
A Full Regret Proof477

A.0 Outline of Proof478

1. Reduce path planner to linear dynamical systems model479

2. Demonstrate that a general instance of Alg. 2 is a trust region problem480

3. Reduce Eqn. 9 in Alg. 1 to an instance of Alg. 2481

4. Justify necessary analogous quantities in our problem to those of the proofs in [38, 36]482

5. Apply the results for Nonconvex FPL with Memory from [38] to Alg. 1 to obtain the regret483

bound484

A.1 Reduction of Path Planned case to Standard Controls case485

Assume that the planner devises a nominal path (denoted with a (̄·)0 notation) in coordinates x and486

inputs u: so the path P is fully specified as P = {x̄0
t
, ū0

t
}
T

t=0. Assume that the path is chosen so that487

at every x on or near the path, the following dynamics hold around perturbations of the path:488

xt � x̄0
t
= A(xt�1 � x̄0

t�1) +B(ut�1 � ū0
t�1) +Dwt�1. (10)

Using this change of coordinates, we can essentially negate the path and study the relevant perturbation489

dynamics �xt := xt � x̄0
t

and �ut := ut � ū0
t
, we recover the desired equation:490

�xt = A�xt�1 +B�ut�1 +Dwt�1. (11)

For shorthand, we will define x := �x and u = �u to ease exposition, remembering that they491

represent perturbations from the nominal path. Intuitively, this is a reasonable model for ‘quasi-static’492

systems (e.g., a drone or car or aircraft using path planning for non-aggressive maneuvers).493

A.2 Algorithm 2 is a Trust Region Solver494

The proof that Alg. 2 is a trust region solver is given in Supp. B.1- B.3.495

A.3 Algorithm 2 Solves Equation 9496

The proof that Eqn. 9 is a special instance of admissible arguments to Alg. 2 is shown in Supp. B.4.497

A.4 Technical Notes498

A.4.1 Continuity and Conditioning Parameters499

We begin with an analysis of the Lipschitz constant for the approximate cost functions (this will500

follow a similar path to [38]).501

First, note that the diameter of the decision set is 2DM and that the gradient of the quadratic cost502

above is rm`t = (P + P
T)m+ p. As such,503

L := max
m,t

{krm`t(m)k1}

 max
m,t

{(kPk1 + kPk1)DM + kpk1}

 2HdwRD +R

We consider as well a bound on the conditioning number of the optimization problem. Because504

the size of the optimization grows linearly in time, the condition number grows at most linearly as505

well. Therefore, the run-time of the algorithm is polynomial (neither the condition number nor the506

dimension grows too rapidly).507

Finally, we note bounds on the elements of P and p in the trust region instance. The bounds on costs,508

states, inputs, and disturbances together imply that the elements of Pt are bounded by C
2
u

2
⇠, and509

the elements of p are bounded by C
2
u

2
⇠� (this again follows [38]).510

14

A.4.2 Truncated State Approximation511

The idea of this proof follows directly from [38]; however, we show the proof in detail because in512

our case the truncated state history affects the resulting vectors aj in the optimization, leading to a513

different instantiation of the problem.514

To give a sense of the added subtlety for obstacle avoidance, observe that in certain scenarios, small515

perturbations in the observed relative obstacle positions could yield large changes in the optimal516

policy. For example, imagine that there is one obstacle, located directly on the centerline of the517

nominal planned motion. Then a small perturbation of the obstacle to the right makes the optimal518

action “Left," while a small perturbation of the obstacle to the left makes the optimal action “Right."519

This phenomenon is not a problem in the regret outline because, while the optimal decision is fragile,520

the loss incurred of choosing incorrectly is bounded by the quadratic (and therefore, continuous)521

nature of the cost functions themselves.522

For the dynamics and control we have assumed that523

xt+1 = Axt +But +Dwt

ut = Kxt + bt +Mtw̃t

= Kxt +
HX

i=1

M
[i]
t
wt�i,

(12)

where the bias is included by one-padding the disturbance vector. For simplicity we will omit the524

explicit bias from ensuing analysis; in all cases it can be understood to be incorporated into the525

measured disturbance. We can then show (as in [38]) that the state can be expressed as the sum of526

disturbance-to-state transfer function matrices t,i:527

xA
t+1 = Ã

H+1xA
t�H

+
2HX

i=0

 t,iwt�i, where

Ã = A+BK and

 t,i = Ã
i
D [i  H] +

HX

j=0

Ã
j
BM

[i�j]
t�j

[i� j 2 {1, ..., H}].

