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Abstract: We approach the fundamental problem of obstacle avoidance for robotic1

systems via the lens of online learning. In contrast to prior work that either assumes2

worst-case realizations of uncertainty in the environment or a stationary stochastic3

model of uncertainty, we propose a method that is efficient to implement and4

provably grants instance-optimality with respect to perturbations of trajectories5

generated from an open-loop planner (in the sense of minimizing worst-case regret).6

The resulting policy adapts online to realizations of uncertainty and provably7

compares well with the best obstacle avoidance policy in hindsight from a rich8

class of policies. The method is validated in simulation on a dynamical system9

environment and compared to baseline open-loop planning and robust Hamilton-10

Jacobi reachability techniques. Further, it is implemented on a hardware example11

where a quadruped robot traverses a dense obstacle field and encounters input12

disturbances due to time delays, model uncertainty, and dynamics nonlinearities.13

Keywords: Regret Minimization, Obstacle Avoidance, Online Learning14

1 Introduction15

The problem of obstacle avoidance in motion planning is a fundamental and challenging task at16

the core of robotics and robot safety. Successfully solving the problem requires dealing with17

environments that are inherently uncertain and noisy: a robot must take into account uncertainty18

— external disturbances and unmodeled effects, for example — in its own dynamics and those19

of other agents in the environment. Approaches for tackling the obstacle avoidance problem in20

robotics typically fall under two categories: (i) methods that attempt to construct stochastic models of21

uncertainty in the agents’ dynamics and use the resulting probabilistic models for planning or policy22

learning, and (ii) methods that construct plans that take into account worst-case behavior. In Sec. 223

we give a more detailed overview of both classes of approaches.24

In this paper, we are motivated by Vapnik’s principle: “when solving a given problem, try to25

avoid solving an even harder problem as an intermediate step.” Constructing accurate models of26

disturbances and agent dynamics is perhaps more complicated than the task of obstacle avoidance in27

motion planning, as practical uncertainties rarely conform to the assumptions made by the two classes28

of approaches highlighted above. As an example, consider a quadruped robot navigating through an29

(a priori unknown) obstacle field subject to unmodeled dynamics and external disturbances in the30

input channel (Fig. 1). Constructing an accurate probabilistic model of disturbances and obstacle31

variations that the robot may encounter is challenging, and may cause the robot to violate safety32

in out-of-distribution settings. In contrast, making worst-case assumptions may lead to extremely33

conservative behavior. This motivates the need for online learning methods that adapt to the particular34

instance of disturbances encountered by the robot.35

Statement of Contributions. In this work, we pose the problem of obstacle avoidance in a regret36

minimization framework and build on techniques from non-stochastic control. Our primary contribu-37

tion is a trust-region-based online learning algorithm for the task of obstacle avoidance, coupled with38

provable regret bounds that show our obstacle avoidance policy to be comparable to the best policy in39
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Figure 1: A quadruped robot is tasked with traversing a course with densely placed obstacles to a goal. During
traversal, the robot is subject to sensor noise, time delays, input-channel disturbances, and nonlinearities in the
closed-loop dynamics, which can render optimistic nominal plans (orange) unsafe. Our online learning control
(OLC) algorithm (dashed pink) corrects for this to give a wider margin of error when moving through the course.

hindsight from a given class of closed-loop policies. This type of theoretical performance guarantee40

is nonstandard, and allows us to flexibly adapt to the behavior of the uncertainty in any instance of41

the obstacle avoidance problem without making a priori assumptions about whether the uncertainty42

is stochastic or adversarial. Further, the resulting method is computationally efficient. The method43

is applied to dense obstacle environments with complex unmodeled dynamics, and demonstrates44

improved performance where open-loop planners and overly-robust methods can respectively struggle.45

We additionally show the efficacy of our method with hardware demonstrations where a quadruped46

robot has to navigate dense obstacle fields subject to time delays and input-channel disturbances.47

2 Related Work48

Effective motion planning is a central challenge within robotics that continues to spur further49

development [1, 2, 3]. While motion planning is well-developed in deterministic settings, robust50

planning remains a major challenge in the presence of unmodeled or partially-modeled uncertainty.51

Existing robust planning techniques typically fall into one of two categories: (i) methods that make52

assumptions on the distribution of uncertainty, or (ii) methods that assume worst-case disturbances.53

Below, we set our work within this context and discuss techniques from online learning; we will54

leverage these techniques to develop our novel framework for obstacle avoidance.55

Planning under uncertainty. A popular approach to account for uncertainty in motion planning56

is to assume knowledge of the uncertainty distribution. One early method in this vein utilizes57

chance constraints to bound the probability of collision under stochastic uncertainty [4] and has been58

subsequently extended to encompass many sources of stochastic uncertainty in robotics [5] - [8].59

Further development has utilized partially observable Markov decision processes (POMDPs) to60

account for state uncertainty [9] - [12]. These approaches are able to provide strong guarantees61

on safety, albeit under generally restrictive assumptions on the uncertainty distribution (e.g., i.i.d.62

Gaussian uncertainty); our approach does not assume knowledge of the distribution of uncertainty,63

yet provides regret bounds even in the presence of non-Gaussian and non-stationary noise.64

Recently, learning-based planning techniques relying on domain randomization have demonstrated65

significant empirical success [13] - [19] by specifying a distribution of uncertainty over various66

simulation parameters to train robust policies. Combining this domain randomization with online67

identification of uncertain parameters has been proposed [20, 21]; however, despite these methods’68

empirical successes, they still rely on real-world environments being well-represented by the dis-69

tribution of uncertainty used in (relatively extensive) training. By contrast, our approach focuses70
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on settings where it may be challenging to specify the uncertainty, and we do not require expensive71

training of policies in simulation to provide theoretical guarantees in the form of bounded regret.72

Reachability-based robust planning. Hamilton-Jacobi (HJ) Reachability-based [22, 23] and tra-73

jectory library-based [24, 25] robust planning techniques assume worst-case realization of uncertainty.74

