
w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

a b

cc

Algorithm 1 WMI-PA(', w, x, A)

1: h'⇤, w⇤,A⇤i LabelConditions(', w,x,A)
2: MA⇤ TTA(PredAbs['⇤](A

⇤))
3: vol 0
4: for µA⇤ 2MA⇤ do
5: Simplify('⇤

[µA⇤]
)

6: if LiteralConjunction('⇤
[µA⇤]

) then
7: vol vol +WMInb('⇤

[µA⇤]
, w⇤

[µA⇤]
|x)

8: else
9: MLRA TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
)))

10: for µLRA 2MLRA do
11: vol vol +WMInb(µLRA, w⇤

[µA⇤]
|x)

12: return vol

WMInb('⇤
[µA⇤]

, w⇤
[µA⇤]

|x). Otherwise, TA('⇤
[µA⇤]

) is com-
puted as TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
))) to produce

partial assignments, and the algorithm iteratively computes
contributions to the volume for each µLRA. We refer the
reader to Morettin et al. [2019] for more details.

4 EFFICIENCY ISSUES

4.1 (F)XSDD

Rseba

4.2 WMI-PA

We have identified some main issues with the WMI-PA al-
gorithm, which we illustrate by means of a simple example.

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
and

w(x,A)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If (x1 � 1)

Then

u

v
If (x2 � 1)
Then f11
Else f12

}

~

Else

u

v
If (x2 � 2)
Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

To be solved, the WMI needs to compute 6 integrals:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

With WMI-PA, applying LabelConditions(...) we obtain:

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

w⇤(x,A [B)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If B1

Then

u

v
If B2

Then f11
Else f12

}

~

Else

u

v
If B3

Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

then by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we obtain

instead 24 total assignments MA⇤
on A [B:

Assignment Range w
{ A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
{ A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f11
{ A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f12
{ A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f21
{ A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f22
{ A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{ A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
.
.
. [same as with {A1, A2}]

.

.

.
.
.
.

{ A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{¬A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f3
{¬A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f3
{¬A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f3
{¬A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f3
{¬A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f3
{¬A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f3

{¬A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f4
.
.
. [same as with {¬A1, A2}]

.

.

.
.
.
.

{¬A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f4

explain that ¬B2, B3 is not possible

Then, since each of the 24 '⇤
[µA⇤]

’s is a conjunction of liter-

als, WMI-PA computes 24 integrals. Notice that it uselessly

splits into 2 parts the integrals on f11 and f22 and into 6

parts the integral on f3 and on f4. Also, it repeats the very

same integrals for {A1, A2, ...} and {A1,¬A2, ...}.
2 ⇧

2The latter fact can be fixed by caching the values of the
integrals.

3

Algorithm 1 WMI-PA(', w, x, A)

1: h'⇤, w⇤,A⇤i LabelConditions(',w,x,A)
2: MA⇤ TTA(PredAbs['⇤](A

⇤))
3: vol 0
4: for µA⇤ 2MA⇤ do
5: Simplify('⇤

[µA⇤]
)

6: if LiteralConjunction('⇤
[µA⇤]

) then
7: vol vol +WMInb('⇤

[µA⇤]
, w⇤

[µA⇤]
|x)

8: else
9: MLRA TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
)))

10: for µLRA 2MLRA do
11: vol vol +WMInb(µLRA, w⇤

[µA⇤]
|x)

12: return vol

WMInb('⇤
[µA⇤]

, w⇤
[µA⇤]

|x). Otherwise, TA('⇤
[µA⇤]

) is com-
puted as TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
))) to produce

partial assignments, and the algorithm iteratively computes
contributions to the volume for each µLRA. We refer the
reader to Morettin et al. [2019] for more details.

4 EFFICIENCY ISSUES

4.1 (F)XSDD

Rseba

4.2 WMI-PA

We have identified some main issues with the WMI-PA al-
gorithm, which we illustrate by means of a simple example.