We define the state estimate and cost as528

yt+1 :=
2HX

i=0

 t,iwt�i

`t(Mt�H:t) = ct(yt+1(Mt�H:t), ũt)

where ũt = Mtw̃t (the residual input on top of the closed-loop controller).529

Now, assume that kÃk  1 � �, that kÃk, kBk, kDk, kKk  �, and that for all t it holds that530

kwtk  Cw, kutk  Cu, and kQtk, kRtk  ⇠. Then we can show that the approximation error of531

the costs is sufficiently small. Let the condition number be defined as k = kÃkkÃ
�1

k.532

A.4.3 Bounding the States Along a Trajectory533

Note that ũt = Mtw̃t; this implies that kũtk  HDCw. This implies further that kBũt +Dwtk 534

2�HDCw by the triangle inequality. Assuming that there exists ⌧ such that535

kx⌧k2 
2�HDCw

�
,

we have that for every t > H + ⌧ + 1, kxA
t�H�1k2 

2�HDCw

�
. (WLOG, we can assume the initial536

state x0 is bounded in this domain - that is, that the assumption is satisfied with ⌧ = 0; the region537

defined above is the long-term reachable set of the state xt driven by bounded disturbances wt538

and (implicitly bounded) residual inputs ũt [the norm is limited by the stability parameter � of the539

closed-loop Ã-matrix]).540

15

A.4.4 Bounding the Change in Costs541

Now, we analyze the change in costs

|ct(x
A
t+1, ũt)� `t(Mt�H:t)| = |min

j2[p]
kaj,t +BMtw̃tk

2
2 � min

j2[p]
kâj,t +BMtw̃tk

2
2|

Noting the definition of âj,t and of aj,t, we can bound the difference between them as a function of542

the error in approximation of xt (see [38]):543

aj,t := pj,t � xt

=) âj,t � aj,t = (pj,t � x̂t)� (pj,t � xt)

= xt � x̂t

=) kâj,t � aj,tk2 = kxt � x̂tk2

 kCxe
��H

Now, we argue that the loss incurred due to the noise in x̂t is less than simply twice the change in cost544

due to the error in âj,t. Let ĵ⇤ := argmin
j2[p]{kâj,t �BMtw̃tk

2
2}. Let j⇤ be defined analogously.545

If j⇤ = ĵ
⇤, then the difference in cost is less than or equal to the extra loss incurred by the error in â.546

If j⇤ 6= ĵ
⇤, then it is possible that the true ‘binding obstacle’ was biased away, and that the ‘guessed’547

binding obstacle was ‘biased towards’; therefore, the cost error is possibly due to deviations up to548

twice the error in the âj,t vectors. This means that, defining �t such that k�tk2 = 2kxt � x̂tk2, we549

have that the following holds:550

� = |ct(x
A
t+1, ũt)� `t(Mt�H:t)| = |min

j2[p]
kaj,t +BMtw̃tk

2
2 � min

j2[p]
kâj,t +BMtw̃tk

2
2|

 max
�t:k�tk22kCxe

��H

n
k(âj,t + �t) +BMtw̃tk

2
2 � kâj,t +BMtw̃tk

2
2

o

= �
T

t
�t + 2�T

t
âj,t � 2�T

t
(BMtw̃t)

 k�tk
2
2 + 2(Cx + k�tk2)k�tk2 + 2k�tk2Cw�DM

= 3k�tk
2
2 + 2Cxk�tk2 + 2Cw�DMk�tk2

 5Cxk�tk2 + 2Cw�DMk�tk2

 5(k2C2
x
e
��H(1 + �DMCw)).

Letting H = d�
�1 log (5k2Cx(1 + �DMCw)T)e, we have that551

� 
Cx

T
.