As such, they provide adversarial certificates of safety for path planning problems via the construc-75

tion of representations (or outer approximations) of the safe and unsafe regions of the state space76

conditional on the robot dynamics, obstacle placement, and disturbance size. HJ methods, which77

generally suffer from the curse of dimensionality [26] (despite the existence of speed-ups in certain78

settings [27]), use the formalism of the differential game [28] to provide a “global” notion of safe79

and unsafe sets [29]. In comparison, robust trajectory libraries, which are usually computed using80

convex programs [30], provide safety guarantees in the form of robust “tubes” or “funnels” [31, 25]81

that encompass only the nominal trajectory (or hypothesized trajectories) within the space.82

The key distinction of our work from these methods arises from the desire in our setting for “instance-83

optimality;” namely, the use of online learning and regret minimization allows us to adapt to84

the specific nature of observed disturbances. Our method recovers effective performance in both85

stochastic and non-stochastic (adversarial) regimes; we do not sacrifice too much performance in86

“benign” environments to provide guarantees on robust performance in more adversarial cases, and87

vice versa.88

Online learning for control. Our work makes significant use of online learning [32] to make89

guarantees on regret, which is the difference between the algorithm’s performance and that of the90

best policy in hindsight (once disturbances are realized) from a given class of closed-loop policies.91

Several canonical control-theoretic results have recently been cast as problems in online learning92

[33, 34], providing interesting generalizations to established control results like the linear-quadratic93

regulator [35, 36, 37] and H∞ robust control [38]. Results in optimal sample complexity [39] and94

synthesis for unknown linear systems [40] illustrate further generalizations of standard control theory.95

Standard control formulations are efficiently solvable due to a convex objective. However, “higher-96

level” decision-making tasks like obstacle avoidance often have non-convex objective functions (e.g.,97

maximizing the distance to the nearest obstacle). Fortunately, some non-convex objectives admit98

“hidden convexity” — that they can be reformulated (via transformations, relaxations, or conversions99

to a dual formulation — see [41] for a survey) into equivalent optimization problems that are convex.100

This allows for efficient solutions (e.g., [42, 43, 44]) to problems that nominally would be hard to101

solve (e.g., [45]). Our work gives such a formulation for the task of obstacle avoidance.102

3 Problem Formulation and Preliminaries103

Consider a discrete-time dynamical system with state x̄ and control input ū. A planning oracle104

OT (x̄0) takes in an initial state and generates a nominal state trajectory with associated control105

inputs T = {x̄0
t , ū

0
t−1}Tt=1. We design a robust obstacle avoidance controller that will update the106

trajectory online to avoid local obstacles. Intuitively, this is a faster “safety inner loop” for the slower107

trajectory planning stage OT , keeping the agent safe from external features unseen at planning time.108

For analytical tractability, we assume that the dynamics of perturbations of the nominal trajectory are109

discrete-time linear1. Defining xt = x̄t − x̄0
t and ut = ūt − ū0

t , this assumption becomes110

xt+1 = Axt +But +wt, (1)
where wt is a bounded, unknown, possibly-adversarial disturbance. For many practical systems the111

linear dynamics assumption is reasonable; one example is a control-affine system with feedback112

linearization. Additionally, wt can encompass small, unmodeled nonlinearities. Our task is to113

construct this “residual" controller generating ut to avoid obstacles. As such, OT is the optimistic,114

goal-oriented planner (in practice, an off-the-shelf algorithm, e.g., [46]) and our controller is the115

safety mechanism that becomes active only when needed and in a provably effective manner.116

1The results here are presented for linear time-invariant (LTI) systems. We believe that the results extend
to linear time-varying (LTV) systems under reasonable but slightly more technical assumptions; however, this
formal analysis is left as future work.
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3.1 Safety Controller Objective117

A controller trying to avoid obstacles needs to maximize the distance to the nearest obstacle, subject118

to regularization of state deviations and control usage. Assume a sensor mechanism that reports all119

“relevant” obstacle positions (e.g., within a given radius of the agent). The optimization problem, for120

a trajectory of length T , safety horizon of length L ≤ T , and obstacle positions pjt denoting the jth121

sensed obstacle at time t, is122

max
A∈A

Cobs(A), where: (2)

Cobs(A) :=

T∑
t=1

min
τ∈[L]

min
j

∥xAt+τ − pjt∥22 − ∥xAt ∥2Q − ∥uAt ∥2R.

Here, A is the set of online algorithms that choose actions for the controller, and xAt denotes the123

realized state trajectory conditioned on actions uAt ∼ A ∈ A. The last two terms represent quadratic124

state and action costs; these costs2 are very common objectives in the control literature, but serve125

primarily here to regularize the solution to the obstacle avoidance task. Note that, though the collision126

avoidance objective is relaxed, it remains a nonconvex quadratic penalty term rendered additionally127

complex due to the discrete selection over time and obstacle indices of the minimal-distance obstacle128

in the first term of Cobs. From here, we model the optimal policy search in the online control129

paradigm [36]. This allows us to define the regret-based safety metric with respect to the best130

achievable performance in hindsight. For a sufficiently powerful policy comparator class, we achieve131

meaningful guarantees on the safety of the resulting controller.132

3.2 Regret Framework for Obstacle Avoidance133

Leveraging the expressiveness of linear dynamic controllers (LDCs) as comparators [38, 36], we use134

a disturbance-action controller parameterization. The action is the sum of a stabilized nominal action135

and a residual obstacle-avoiding term136

ut = Kxt + bt +

H∑
i=1

M
[i]
t wt−i, (3)

where [i] indexes the history length and t denotes the time index of the decision. It will be useful to137

define the intermediate quantities ũt = ut −Kxt and Ã = A+BK. Then the system dynamics are138

xt+1 = Ãxt +Bũt +wt. (4)

The comparator class Π will be the class of LDCs parameterized by M ; this class has provably139

expressive approximation characteristics [36]. The regret is defined using quantities from Eqn. 2:140

RegT (A) = sup
w1,...,wT

{
max
M∈Π

Cobs(M)− Cobs(A)

}
. (5)