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
and

w(x,A)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If (x1 � 1)

Then

u

v
If (x2 � 1)
Then f11
Else f12

}

~

Else

u

v
If (x2 � 2)
Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

To be solved, the WMI needs to compute 6 integrals:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

With WMI-PA, applying LabelConditions(...) we obtain:

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

w⇤(x,A [B)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If B1

Then

u

v
If B2

Then f11
Else f12

}

~

Else

u

v
If B3

Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

then by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we obtain

instead 24 total assignments MA⇤
on A [B:

Assignment Range w
{ A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
{ A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f11
{ A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f12
{ A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f21
{ A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f22
{ A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{ A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
.
.
. [same as with {A1, A2}]

.

.

.
.
.
.

{ A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{¬A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f3
{¬A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f3
{¬A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f3
{¬A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f3
{¬A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f3
{¬A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f3

{¬A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f4
.
.
. [same as with {¬A1, A2}]

.

.

.
.
.
.

{¬A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f4

explain that ¬B2, B3 is not possible

Then, since each of the 24 '⇤
[µA⇤]

’s is a conjunction of liter-

als, WMI-PA computes 24 integrals. Notice that it uselessly

splits into 2 parts the integrals on f11 and f22 and into 6

parts the integral on f3 and on f4. Also, it repeats the very

same integrals for {A1, A2, ...} and {A1,¬A2, ...}.
2 ⇧

2The latter fact can be fixed by caching the values of the
integrals.

3

Algorithm 1 WMI-PA(', w, x, A)

1: h'⇤, w⇤,A⇤i LabelConditions(',w,x,A)
2: MA⇤ TTA(PredAbs['⇤](A

⇤))
3: vol 0
4: for µA⇤ 2MA⇤ do
5: Simplify('⇤

[µA⇤]
)

6: if LiteralConjunction('⇤
[µA⇤]

) then
7: vol vol +WMInb('⇤

[µA⇤]
, w⇤

[µA⇤]
|x)

8: else
9: MLRA TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
)))

10: for µLRA 2MLRA do
11: vol vol +WMInb(µLRA, w⇤

[µA⇤]
|x)

12: return vol

WMInb('⇤
[µA⇤]

, w⇤
[µA⇤]

|x). Otherwise, TA('⇤
[µA⇤]

) is com-
puted as TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
))) to produce

partial assignments, and the algorithm iteratively computes
contributions to the volume for each µLRA. We refer the
reader to Morettin et al. [2019] for more details.

4 EFFICIENCY ISSUES

4.1 (F)XSDD

Rseba

4.2 WMI-PA

We have identified some main issues with the WMI-PA al-
gorithm, which we illustrate by means of a simple example.

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
and

w(x,A)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If (x1 � 1)

Then

u

v
If (x2 � 1)
Then f11
Else f12

}

~

Else

u

v
If (x2 � 2)
Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

To be solved, the WMI needs to compute 6 integrals:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

With WMI-PA, applying LabelConditions(...) we obtain:

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

w⇤(x,A [B)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If B1

Then

u

v
If B2

Then f11
Else f12

}

~

Else

u

v
If B3

Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

then by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we obtain

instead 24 total assignments MA⇤
on A [B:

Assignment Range w
{ A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
{ A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f11
{ A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f12
{ A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f21
{ A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f22
{ A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{ A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
.
.
. [same as with {A1, A2}]

.

.

.
.
.
.

{ A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{¬A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f3
{¬A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f3
{¬A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f3
{¬A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f3
{¬A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f3
{¬A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f3

{¬A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f4
.
.
. [same as with {¬A1, A2}]

.

.

.
.
.
.

{¬A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f4

explain that ¬B2, B3 is not possible

Then, since each of the 24 '⇤
[µA⇤]

’s is a conjunction of liter-

als, WMI-PA computes 24 integrals. Notice that it uselessly

splits into 2 parts the integrals on f11 and f22 and into 6

parts the integral on f3 and on f4. Also, it repeats the very

same integrals for {A1, A2, ...} and {A1,¬A2, ...}.
2 ⇧

2The latter fact can be fixed by caching the values of the
integrals.

