design affect performance. For example, removing batch
normalization in the energy function can stabilize training on the Animeface dataset. The relationship
between such design decisions in the context of EBMs should be explored in future work.

References
H. Neudecker. A matrix trace inequality. Journal of mathematical analysis and applications, 166(1):

302–303, 1992.

4

Table 5: The generator network architecture for ANIMEFACE dataset

Operation Kernel Strides Channels Output size
Linear 16384

Reshape 1024 4
(ResBlock0)

Left: BN, ReLU, NN-Upsampling, Conv2D 3 1 512 8
BN, ReLU, Conv2D 3 1 512 8

Right: NN-Upsampling, Conv2D 1 1 512 8
Overall: Add 512 8

(ResBlock1)
Left: BN, ReLU, NN-Upsampling, Conv2D 3 1 256 16

BN, ReLU, Conv2D 3 1 256 16
Right: NN-Upsampling, Conv2D 1 1 256 16
Overall: Add 256 16

(ResBlock2)
Left: BN, ReLU, NN-Upsampling, Conv2D 3 1 128 32

BN, ReLU, Conv2D 3 1 128 32
Right: NN-Upsampling, Conv2D 1 1 128 32
Overall: Add 128 32

(ResBlock3)
Left: BN, ReLU, NN-Upsampling, Conv2D 3 1 64 64

BN, ReLU, Conv2D 3 1 64 64
Right: NN-Upsampling, Conv2D 1 1 64 64
Overall: Add 64 64

BN, ReLU, Conv2D, Tanh 3 1 3 64

Table 6: Selection of most important hyper-parameters and their setting.

Datasets Optimization Learning rate Batch size Iterations/Epochs latent dim
Toy Adam(0.0,0.9) 2e-4 200 150000 2

MNIST Adam(0.0,0.9) 2e-4 64 60(epochs) 128
CIFAR-10 Adam(0.0,0.999) 5e-5 64 200000 128

ANIMEFACE Adam(0.0,0.999) 5e-5 64 100000 128

5

	Theoretical part
	Proof of Theorem 1
	Proof of Eq. (18)

	Model Architecture
	Practical experimental settings

	Training Details