552

553

16

Remark 3. Recursive Definition of H and Cx:554

Currently, there is a recursive nature to the definition of H and Cx; H :=555

d�
�1 log (5k2Cx(1 + �DCw)T)e and Cx := 2�HDCw

�
. However, this is not problematic because556

the definitions will have a solution (that can be found efficiently); namely:557

H � c1 log (c2Cx)

Cx = k1H

=) H � c1 log (c2k1H)

And for any c1, c2, k1 2 R+ and fixed T > 0, there exists a positive integer H such that the above558

result holds (e.g., following from the fact that logH = o(H)). Further, the resulting H will not be559

too large wrt T for sufficiently large T (e.g., large enough T to overcome the constants).560

A.5 Finalizing the Regret Bound561

A.5.1 Apply Nonconvex Memory Follow-the-Perturbed-Leader562

This result is from [38], Theorem 13 (Corollary 14 gives an equivalent result to our setting in the563

asymptotic regret behavior; our optimal choice of ⌘ and ✏ differs slightly).564

A.5.2 Completing the Bound565

Finally, we use Alg. 1 (which acts as an efficient ✏-oracle) with an approximate trust region imple-566

mentation of our desired optimization problem (Alg. 2) acting as a subroutine, in order to compose567

the regret components into a complete bound.568

Regret(A) := max
M2⇧

TX

t=H

ct(x
M

t
, ũt(M))�

TX

t=H

ct(x
A
t
, ũt(A))

 max
M2⇧

TX

t=H

(ft(M,M, ...,M) +
Cx

T
)�

TX

t=H

(ft(Mt�H:t) +
Cx

T
)

=
h
max
M2⇧

TX

t=H

ft(M,M, ...,M)�
TX

t=H

ft(Mt�H:t)
i
+O(log T)

 Õ(poly(L)
p

T)

(13)

To clarify the steps: the second line incorporates the approximation error from Section A.4.2 (which569

is logarithmic in T , as noted in the third line) and the final line follows from the Nonconvex Memory570

FPL result of [38].571

17

B Convex-Concave Game: Algorithm and Correctness572

For completeness and easier reference, we include a copy of Alg. 1 below. To improve clarity,573

references to equations within this section (Supp. B) will use their numbering as given in Supp. B,574

rather than in the main text. The key technical results of this section are to demonstrate: (1) that575

Alg. 2 is a trust region instance that can be solved efficiently, and (2) that the optimization procedure576

in Eqn. 15 is solved correctly and efficiently by the trust region procedure Alg. 2. Given these results,577

our obstacle avoidance algorithm will be computationally efficient and attain low regret.578

Algorithm 1 Online Learning for Obstacle Avoidance

Input: Partially observed obstacle positions {pj

t
}
K

j=1, planning horizon L, history length H .
Input: Full horizon T , algorithm parameters {⌘, ✏,�}, initial state x0.
Input: Open-loop plan: ūo

t
for t = 1, ..., T .

Initialize: Closed-loop correction M
[1:H]
0 , fixed perturbation P0 ⇠ Exp(⌘)du⇥Hdw .

Initialize: Play randomly for t = {0, ..., H � 1}, observe rewards, states, noises, and obstacles.
for t = H...T � 1 do

Play M
[1:H]
t

, and observe state xt+1 and obstacles {pj

t+1}j2[k]t+1
.

Reconstruct disturbance wt using observed xt+1.
Construct the reward function:

`t+1(M̃
[1:H]
t

) = min
j2[k]

n
kxM̃

t+1 � pj

t+1k
2
2

o
� kxM̃

t+1k
2
Q
� kũM̃

t
k
2
R
. (14)

Solve for M [1:H]
t+1 as the solution to:

argmax
kM [1:H]kDM

(
t+1X

⌧=1

`⌧ (M
[1:H]) + �(M [1:H]

• P0)

)
. (15)

end for

Algorithm 2 (General) Hidden-Convex Formulation for Objective in Eqn. 9

Input: Set of vectors {a[⌧]
j
}
k,Ht

j=1,⌧=1, matrix B, vectors b,b0, time history Ht  t

Input: Iterations N , learning rate ⌘, approx. error ✏, perturbation P0, diameter DM .
Initialize: Vector c[⌧]0 = 1

k

k, ⌧ = 1, . . . , Ht.
for n=0...N do

(1) Solve for Mn

Mn = argmax
kMkDM

n HtX

⌧=1

kX

j=1

cn(j)
[⌧]
ka[⌧]

j
+BMb[⌧]

k
2
2

� kb[⌧]
0 +BMb[⌧]

k
2
Q
� kMb[⌧]

k
2
R
+ �(M • P0)

o
.