A sublinear bound on Eqn. 5 implies that the adaptive sequence Mt selected by low-regret online141

algorithm A will perform nearly as well as the best fixed policy M∗ in hindsight, for all realizations142

of uncertainty within the system. A sublinear bound on the regret thus establishes finite-time (near)143

optimality for all disturbance realizations: the policy will perform almost as well as a policy that has144

a priori knowledge of the disturbance realizations.145

3.3 Trust Region Optimization146

To provide guarantees on regret, the method presented in Sec. 4.2 will construct sequential trust region147

optimization instances; we provide a brief overview of this class of problems here. A trust region148

optimization problem [47] is a nominally non-convex optimization problem that admits “hidden149

convexity”. One can reformulate a trust region instance (see Def. 1) via a convex relaxation in order150

to solve it efficiently [42, 48].151

2Here, we omit the fully general LQR costs (time-varying Qt and Rt) for simplicity of presentation; however,
the results we show will also hold for this more general setting.
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Definition 1 (Trust Region Instance). A trust region instance is defined by a tuple (P,p, D) with152

P ∈ Rd×d, p ∈ Rd, and D > 0 as the optimization problem153

max
∥z∥≤D

{
zTPz+ pT z

}
. (6)

Throughout the remainder of this paper, we will use “trust region instance” to refer interchangeably154

to instances of Def. 1 and the implicit, equivalent convex relaxation.155

4 Methodology, Algorithm, and Regret Bound156

We provide a brief outline of the regret minimization motivation and methodology for non-convex157

online learning, from which we outline our algorithm called online learning control (OLC), and158

discuss its key properties.159

4.1 Intuitive Decomposition of the OLC Algorithm Control Signal160

The intuition of our control scheme is to allow for online, optimization-based feedback to correct161

for two key sources of failure in obstacle avoidance: (1) non-robust (risky) nominal plans, and (2)162

external disturbances. The former can be thought of as errors in planning – that is, they arise when163

the nominal path is followed exactly. Paths that move very close to obstacles or that pass through164

them (e.g., due to sensor noise) would be examples of this problem; indeed, sensing errors become165

very relevant on hardware, as shown in Sec. 5.2. The presence of the bias term in the OLC framework166

accounts for control input to correct these errors. The latter challenge concerns deviation from167

nominal trajectories caused by errors in modeling, time discretization, and physical disturbances.168

The linear feedback term in the OLC framework accounts for these errors. The OLC algorithm, then,169

is tasked with addressing these objectives online to reduce instances of collision with obstacles.170

4.2 Regret Minimization Methodology171

Many existing results in online learning and control are formulated by posing the specific problem172

as an online convex optimization [49] instance, which can be solved in an efficient manner [50].173

This will not suffice for our setting due to the non-convexity of the objective. However, optimal174

regret bounds for online non-convex optimization are given by “Follow the Perturbed Leader” (FPL)175

methods for problems with an optimization oracle [51, 52]; these bounds have been extended to the176

setting with memory [38]. The key challenge is to devise a tractable oracle for our setting, and then177

to combine the results of [52, 38] (subject to some technical modifications to meet the requirements178

of our application) with the guarantees for online convex optimization.179

4.3 Algorithm Exposition and Regret Bound180

We formulate the obstacle avoidance controller as an online non-convex FPL algorithm in Alg. 1. At181

time t, the agent generates a control input ũt via Eqn. 3 by playing M [1:H]
t . The state dynamics are182

then propagated to reveal the new state xt+1, and the realized wt is reconstructed in hindsight from183

the state. The robot simultaneously uses its sensors to observe local obstacle positions.184

The key conceptual step is then the following: given past reconstructed disturbances and obstacle185

locations, one can construct a reward function (Eqn. 8) at time t + 1. This is a function of a186

counterfactual set of gains M̃ [1:H]
t , where xM̃t+1 and ũM̃t correspond to the state and control input that187

would have resulted from applying M̃ [1:H]
t given the realized disturbances, obstacle locations, and188

the initial state x0. The key algorithmic step is to update M [1:H]
t+1 by solving the optimization problem189

in Eqn. 9, which is the Follow-the-Perturbed-Leader component of the algorithm (the inner product190

(M • P0) is the regularizing perturbation). The resulting sublinear regret bound is summarized in191

the following theorem; the optimization procedure and the proof of the optimization correctness are192

deferred to Supp. B, and the proof of the regret bound is deferred to Supp. A.193
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Theorem 2 (Regret Bound for Online Obstacle Avoidance). Consider an instance of Alg. 1, with Alg.194

2 (see Supp. B) acting as a subroutine optimizing Eqn. 9. Then the regret attained by Memory FPL195

will be196

Õ(poly(L)
√
T ), (7)

where L is a measure of the instance complexity.197

Algorithm 1 Online Learning Control (OLC) for Obstacle Avoidance

Input: Partially observed obstacle positions {pjt}Kj=1, planning horizon L, history length H .
Input: Full horizon T , algorithm parameters {η, ϵ, λ}, initial state x0.
Input: Open-loop plan: ūot for t = 1, ..., T .
Initialize: Closed-loop correction M [1:H]

0 , fixed perturbation P0 ∼ Exp(η)du×Hdw .
Initialize: Play randomly for t = {0, ...,H − 1}, observe rewards, states, noises, and obstacles.
for t = H...T − 1 do

Play M [1:H]
t , and observe state xt+1 and obstacles {pjt+1}j∈[k]t+1

.
Reconstruct disturbance wt using observed xt+1.
Construct the reward function:

ℓt+1(M̃
[1:H]
t ) = min

j∈[k]

{
∥xM̃t+1 − pjt+1∥22

}
− ∥xM̃t+1∥2Q − ∥ũM̃t ∥2R. (8)

Solve for M [1:H]
t+1 as the solution to:

argmax
∥M [1:H]∥≤DM

{
t+1∑
τ=1

ℓτ (M
[1:H]) + λ(M [1:H] • P0)

}
. (9)

end for

5 Experiments198

We demonstrate the effectiveness of our method in simulated and physical environments. The199

simulated environment in Sec. 5.1 considers a 2D racing problem. The hardware experiments200

in Sec. 5.2 are conducted on a Go1 quadruped robot [53] avoiding obstacles in the presence of201

unmodeled nonlinear dynamics, sensor noise, and time delays, as shown in Fig. 1. In both settings,202

we demonstrate the benefits of our approach as compared to baselines that use, resp., RRT*/A* for203

optimistic planning, and Hamilton-Jacobi (HJ) reachability for robust planning. We illustrate how204

our method acts as an adaptive intermediary, providing a computationally tractable algorithm that205

nonetheless maintains improved safety properties relative to purely optimistic planners.206