3

Algorithm 1 WMI-PA(', w, x, A)

1: h'⇤, w⇤,A⇤i LabelConditions(',w,x,A)
2: MA⇤ TTA(PredAbs['⇤](A

⇤))
3: vol 0
4: for µA⇤ 2MA⇤ do
5: Simplify('⇤

[µA⇤]
)

6: if LiteralConjunction('⇤
[µA⇤]

) then
7: vol vol +WMInb('⇤

[µA⇤]
, w⇤

[µA⇤]
|x)

8: else
9: MLRA TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
)))

10: for µLRA 2MLRA do
11: vol vol +WMInb(µLRA, w⇤

[µA⇤]
|x)

12: return vol

WMInb('⇤
[µA⇤]

, w⇤
[µA⇤]

|x). Otherwise, TA('⇤
[µA⇤]

) is com-
puted as TA(PredAbs['⇤

[µA⇤
]
](Atoms('⇤

[µA⇤]
))) to produce

partial assignments, and the algorithm iteratively computes
contributions to the volume for each µLRA. We refer the
reader to Morettin et al. [2019] for more details.

4 EFFICIENCY ISSUES

4.1 (F)XSDD

Rseba

4.2 WMI-PA

We have identified some main issues with the WMI-PA al-
gorithm, which we illustrate by means of a simple example.

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
and

w(x,A)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If (x1 � 1)

Then

u

v
If (x2 � 1)
Then f11
Else f12

}

~

Else

u

v
If (x2 � 2)
Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

To be solved, the WMI needs to compute 6 integrals:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

With WMI-PA, applying LabelConditions(...) we obtain:

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

w⇤(x,A [B)
def

=

u
wwwwwwwwwwwwwwwwv

If A1

Then

u
wwwwwwwwv

If B1

Then

u

v
If B2

Then f11
Else f12

}

~

Else

u

v
If B3

Then f21
Else f22

}

~

}
��������~

Else

u

v
If A2

Then f3
Else f4

}

~

}
����������������~

then by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we obtain

instead 24 total assignments MA⇤
on A [B:

Assignment Range w
{ A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
{ A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f11
{ A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f12
{ A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f21
{ A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f22
{ A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{ A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f11
.
.
. [same as with {A1, A2}]

.

.

.
.
.
.

{ A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f22

{¬A1, A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f3
{¬A1, A2, B1, B2,¬B3} Jx12 [1, 2]K, Jx22 [1, 2]K f3
{¬A1, A2, B1,¬B2,¬B3} Jx12 [1, 2]K, Jx22 [0, 1]K f3
{¬A1, A2,¬B1, B2, B3} Jx12 [0, 1]K, Jx22 [2, 3]K f3
{¬A1, A2,¬B1, B2,¬B3} Jx12 [0, 1]K, Jx22 [1, 2]K f3
{¬A1, A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f3

{¬A1,¬A2, B1, B2, B3} Jx12 [1, 2]K, Jx22 [2, 3]K f4
.
.
. [same as with {¬A1, A2}]

.

.

.
.
.
.

{¬A1,¬A2,¬B1,¬B2,¬B3} Jx12 [0, 1]K, Jx22 [0, 1]K f4

explain that ¬B2, B3 is not possible

Then, since each of the 24 '⇤
[µA⇤]

’s is a conjunction of liter-

als, WMI-PA computes 24 integrals. Notice that it uselessly

splits into 2 parts the integrals on f11 and f22 and into 6

parts the integral on f3 and on f4. Also, it repeats the very

same integrals for {A1, A2, ...} and {A1,¬A2, ...}.
2 ⇧

2The latter fact can be fixed by caching the values of the
integrals.

3

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

w(x,A)
def
=

3Y

i=1

(if Ai then wi1(x) else wi2(x))

A1

A2

A3

>
?

wĀ1,Ā2,Ā3
(x) = w12(x)w22(x)w32(x)

wĀ1,Ā2,A3
(x) = w12(x)w22(x)w31(x)

wĀ1,A2,Ā3
(x) = w12(x)w21(x)w32(x)

wĀ1,A2,A3
(x) = w12(x)w21(x)w31(x)

wA1,Ā2,Ā3
(x) = w11(x)w22(x)w32(x)

wA1,Ā2,A3
(x) = w11(x)w22(x)w31(x)

wA1,A2,Ā3
(x) = w11(x)w21(x)w32(x)

wA1,A2,A3(x) = w11(x)w21(x)w31(x)

With WMI-PA, instead, the representation of (9) does not
grow in size, because FIUCLRA functions allows for inter-
leaving arithmetical and conditional operators.