(16)

(2) Update cn+1

c[⌧]
n+1 = ⇧

�k

h
c[⌧]
n
e
�⌘rc

�P
j
c[⌧]
n

(j)ka[⌧]
j

+BMb[⌧]k2
2

�i
, 8⌧ 2 {1, . . . , Ht}. (17)

end for
return MN

B.1 Non-convex Memory FPL for Obstacle Avoidance579

Intuitively, Alg. 1 operates by updating the gain matrices M [1:H]
t+1 via counterfactual reasoning: in580

hindsight, given the actual observed disturbances and obstacle locations, what gain matrices would581

18

have resulted in good performance (in terms of obstacle avoidance and the state-input penalties)? In582

Supp. A, we demonstrate that this algorithm results in low regret as formalized in Eqn. 5 of the main583

text. For reference: Eqn. 9 (main text) corresponds to Eqn. 15 (Supp. B) henceforth; similarly, Eqn. 8584

(main text) corresponds to Eqn. 14 (Supp. B).585

B.2 Efficient Solution of Eqn. 15 (Part 1): Reduction of Alg. 2 to Trust Region Instance586

We now prove that Alg. 2 does indeed solve Eqn. 9. Consider the relaxed optimization problem587

max
M2M

HtX

⌧=1

X

j

�
[⌧]
j
ka[⌧]

j
+BMb[⌧]

k
2
2 (18)

We will first describe some useful quantities and (physically-motivated) assumptions. The physical588

quantities of interest have the following characteristics: x 2 Rdx , u 2 Rdu , and w 2 Rdw .589

Assumption 4. B 2 Rdx⇥du , with du  dx, and rank (B) = du. This corresponds to the following590

physical assumptions: (1) there are no more inputs than states, and (2) there are no ‘extraneous’591

inputs (if there are such inputs, then we can find a minimal realization of B and wlog set extraneous592

inputs to always be zero). Similarly, if (1) fails, then we can remove extraneous inputs by again593

setting them equal to zero uniformly (just as in (2)).594

The dimension of several other variables of interest are: b 2 RHdw and for the decision variable M ,595

M 2 Rdu⇥Hdw . We want to show that the optimization in Eqn. 18 is equivalent to a convex trust596

region problem, which is efficiently solvable.597

598

Further, let the quantity B
T
B have a singular value decomposition denoted by:599

B
T
B = U

T⇤U.

We see that this decomposition has an orthogonal U 2 Rdu⇥du and positive definite ⇤ because600

rank(B) = du and thus the symmetric B
T
B 2 Rdu⇥du has BT

B � 0.601

602

Now, consider the problem of Eqn. 18, assuming that 8⌧ 2 {1, . . . , Ht}, there are fixed �[⌧] 2603

�p, B, {a[⌧]
j
}
k

j=1,b
[⌧]. For now, choose a single time element, notated as [i]. For simplicity, we604

will only include this notation at the beginning and end, where we sum the result back together. We605

rearrange the objective for this case as follows:606

OBJpartial =
X

j

�
[i]
j
ka[i]

j
+BMb[i]

k
2
2

=
X

j

�j(aj +BMb)T (aj +BMb)

=
X

j

�j(a
T

j
aj + 2aT

j
BMb+ bT

M
T
B

T
BMb)

⌘

X

j

�j(2c
T

j
Mb+ bT

M
T
U

T⇤UMb)

Here, we are searching for the argmax M
⇤, so the aT

j
aj is irrelevant. Further, we have defined607

cT
j
= aT

j
B. Now, let Mr := UM , and decompose Mr = [mT

1 ;m
T

2 ; ...;m
T

du
]. The optimization608

19

objective is now:609

OBJpartial =
X

j

�jkaj +BMbk22

⌘

X

j

�j(2c
T

j
Mb+ bT

M
T
U

T⇤UMb)