5.1 Simulation Experiments207

Experiment overview. In the simulated environment, a racing vehicle (using double integrator208

dynamics) observes all obstacles within a fixed sensor range (Fig. 2). The nominal dynamics are209

perturbed by disturbances with varying levels of structure (described further below). A “centerline”210

environment shown in Fig. 2 is utilized to demonstrate key safety and adaptivity criteria. The nominal211

trajectory is fixed to be a straight path through obstacles, requiring the obstacle avoidance behavior to212

emerge via the online adaptation of Alg. 1. For speed, the implementation of the environment and213

algorithm is set up in JAX [54], using Deluca [55] as a framework for the control-theoretic simulation214

environment. All individual simulations take 1-2 minutes to run on a single CPU.215

Comparison with baselines. We utilize a HJ reachability planner [56] to generate robust trajecto-216

ries, as well as a kinodynamic RRT∗ implementation [57] to generate “optimistic” plans. We intend217

to demonstrate two key behaviors: our algorithm (1) performs (nearly) as effectively with respect to218

standard LQR costs in states and inputs as RRT∗ when disturbances are “benign,” and (2) performs219

(nearly) as well as HJ methods when disturbances are adversarial.220
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Figure 2: Centerline environment. The
nominal path passes vertically through
obstacles; the sensor range is denoted
by the blue shaded region.

Plan
Dist. Rand Sin Adv

RRT∗ 0.27± 0.05 —- —-
0.60 1.00 1.00

OLC 0.51± 0.09 0.49± 0.13 1.57± 0.65
(ours) 0.06 0.04 0.26

HJ Plan 0.55± 0.05 0.59± 0.14 1.01± 0.03
0.00 0.00 0.00

Table 1: Planner performance for each disturbance type. Costs are
given in terms of linear-quadratic (LQ) costs (top) and fraction of
failures (bottom). Best-performing cases for each column are bold.
LQ costs are only computed for successful passes; as such, RRT∗ is
intentionally blank for two entries.

For each algorithm both stochastic [‘Rand’] and non-stochastic (sinusoidal [‘Sin’] and adversarial221

[‘Adv’]) disturbance profiles are tested, and metrics for both the safety (number of collisions) and222

performance (LQR state and input costs) are collected for runs spanning 50 centerline obstacles.223

Results are presented for each algorithm and disturbance profile in Table 1. For space considerations,224

figures illustrating trajectories of simulated runs referenced below are deferred to Supp. D.225

Several aspects of Table 1 reflect the expected behavior of each algorithm. First, RRT∗ follows226

efficient paths, but fails to handle disturbances effectively, with a high failure (collision) rate. Second,227

HJ paths are robust, but performance improvements are limited as ‘adversariality’ is reduced, and the228

method fails to take advantage of structure in the sinusoidal disturbances. In particular, the sinusoid229

case incentivizes the racer to pass the obstacles on a specific side; the HJ planner passes on each side230

in equal proportion (see Fig. 8) because it does not account for this structure. In contrast, OLC adapts231

to the structure of the sinusoidal disturbances to take the “easier route” with lower cost (see Fig. 10).232

Having illustrated the drawbacks of both RRT*∗ and HJ planners, we summarize the intermediate233

position OLC occupies, as demonstrated in these experiments. Specifically, as shown in Table 1, OLC234

significantly reduces collisions across all disturbance profiles relative to RRT∗, while also reducing235

control usage and state costs due to structured disturbances or stationary disturbance profiles relative236

to HJ planners. This intermediate solution also provides computational speed-up to HJ, allowing it237

to be run more efficiently online and allow for feedback on sensory information (as opposed to the238

privileged map information that HJ will require for the hardware experiments in Sec. 5.2). Finally,239

we ran OLC on several other environments to test its obstacle-avoidance performance; results from240

these simulations are included in Supp. D.241

5.2 Hardware Experiments242

Experiment overview. For our hardware experiments, we use the Unitree Go1 quadruped robot,243

shown in Fig. 1. The robot is equipped with LIDAR and an inertial measurement unit (IMU) which244

enable obstacle detection and localization using LIO-SAM [58]. The robot’s task is to traverse a dense245

course of cylindrical obstacles, while encountering time delays and residual, nonlinear dynamics. The246

plant is modeled as a Dubins’ car; the equations of motion are included in Supp. C. The high-level247

inputs are then translated to joint-level torque commands by the robot’s low-level controller.248

Controller architecture. All sensing and computation is performed onboard the robot. We use a249

Euclidean clustering algorithm for obstacle detection [59] based on the LIDAR measurements. This250

detection algorithm runs onboard the robot and provides updated obstacle locations to the controller251

in real time (note that not all obstacles are initially sensed due to occlusions and larger distances). At252

each replanning step, the robot generates a nominal set of waypoints from the estimated state and253

detected obstacles using an A* algorithm [60] over a discretization of the traversable space, which is254

converted to a continuous path by a down-sampled smoothing spline. We then wrap the additional255

OLC feedback controller of the form presented in Eqn. 3 to generate corrective actions using Alg. 1.256
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Baselines. We compare our online learning-based obstacle avoidance controller with the same257

baselines used for the simulated experiments (Sec. 5.1), substituting A* for RRT* to improve speed258

and stability of the nominal planner. The first baseline uses A* in a receding horizon re-planning259

scheme with the nominal dynamics model and obstacle padding of 0.25m to account for the Go1’s260

longitudinal dimensions. The robot executes the control inputs provided by the planner, with periodic261

replanning at 1 Hz and an action frequency of 4 Hz. The second baseline is a robust controller that262

is generated using Hamilton-Jacobi (HJ) reachability. This baseline is provided an a priori map of263

the obstacles, and uses a provided model of the disturbances, taking into account velocity-dependent264

effects. This second baseline acts as a safety ‘oracle,’ and is not run online; rather, optimal trajectories265

are synthesized from the true map. As before, we intend to demonstrate that our algorithm improves266

the safety of a pure A* while providing shorter and more intuitive paths than HJ methods.267

Planner
Metric Path Length (m) Max Deviation (m) Collisions

A∗ 10.61± 0.40 0.62± 0.33 12

Online 10.59± 0.41 0.63± 0.28 7

HJ Plan 11.13± 0.45 1.16± 0.57 0 [simulated]
Table 2: Planner performance along several metrics for the hardware examples. We observe that our method
(‘Online’) performs very similarly to A∗ in terms of path efficiency while reducing collisions by over 40%. Note
that HJ methods choose significantly longer paths to account for worst-case uncertainty; HJ was not run on
hardware and the optimal paths were calculated offline using the true obstacle positions.