4.2 WMI-PA

As mentioned in the introduction, a major deficiency of the
WMI-PA algorithm is that it fails to leverage the structure
of the weight function to prune the set of models to integrate
over. We illustrate the issue by means of a simple example
(see Figure 1).

Example 1 Let '
def

= >, �
def

= Jx1 2 [0, 2]K ^ Jx2 2 [0, 3]K
(Figure 1(a)) and let w(x,A) be a tree-structured weight

function defined as in Figure 1(b).

To compute WMI(' ^ �, w|x,A), six integrals have to be

computed:

f11 on Jx12 [1, 2]K ^ Jx22 [1, 3]K (if A1 = >)

f12 on Jx12 [1, 2]K ^ Jx22 [0, 1]K (if A1 = >)

f21 on Jx12 [0, 1]K ^ Jx22 [2, 3]K (if A1 = >)

f22 on Jx12 [0, 1]K ^ Jx22 [0, 2]K (if A1 = >).

f3 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = >)

f4 on Jx12 [0, 2]K ^ Jx22 [0, 3]K (if A1 = ?, A2 = ?)

When WMI-PA is used (Algorithm 2), applying LabelCon-
ditions(...) we obtain (Figure 1(c)):

'⇤(x,A [B)
def

= ' ^ � ^B1 $ (x1 � 1) ^
B2 $ (x2 � 1) ^B3 $ (x2 � 2)

and the weight function w⇤(x,A[B) shown in Figure 1(d).

Then, by applying TTA(PredAbs['⇤](A
⇤)) (row 2) we ob-

tain 24 total assignments MA⇤
on A [B, as shown in

Figure 1(e) (note that assignments containing ¬B2, B3

are missing as they are theory-inconsistent according to

'⇤(x,A [B)).

As a result, since each of the 24 '⇤
[µA⇤]

’s is a conjunction

of literals, WMI-PA computes 24 integrals instead of six.

Notice that it uselessly splits into 2 parts the integrals on

f11 and f22 and into 6 parts the integral on f3 and on f4.

Also, it repeats the very same integrals for {A1, A2, ...} and

{A1,¬A2, ...}.
2 ⇧

We highlight two facts. First, WMI-PA enumerates to-

tal truth assignments on the Boolean atoms A [B in
TTA(9x.'⇤) (7) (row 2 in Algorithm 1), assigning also
unnecessary values. Second, WMI-PA labels LRA condi-
tions in w by means of fresh Boolean atoms B, (row 1 in
Algorithm 1). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(9x.'⇤) in (7) and of TA('⇤

[µA⇤]
) in (4) (rows 2 and

11 in Algorithm 1) is not aware of the conditional structure

of the weight function w, in particular, it is not aware of the
fact that often partial assignments to the set of conditions in
w⇤ (both Boolean and LRA) are sufficient to identify the
value of a FIUCLRA function (e.g {A1, B1, B2} suffices to
identify f11, or {¬A1, A2} suffices to identify f3), so that it
is forced to enumerate all total assignments extending them
(e.g. {A1, A2, B1, B2, B3} and {A1, A2, B1, B2,¬B3}).

Thus, in order to cope with this issue, we need to modify
WMI-PA to make it aware of the conditional structure of
w.

5 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

5.1 THEORETICAL IDEAS

Let w(x,A) be FIUCLRA. We notice a couple of facts.

Merge next two facts into previous section?

First, in (2) and in (7) the µAs are total (that is, TTA(9x.')
is used instead of TA(9x.')) because the enumerator does
not know w(x,A), which in the general case needs total

assignments on A even when a partial one suffices to make
'(x,A) true. Second, the integral in (4) is not straighfor-
ward to compute because the computation should be parti-
tioned by the if-then-else structure of w, which requires a
further form of search on the conditions of w. This forces
WMI-PA to introduce the fresh variables B and to conjoin

2The latter fact can be fixed by caching the values of the
integrals.

4