=
X

j

�j(2c
T

j
Mb+ bT

M
T

r
⇤Mrb)

= [
X

j

�j(2c
T

j
Mb)] + bT

M
T

r
⇤Mrb

The last simplification follows from the fact that
P

j
(�j) = 1 (because � 2 �du

). Now, using our610

knowledge of the diagonal nature of ⇤ and the column partition of Mr, we can see that611

M
T

r
⇤Mr =

duX

j=1

�
2
j
mjm

T

j

Substituting into the OPT formulation, we can further simplify all the way to the desired form:612

OBJpartial =
X

i

�ikai +BMbk22

⌘

hX

i

�i(2c
T

i
Mb)

i
+ bT

M
T

r
⇤Mrb

=
hX

i

�i(2c
T

i
Mb)

i
+ bT (

duX

j=1

�
2
j
mjm

T

j
)b

=
hX

i

�i(2c
T

i
U

T
Mrb)

i
+ (

duX

j=1

�
2
j
bTmjm

T

j
b)

= 2
hX

i

�i(
X

j

c̃i,jm
T

j
b)

i
+ (

duX

j=1

�
2
j
mT

j
bbTmj)

=
X

j

h
(2

X

i

�ic̃i,j)b
T

i
mj) + (

duX

j=1

mT

j
(�2

j
bbT)mj)

= mT
Pm+ pTm.

where m is a vector concatenation of the transposed rows of Mr. Now, to combine the results over613

time, utilizing the convexity-preserving property of function addition, we simply reintroduce the614

[i]-indexing and sum:615

OBJpartial =
X

j

�
[i]
j
ka[i]

j
+BMb[i]

k
2
2

= mT
P

[i]m+ (p[i])Tm

=) OBJfull =
X

i

X

j

�
[i]
j
ka[i]

j
+BMb[i]

k
2
2

=
X

i

mT
P

[i]m+ (p[i])Tm

=
X

i

mT
Pm+ pTm

Once we solve for m⇤ using a trust region solver, we unpack it into M
⇤
r

, and get M⇤ = U
T
M

⇤
r
(=616

U
T (UM

⇤) = M
⇤) as desired. Further, we can translate a norm bound on M into an equivalent one617

on m (at least, for appropriate choice of norm bound - e.g., the Frobenius norm on M becomes the618

2-norm on m).619

20

B.3 Solving the FPL Sub-Problem620

In order to feasibly engage the obstacle avoidance algorithm, it is necessary to solve for optimal621

solutions to the objective in Eqn. 15, which is an instance of the following max-min problem:622

argmax
kMkDM

t+1X

⌧=1

min
j

ka[⌧]
j

+BMb[⌧]
k
2
2 � kb[⌧]

0 +BMb[⌧]
k
2
Q
� . . .

· · ·�kMb[⌧]
k
2
R
+ �(M • P0),

where a[⌧]
j
, B,b[⌧]

0 ,b[⌧] depend on the dynamics (Eqn. 4, main text) and the obstacle locations. The623

resulting algorithm is shown in Alg. 2, which converges to M
[1:H]
t+1 in Eqn. 15 of Alg. 1.624

Finally, we need to demonstrate that Alg. 2 will converge to a pair {cN ,MN} that corresponds to the625

optimal solution of Eqn. 15. This follows immediately from Theorem 7, Part II of [61]. We have an626

instance of a repeated game in which an optimization oracle efficiently solves Eqn. 16, and then the627

low-regret exponentiated gradient algorithm [62] iteratively updates cn (Eqn. 17). Again, we utilize628

the fact that the operation of function addition preserves, respectively, the convexity and concavity629

properties of pairs of operand functions as a necessary tool to allow for the results to still hold when630

applying the summation over time steps.631

B.4 Efficient Solution of Eqn. 15 (Part 2): Reduction of Obstacle Avoidance to Alg. 2632