Results. We run physical experiments using A∗ and our online method for 21 runs each, consisting268

of three trials over seven obstacle layouts (see the supplemental video and Supp. C for additional269

details). In each instance, the robot is required to traverse 10m forwards. The optimal HJ path is270

synthesized a priori and analyzed offline (not run on hardware). For all runs, a ‘crash’ is defined271

as any contact being made with an obstacle. As shown in Table 2, HJ methods, which require an272

overestimation of the true disturbances to achieve safety, chooses an overly-conservative route that is273

generally inefficient (but safe). Conversely, A* – even with moderate obstacle padding of 0.25m –274

does not sufficiently account for the disturbances. As such, on many runs it contacts an obstacle. In275

contrast to HJ, A∗ and our online algorithm take significantly shorter paths (note that the shortest276

possible path is at minimum 10m in length). However, our algorithm reduces the number of collisions277

by nearly half versus the naive obstacle-padded A∗ approach, a result significant at p = 0.1 using a278

Boschloo exact test (see Supp. C). Additionally, our algorithm can run online (and onboard) and allow279

for a feedback mechanism, whereas HJ methods for this problem could not, as each computation of280

the backward reachable sets took several seconds to complete.281

6 Conclusion and Limitations282

We develop a regret minimization framework for the problem of online obstacle avoidance. In contrast283

to prior approaches that either assume worst-case realization of uncertainty or a given stochastic284

model, we utilize techniques from online learning in order to adaptively react to disturbances and285

obstacles. To this end, we prove regret bounds that demonstrate that our obstacle avoidance policy is286

comparable to the best policy in hindsight from a given class of closed-loop policies. Simulation and287

hardware experiments demonstrate that our approach compares favorably with baselines in terms of288

computational efficiency and performance with varying disturbances and obstacle behaviors.289

Some limitations that we hope to address in future work include the limited classes of applicable290

dynamics (though our hardware experiments apply the method to time-varying linear dynamics) and291

obstacle geometries. Additionally, the cost function does not have multi-time-step lookahead (i.e.,292

MPC-like); more lookahead would yield better foresight in the planning stage and likely improve293

performance. Finally, the algorithm relies on solutions to optimization problems that run real-time –294

ensuring stability of the optimization and automating selection of hyperparameters (ours are satisficing295

but likely suboptimal) would be useful extensions that may further improve the runtime performance.296
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A Full Regret Proof477

A.0 Outline of Proof478

1. Reduce path planner to linear dynamical systems model479

2. Demonstrate that a general instance of Alg. 2 is a trust region problem480

3. Reduce Eqn. 9 in Alg. 1 to an instance of Alg. 2481

4. Justify necessary analogous quantities in our problem to those of the proofs in [38, 36]482

5. Apply the results for Nonconvex FPL with Memory from [38] to Alg. 1 to obtain the regret483

bound484

A.1 Reduction of Path Planned case to Standard Controls case485

Assume that the planner devises a nominal path (denoted with a (̄·)0 notation) in coordinates x and486

inputs u: so the path P is fully specified as P = {x̄0
t , ū

0
t}Tt=0. Assume that the path is chosen so that487

at every x on or near the path, the following dynamics hold around perturbations of the path:488

xt − x̄0
t = A(xt−1 − x̄0

t−1) +B(ut−1 − ū0
t−1) +Dwt−1. (10)

Using this change of coordinates, we can essentially negate the path and study the relevant perturbation489

dynamics δxt := xt − x̄0
t and δut := ut − ū0

t , we recover the desired equation:490

δxt = Aδxt−1 +Bδut−1 +Dwt−1. (11)

For shorthand, we will define x := δx and u = δu to ease exposition, remembering that they491

represent perturbations from the nominal path. Intuitively, this is a reasonable model for ‘quasi-static’492

systems (e.g., a drone or car or aircraft using path planning for non-aggressive maneuvers).493

A.2 Algorithm 2 is a Trust Region Solver494

The proof that Alg. 2 is a trust region solver is given in Supp. B.1- B.3.495

A.3 Algorithm 2 Solves Equation 9496

The proof that Eqn. 9 is a special instance of admissible arguments to Alg. 2 is shown in Supp. B.4.497

A.4 Technical Notes498

A.4.1 Continuity and Conditioning Parameters499

We begin with an analysis of the Lipschitz constant for the approximate cost functions (this will500

follow a similar path to [38]).501

First, note that the diameter of the decision set is 2DM and that the gradient of the quadratic cost502

above is ∇mℓt = (P + PT )m+ p. As such,503

L := max
m,t

{∥∇mℓt(m)∥∞}

≤ max
m,t

{(∥P∥1 + ∥P∥∞)DM + ∥p∥∞}

≤ 2HdwRD +R

We consider as well a bound on the conditioning number of the optimization problem. Because504

the size of the optimization grows linearly in time, the condition number grows at most linearly as505

well. Therefore, the run-time of the algorithm is polynomial (neither the condition number nor the506

dimension grows too rapidly).507

Finally, we note bounds on the elements of P and p in the trust region instance. The bounds on costs,508

states, inputs, and disturbances together imply that the elements of Pt are bounded by C2
uκ

2ξ, and509

the elements of p are bounded by C2
uκ

2ξβ (this again follows [38]).510
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A.4.2 Truncated State Approximation511

The idea of this proof follows directly from [38]; however, we show the proof in detail because in512

our case the truncated state history affects the resulting vectors aj in the optimization, leading to a513

different instantiation of the problem.514

To give a sense of the added subtlety for obstacle avoidance, observe that in certain scenarios, small515

perturbations in the observed relative obstacle positions could yield large changes in the optimal516

policy. For example, imagine that there is one obstacle, located directly on the centerline of the517

nominal planned motion. Then a small perturbation of the obstacle to the right makes the optimal518

action “Left," while a small perturbation of the obstacle to the left makes the optimal action “Right."519