This proof works as a reduction, where we show that the obstacle avoidance problem (Eqn. 15)633

constitutes a particular set of inputs to the general formulation of Alg. 2. Recall that at time t, the634

algorithm A has access to the state trajectory {xA

⌧
}
t

⌧=1, the disturbance history {w⌧}
t�1
⌧=1, and the sets635

of sensed obstacles {pj

⌧
}
t

⌧=1. For any ⌧ 2 {H, ..., t}, the loss function can be written as an instance636

of Alg. 2. Specifically, let aj
⌧
= Ãx⌧�1+Dw⌧�1�pj

⌧
, b⌧ = w⌧�H:⌧�1, b0,⌧ = Ãx⌧�1+Dw⌧�1.637

Then, for an appropriate c⌧ 2 �k⌧
, the optimization problems are equivalent. Concatenating over the638

⌧ -formulations, we have an instance of Eqn. 16. Specifically, for some choice of c, we will have an639

equivalent problem as Eqn. 15; here c is an encoding – unknown a priori – of the relevant (nearest)640

obstacles at each time step.641

21

C Hardware Experiment Details642

C.1 Equations of Motion643

The equations of motion for the high-level Go1 control are:644

"
xt+1

yt+1

 t+1

#
=

"
xt

yt

 t

#
+ dt

"
cos 0
sin 0
0 1


ux

u

�
+

"
wx,t

wy,t

w ,t

#
, (19)

where ux is the commanded forward velocity and u is the commanded yaw rate. The disturbances645

wx, wy and w capture unmodeled disturbances including imperfect velocity tracking by the robot’s646

low-level controller and deviations due to localization noise.647

C.2 Boschloo Test for Significance648

In order to evaluate the improvement of OLC vs A⇤ in our hardware experiments, we perform a649

Boschloo Exact Test on the outcomes of the experiment. This test (for our purposes) essentially650

provides a statistical evaluation of the difference in means of two Bernoulli variables in the small-data651

regime. In our experiments, we have a 2x2 test matrix in which OLC and A⇤ are each run 21 times,652

with the number of failures a random variable depending on each algorithm’s behavior subject to the653

realized obstacle layouts. While we do not claim that our distribution of layouts exactly matches the654

‘true distribution in the world,’ we believe it to be similar enough such that the statistic should be655

meaningful here.656

To be precise, the statistic encapsulates the probability, in the null hypothesis that the two means are657

equal (or that one mean is greater), of achieving a small sample of realizations that is more extreme658

than that observed in the true data. By choosing the alternative hypothesis “collision rate of A⇤ is659

higher,” a significant result (say, at ↵ = 10% or ↵ = 5% significance) would mean that we reject the660

null hypothesis. This, then, would provide evidence that the use of OLC meaningfully reduced the661

collision rate.662

Using the existing scipy implementation (scipy.stats.boschloo_exact), we find that for the data663

presented in Table 2, the test statistic is 0.1073 with p = 0.074, indicating significance at ↵ = 0.1664

but not ↵ = 0.05. Though not conclusive, this provides reasonable evidence that the reported665

improvement in the collision rate is not due to random chance in the obstacle layout realizations.666

C.3 Obstacle Layouts667

We provide a bird’s eye view of the layout configurations used during the experiments in Figure 3.668

Additionally see the supplementary video for the physical instantiation of the layouts used in the669

experiments.670

22

Figure 3: Obstacle layouts from a bird’s eye view used during the experiments. Obstacles are denoted by the red
circles. The quadruped was placed at (0, 0) and tasked with traversing 10m in the the x direction.

671

23

D Simulation Details and Resources672

D.1 Simulation Implementation: Parameters, Setup, and Runtime673

In this section, we report the hyperparameters used for the experiments results in the main text. We674

implemented our algorithm and environments in JAX. All experiments were carried out on a single675

CPU in minutes.676

We set the full horizon T to 100 and the history length H to 10. For random perturbation across677

environments, we sample noise from Gaussian distribution with mean 0 and standard deviation 0.5.678

For directional perturbation, we sample Gaussian noise with mean 0.5 and standard deviation 0.5. A679

random seed of 0 is used for all experiments. We obtain the nominal control from LQR with Q set to680

0.001 and R set to 1. We then learn the residual obstacle-avoiding parameter M via gradient descent.681

The learning rate of gradient descent is 0.008 in the centerline environment and is 0.001 for the other682

environments.683

An important note for these experiments: we do not implement existing heuristic techniques like684

obstacle padding to improve the RRT⇤ collision-avoidance performance. As such, this performance685

is not meant to suggest that RRT⇤ cannot work robustly in these settings, only that its nominal686

(and theoretically grounded) form does not account for disturbances or uncertainty and is therefore687

“optimistic” as compared to HJ methods, etc.688

D.2 Additional Figures and Trajectories – Centerline Environment689

This appendix includes sample trajectories and other relevant visualizations for each algorithm.690

D.2.1 RRT⇤ / A⇤691

Here, we demonstrate some sample paths for RRT⇤ in each disturbance regime. Fig. 4 shows uniform692

random noise, Fig. 5 shows sinusoidal noise, and Fig. 6 shows adversarial noise. In each case, the693

shift at the final time (goal position, top of image) causing a horizontal shift in the path should be694

ignored.695

Figure 4: RRT⇤ Planner trajectories against uniform random disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

24

Figure 5: RRT⇤ Planner trajectories against sinusoidal disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 6: RRT⇤ Planner trajectories against adversarial disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 7: Racer backwards reachable set (inside thick black line) and the obstacle (dashed black line).

D.2.2 HJ Reachability Planner696

For the centerline example, the HJ Reachability planner constructs in Fig. 7 the backwards-reachable697

set for a given obstacle (dashed line), subject to the dynamics constraints imposed on the racer.698

25

Note that every positive-value region denotes an unsafe region. The interpretation is that there is a699

“pseudo-cone" in front of the obstacle from which the vehicle cannot escape hitting the obstacle if the700

disturbances are sufficiently adversarial. Note that this means that HJ planning is independent of the701

actual disturbances. For each of the disturbance patterns (random, sinusoid, adversarial), we plot702

a collapsed view of sample trajectories around an obstacle for the HJ planner in Fig. 8. Note how703

similar each plot is, due to this independence of the control from the actual observed disturbances.704

D.2.3 Online Learned Planner705

The key illustration here is that the trajectories of the online planner follow the structure of the706

disturbances, as illustrated by the following comparison of the uniform random and sinusoidal707

disturbances in Fig. 9 and Fig. 10.708

Figure 8: HJ Planner trajectories against (L) uniform random, (C) sinusoid, and (R) adversarial disturbances.
Obstacles are black spheres, with the nominal trajectory a dashed black (vertical) line.

Figure 9: Collapsed trajectories of the racer using
the online planner with random disturbances. The
racer passes on each side evenly.

Figure 10: Collapsed trajectories of the racer using
the online planner with sin disturbances. The racer
learns to pass on the right.

26

D.3 Failures in the Slalom Setting709

We include an image of the four major environments in Fig. 11. Our simulated performance was710

strong in all environments except for the slalom environment, which we discuss further below.

Figure 11: Illustration of the four environments used as a proof-of-concept for our Online algorithm.

711

The “slalom" setting allows us to tune its difficulty by varying the x-position (i.e. offset) of the gates712

or by narrowing their width. Fig. 12 illustrates the effect of increasing gate offset from center (i.e.,713

error in the nominal planned trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity714

to disturbances – y-axis) on failure rate through the slalom gates. As expected, reduced gate width715

and increased offset broadly increase failure rates. This is due to the online planner being forced716

to overcome a poor nominal planned trajectory; in combination with the gated passageways, this717

requires very precise sequences of inputs and a longer memory of previously observed gates (due to718

the limited sensing horizon). This is discussed further in Supp. D.3.1.719

D.3.1 Discussion720

The first answer is relatively direct: in all of our examples, we are implicitly acting in a kind of Frenet721

frame, where all obstacle positions and other referencing is to the ego vehicle (racer) position. As722

such, the nominal planned trajectory can always be thought of as mapped to a straight line ahead of723

the racer. In this context, some slalom gates represent a 20m deviation from the nominal trajectory.724