This phenomenon is not a problem in the regret outline because, while the optimal decision is fragile,520

the loss incurred of choosing incorrectly is bounded by the quadratic (and therefore, continuous)521

nature of the cost functions themselves.522

For the dynamics and control we have assumed that523

xt+1 = Axt +But +Dwt

ut = Kxt + bt +Mtw̃t

= Kxt +

H∑
i=1

M
[i]
t wt−i,

(12)

where the bias is included by one-padding the disturbance vector. For simplicity we will omit the524

explicit bias from ensuing analysis; in all cases it can be understood to be incorporated into the525

measured disturbance. We can then show (as in [38]) that the state can be expressed as the sum of526

disturbance-to-state transfer function matrices Ψt,i:527

xA
t+1 = ÃH+1xA

t−H +

2H∑
i=0

Ψt,iwt−i, where

Ã = A+BK and

Ψt,i = ÃiD1[i ≤ H] +

H∑
j=0

ÃjBM
[i−j]
t−j 1[i− j ∈ {1, ...,H}].

We define the state estimate and cost as528

yt+1 :=

2H∑
i=0

Ψt,iwt−i

ℓt(Mt−H:t) = ct(yt+1(Mt−H:t), ũt)

where ũt =Mtw̃t (the residual input on top of the closed-loop controller).529

Now, assume that ∥Ã∥ ≤ 1 − γ, that ∥Ã∥, ∥B∥, ∥D∥, ∥K∥ ≤ β, and that for all t it holds that530

∥wt∥ ≤ Cw, ∥ut∥ ≤ Cu, and ∥Qt∥, ∥Rt∥ ≤ ξ. Then we can show that the approximation error of531

the costs is sufficiently small. Let the condition number be defined as k = ∥Ã∥∥Ã−1∥.532

A.4.3 Bounding the States Along a Trajectory533

Note that ũt =Mtw̃t; this implies that ∥ũt∥ ≤ HDCw. This implies further that ∥Bũt +Dwt∥ ≤534

2βHDCw by the triangle inequality. Assuming that there exists τ such that535

∥xτ∥2 ≤ 2βHDCw
γ

,

we have that for every t > H + τ + 1, ∥xA
t−H−1∥2 ≤ 2βHDCw

γ . (WLOG, we can assume the initial536

state x0 is bounded in this domain - that is, that the assumption is satisfied with τ = 0; the region537

defined above is the long-term reachable set of the state xt driven by bounded disturbances wt538

and (implicitly bounded) residual inputs ũt [the norm is limited by the stability parameter γ of the539

closed-loop Ã-matrix]).540
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A.4.4 Bounding the Change in Costs541

Now, we analyze the change in costs

|ct(xA
t+1, ũt)− ℓt(Mt−H:t)| = |min

j∈[p]
∥aj,t +BMtw̃t∥22 − min

j∈[p]
∥âj,t +BMtw̃t∥22|

Noting the definition of âj,t and of aj,t, we can bound the difference between them as a function of542

the error in approximation of xt (see [38]):543

aj,t := pj,t − xt

=⇒ âj,t − aj,t = (pj,t − x̂t)− (pj,t − xt)

= xt − x̂t

=⇒ ∥âj,t − aj,t∥2 = ∥xt − x̂t∥2

≤ kCxe
−γH

Now, we argue that the loss incurred due to the noise in x̂t is less than simply twice the change in cost544

due to the error in âj,t. Let ĵ∗ := argminj∈[p]{∥âj,t −BMtw̃t∥22}. Let j∗ be defined analogously.545

If j∗ = ĵ∗, then the difference in cost is less than or equal to the extra loss incurred by the error in â.546

If j∗ ̸= ĵ∗, then it is possible that the true ‘binding obstacle’ was biased away, and that the ‘guessed’547

binding obstacle was ‘biased towards’; therefore, the cost error is possibly due to deviations up to548

twice the error in the âj,t vectors. This means that, defining δt such that ∥δt∥2 = 2∥xt − x̂t∥2, we549

have that the following holds:550

∆ = |ct(xA
t+1, ũt)− ℓt(Mt−H:t)| = |min

j∈[p]
∥aj,t +BMtw̃t∥22 − min

j∈[p]
∥âj,t +BMtw̃t∥22|

≤ max
δt:∥δt∥2≤2kCxe−γH

{
∥(âj,t + δt) +BMtw̃t∥22 − ∥âj,t +BMtw̃t∥22

}

= δTt δt + 2δTt âj,t − 2δTt (BMtw̃t)

≤ ∥δt∥22 + 2(Cx + ∥δt∥2)∥δt∥2 + 2∥δt∥2CwβDM

= 3∥δt∥22 + 2Cx∥δt∥2 + 2CwβDM∥δt∥2

≤ 5Cx∥δt∥2 + 2CwβDM∥δt∥2

≤ 5(k2C2
xe

−γH(1 + βDMCw)).

Letting H = ⌈γ−1 log (5k2Cx(1 + βDMCw)T )⌉, we have that551

∆ ≤ Cx
T
.

552

553
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Remark 3. Recursive Definition of H and Cx:554

Currently, there is a recursive nature to the definition of H and Cx; H :=555

⌈γ−1 log (5k2Cx(1 + βDCw)T )⌉ and Cx := 2βHDCw

γ . However, this is not problematic because556

the definitions will have a solution (that can be found efficiently); namely:557

H ≥ c1 log (c2Cx)

Cx = k1H

=⇒ H ≥ c1 log (c2k1H)

And for any c1, c2, k1 ∈ R+ and fixed T > 0, there exists a positive integer H such that the above558

result holds (e.g., following from the fact that logH = o(H)). Further, the resulting H will not be559

too large wrt T for sufficiently large T (e.g., large enough T to overcome the constants).560

A.5 Finalizing the Regret Bound561

A.5.1 Apply Nonconvex Memory Follow-the-Perturbed-Leader562

This result is from [38], Theorem 13 (Corollary 14 gives an equivalent result to our setting in the563

asymptotic regret behavior; our optimal choice of η and ϵ differs slightly).564

A.5.2 Completing the Bound565

Finally, we use Alg. 1 (which acts as an efficient ϵ-oracle) with an approximate trust region imple-566

mentation of our desired optimization problem (Alg. 2) acting as a subroutine, in order to compose567

the regret components into a complete bound.568

Regret(A) := max
M∈Π

T∑
t=H

ct(x
M
t , ũt(M))−

T∑
t=H

ct(x
A
t , ũt(A))