However, this flies in the face of the central modeling intuition of the online framework – that725

obstacle avoidance is local, with local sensing, local deviations from the nominal trajectory, and726

“reactive" control to disturbances as they arise. In this vein, the nominal slalom is a challenging727

task, precisely because it stretches the limits of what can be met by our setup. Concretely: limited728

sensing makes each slalom wall a kind of “gradient-less" observation (shifting left and right yields729

only a continuation of the wall unless the gap is already sensed), meaning that choosing the correct730

Left/Right action is difficult. Additionally, the map displays memory, because going the wrong way731

early through one gate can render the next gate infeasible.732

It is in light of these considerations that we argue that the slalom case is actually a case for our model,733

because it interpretably creates a setting in which the key assumptions are broken. Just like an actual734

skier who overshoots through one gate and cannot recover for the next gate, so too does our obstacle735

avoidance algorithm run the risk of “dooming" itself due to a wrong turn – but this is, as described,736

fundamental to the hardness of the obstacle avoidance problem! As such, we consider the slalom gate737

as a fundamentally hard problem, and consider a case for future work a fuller characterization of how738

our planner works for slaloms of varying difficulty, as measured by the sensor range, the distance739

between gates (both laterally and longitudinally), and the fundamental “cost memory" as it depends740

on these and other parameters.741

D.3.2 Experimental Parameter Sweep – Slalom Course742

In an effort to better represent the effects of the slalom setting and the dependence on gate width and743

offset, Fig. 12 illustrates the effect of increasing gate offset from center (i.e., error in the nominal744

planner trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity to disturbances – y-axis)745

27

Figure 12: Failure rate heatmap for increasing gate offset (left to right) and decreasing gate width (bottom to
top). As expected, failure increases with narrower gates (top) and larger offsets (right).

on failure rate through the slalom gates. As expected, reduced gate width and increased offset broadly746

increase failure rates.747

We note that for narrow gates, a zero-offset slalom is actually quite challenging to ensure - we believe748

this is due to the fundamental H1 limit of stabilization of disturbances for this system; namely, a749

too-narrow gate requires too-strong robustness about the setpoint (origin), causing failure. This also750

explains why failure rates are high but not one for moderate offsets in the narrow-gate environment751

as well: specifically, they allow some freedom away from the zero-offset regularization problem.752

Besides this, the trend quite clearly demonstrates the fundamental increases in difficulty observed for753

narrower gates and larger offsets, as expected.754

28

	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Safety Controller Objective
	Regret Framework for Obstacle Avoidance
	Trust Region Optimization

	Methodology, Algorithm, and Regret Bound
	Intuitive Decomposition of the OLC Algorithm Control Signal
	Regret Minimization Methodology
	Algorithm Exposition and Regret Bound

	Experiments
	Simulation Experiments
	Hardware Experiments

	Conclusion and Limitations
	Full Regret Proof
	Outline of Proof
	Reduction of Path Planned case to Standard Controls case
	Algorithm 2 is a Trust Region Solver
	Algorithm 2 Solves Equation 9
	Technical Notes
	Continuity and Conditioning Parameters
	Truncated State Approximation
	Bounding the States Along a Trajectory
	Bounding the Change in Costs

	Finalizing the Regret Bound
	Apply Nonconvex Memory Follow-the-Perturbed-Leader
	Completing the Bound

	Convex-Concave Game: Algorithm and Correctness
	Non-convex Memory FPL for Obstacle Avoidance
	Efficient Solution of Eqn. 15 (Part 1): Reduction of Alg. 2 to Trust Region Instance
	Solving the FPL Sub-Problem
	Efficient Solution of Eqn. 15 (Part 2): Reduction of Obstacle Avoidance to Alg. 2

	Hardware Experiment Details
	Equations of Motion
	Boschloo Test for Significance
	Obstacle Layouts

	Simulation Details and Resources
	Simulation Implementation: Parameters, Setup, and Runtime
	Additional Figures and Trajectories – Centerline Environment
	RRT* / A*
	HJ Reachability Planner
	Online Learned Planner

	Failures in the Slalom Setting
	Discussion
	Experimental Parameter Sweep – Slalom Course