≤ max
M∈Π

T∑
t=H

(ft(M,M, ...,M) +
Cx
T

)−
T∑
t=H

(ft(Mt−H:t) +
Cx
T

)

=
[
max
M∈Π

T∑
t=H

ft(M,M, ...,M)−
T∑
t=H

ft(Mt−H:t)
]
+O(log T )

≤ Õ(poly(L)
√
T )

(13)

To clarify the steps: the second line incorporates the approximation error from Section A.4.2 (which569

is logarithmic in T , as noted in the third line) and the final line follows from the Nonconvex Memory570

FPL result of [38].571
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B Convex-Concave Game: Algorithm and Correctness572

For completeness and easier reference, we include a copy of Alg. 1 below. To improve clarity,573

references to equations within this section (Supp. B) will use their numbering as given in Supp. B,574

rather than in the main text. The key technical results of this section are to demonstrate: (1) that575

Alg. 2 is a trust region instance that can be solved efficiently, and (2) that the optimization procedure576

in Eqn. 15 is solved correctly and efficiently by the trust region procedure Alg. 2. Given these results,577

our obstacle avoidance algorithm will be computationally efficient and attain low regret.578

Algorithm 1 Online Learning for Obstacle Avoidance

Input: Partially observed obstacle positions {pjt}Kj=1, planning horizon L, history length H .
Input: Full horizon T , algorithm parameters {η, ϵ, λ}, initial state x0.
Input: Open-loop plan: ūot for t = 1, ..., T .
Initialize: Closed-loop correction M [1:H]

0 , fixed perturbation P0 ∼ Exp(η)du×Hdw .
Initialize: Play randomly for t = {0, ...,H − 1}, observe rewards, states, noises, and obstacles.
for t = H...T − 1 do

Play M [1:H]
t , and observe state xt+1 and obstacles {pjt+1}j∈[k]t+1

.
Reconstruct disturbance wt using observed xt+1.
Construct the reward function:

ℓt+1(M̃
[1:H]
t ) = min

j∈[k]

{
∥xM̃t+1 − pjt+1∥22

}
− ∥xM̃t+1∥2Q − ∥ũM̃t ∥2R. (14)

Solve for M [1:H]
t+1 as the solution to:

argmax
∥M [1:H]∥≤DM

{
t+1∑
τ=1

ℓτ (M
[1:H]) + λ(M [1:H] • P0)

}
. (15)

end for

Algorithm 2 (General) Hidden-Convex Formulation for Objective in Eqn. 9

Input: Set of vectors {a[τ ]j }k,Ht

j=1,τ=1, matrix B, vectors b,b0, time history Ht ≤ t
Input: Iterations N , learning rate η, approx. error ϵ, perturbation P0, diameter DM .
Initialize: Vector c[τ ]0 = 1

k1
k, τ = 1, . . . ,Ht.

for n=0...N do
(1) Solve for Mn

Mn = argmax
∥M∥≤DM

{ Ht∑
τ=1

k∑
j=1

cn(j)
[τ ]∥a[τ ]j +BMb[τ ]∥22

− ∥b[τ ]
0 +BMb[τ ]∥2Q − ∥Mb[τ ]∥2R + λ(M • P0)

}
.

(16)

(2) Update cn+1

c
[τ ]
n+1 = Π

∆k

[
c[τ ]n e−η∇c

(∑
j c[τ]

n (j)∥a[τ]
j +BMb[τ]∥2

2

)]
,∀τ ∈ {1, . . . ,Ht}. (17)

end for
return MN

B.1 Non-convex Memory FPL for Obstacle Avoidance579

Intuitively, Alg. 1 operates by updating the gain matrices M [1:H]
t+1 via counterfactual reasoning: in580

hindsight, given the actual observed disturbances and obstacle locations, what gain matrices would581
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have resulted in good performance (in terms of obstacle avoidance and the state-input penalties)? In582

Supp. A, we demonstrate that this algorithm results in low regret as formalized in Eqn. 5 of the main583

text. For reference: Eqn. 9 (main text) corresponds to Eqn. 15 (Supp. B) henceforth; similarly, Eqn. 8584

(main text) corresponds to Eqn. 14 (Supp. B).585

B.2 Efficient Solution of Eqn. 15 (Part 1): Reduction of Alg. 2 to Trust Region Instance586

We now prove that Alg. 2 does indeed solve Eqn. 9. Consider the relaxed optimization problem587

max
M∈M

Ht∑
τ=1

∑
j

λ
[τ ]
j ∥a[τ ]j +BMb[τ ]∥22 (18)

We will first describe some useful quantities and (physically-motivated) assumptions. The physical588

quantities of interest have the following characteristics: x ∈ Rdx , u ∈ Rdu , and w ∈ Rdw .589

Assumption 4. B ∈ Rdx×du , with du ≤ dx, and rank (B) = du. This corresponds to the following590

physical assumptions: (1) there are no more inputs than states, and (2) there are no ‘extraneous’591

inputs (if there are such inputs, then we can find a minimal realization of B and wlog set extraneous592

inputs to always be zero). Similarly, if (1) fails, then we can remove extraneous inputs by again593

setting them equal to zero uniformly (just as in (2)).594

The dimension of several other variables of interest are: b ∈ RHdw and for the decision variable M ,595

M ∈ Rdu×Hdw . We want to show that the optimization in Eqn. 18 is equivalent to a convex trust596

region problem, which is efficiently solvable.597

598

Further, let the quantity BTB have a singular value decomposition denoted by:599

BTB = UTΛU.

We see that this decomposition has an orthogonal U ∈ Rdu×du and positive definite Λ because600

rank(B) = du and thus the symmetric BTB ∈ Rdu×du has BTB ≻ 0.601

602

Now, consider the problem of Eqn. 18, assuming that ∀τ ∈ {1, . . . ,Ht}, there are fixed λ[τ ] ∈603

∆p, B, {a[τ ]j }kj=1,b
[τ ]. For now, choose a single time element, notated as [i]. For simplicity, we604

will only include this notation at the beginning and end, where we sum the result back together. We605

rearrange the objective for this case as follows:606

OBJpartial =
∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

=
∑
j

λj(aj +BMb)T (aj +BMb)

=
∑
j

λj(a
T
j aj + 2aTj BMb+ bTMTBTBMb)

≡
∑
j

λj(2c
T
j Mb+ bTMTUTΛUMb)

Here, we are searching for the argmax M∗, so the aTj aj is irrelevant. Further, we have defined607

cTj = aTj B. Now, let Mr := UM , and decompose Mr = [mT
1 ;m

T
2 ; ...;m

T
du
]. The optimization608
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objective is now:609

OBJpartial =
∑
j

λj∥aj +BMb∥22

≡
∑
j

λj(2c
T
j Mb+ bTMTUTΛUMb)

=
∑
j

λj(2c
T
j Mb+ bTMT

r ΛMrb)

= [
∑
j

λj(2c
T
j Mb)] + bTMT

r ΛMrb

The last simplification follows from the fact that
∑
j(λj) = 1 (because λ ∈ ∆du). Now, using our610

knowledge of the diagonal nature of Λ and the column partition of Mr, we can see that611

MT
r ΛMr =

du∑
j=1

σ2
jmjm

T
j

Substituting into the OPT formulation, we can further simplify all the way to the desired form:612

OBJpartial =
∑
i

λi∥ai +BMb∥22

≡
[∑

i

λi(2c
T
i Mb)

]
+ bTMT

r ΛMrb

=
[∑

i

λi(2c
T
i Mb)

]
+ bT (

du∑
j=1

σ2
jmjm

T
j )b

=
[∑

i

λi(2c
T
i U

TMrb)
]
+ (

du∑
j=1

σ2
jb

Tmjm
T
j b)

= 2
[∑

i

λi(
∑
j

c̃i,jm
T
j b)

]
+ (

du∑
j=1

σ2
jm

T
j bb

Tmj)

=
∑
j

[
(2

∑
i

λic̃i,j)b
T
]
mj) + (

du∑
j=1

mT
j (σ

2
jbb

T )mj)

= mTPm+ pTm.

where m is a vector concatenation of the transposed rows of Mr. Now, to combine the results over613

time, utilizing the convexity-preserving property of function addition, we simply reintroduce the614

[i]-indexing and sum:615

OBJpartial =
∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

= mTP [i]m+ (p[i])Tm

=⇒ OBJfull =
∑
i

∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

=
∑
i

mTP [i]m+ (p[i])Tm

=
∑
i

mTPm+ pTm

Once we solve for m∗ using a trust region solver, we unpack it into M∗
r , and get M∗ = UTM∗

r (=616

UT (UM∗) =M∗) as desired. Further, we can translate a norm bound on M into an equivalent one617

on m (at least, for appropriate choice of norm bound - e.g., the Frobenius norm on M becomes the618

2-norm on m).619
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B.3 Solving the FPL Sub-Problem620

In order to feasibly engage the obstacle avoidance algorithm, it is necessary to solve for optimal621

solutions to the objective in Eqn. 15, which is an instance of the following max-min problem:622

argmax
∥M∥≤DM

t+1∑
τ=1

min
j

∥a[τ ]j +BMb[τ ]∥22 − ∥b[τ ]
0 +BMb[τ ]∥2Q − . . .

· · · −∥Mb[τ ]∥2R + λ(M • P0),

where a
[τ ]
j , B,b

[τ ]
0 ,b[τ ] depend on the dynamics (Eqn. 4, main text) and the obstacle locations. The623

resulting algorithm is shown in Alg. 2, which converges to M [1:H]
t+1 in Eqn. 15 of Alg. 1.624

Finally, we need to demonstrate that Alg. 2 will converge to a pair {cN ,MN} that corresponds to the625

optimal solution of Eqn. 15. This follows immediately from Theorem 7, Part II of [61]. We have an626

instance of a repeated game in which an optimization oracle efficiently solves Eqn. 16, and then the627

low-regret exponentiated gradient algorithm [62] iteratively updates cn (Eqn. 17). Again, we utilize628

the fact that the operation of function addition preserves, respectively, the convexity and concavity629

properties of pairs of operand functions as a necessary tool to allow for the results to still hold when630

applying the summation over time steps.631

B.4 Efficient Solution of Eqn. 15 (Part 2): Reduction of Obstacle Avoidance to Alg. 2632

This proof works as a reduction, where we show that the obstacle avoidance problem (Eqn. 15)633

constitutes a particular set of inputs to the general formulation of Alg. 2. Recall that at time t, the634

algorithmA has access to the state trajectory {xAτ }tτ=1, the disturbance history {wτ}t−1
τ=1, and the sets635

of sensed obstacles {pjτ}tτ=1. For any τ ∈ {H, ..., t}, the loss function can be written as an instance636

of Alg. 2. Specifically, let ajτ = Ãxτ−1+Dwτ−1−pjτ , bτ = wτ−H:τ−1, b0,τ = Ãxτ−1+Dwτ−1.637

Then, for an appropriate cτ ∈ ∆kτ , the optimization problems are equivalent. Concatenating over the638

τ -formulations, we have an instance of Eqn. 16. Specifically, for some choice of c, we will have an639

equivalent problem as Eqn. 15; here c is an encoding – unknown a priori – of the relevant (nearest)640

obstacles at each time step.641
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C Hardware Experiment Details642

C.1 Equations of Motion643

The equations of motion for the high-level Go1 control are:644 [
xt+1

yt+1

ψt+1

]
=

[
xt
yt
ψt

]
+ dt

[
cosψ 0
sinψ 0
0 1

] [
ux
uψ

]
+

[
wx,t
wy,t
wψ,t

]
, (19)

where ux is the commanded forward velocity and uψ is the commanded yaw rate. The disturbances645

wx, wy and wψ capture unmodeled disturbances including imperfect velocity tracking by the robot’s646

low-level controller and deviations due to localization noise.647

C.2 Boschloo Test for Significance648

In order to evaluate the improvement of OLC vs A∗ in our hardware experiments, we perform a649

Boschloo Exact Test on the outcomes of the experiment. This test (for our purposes) essentially650

provides a statistical evaluation of the difference in means of two Bernoulli variables in the small-data651

regime. In our experiments, we have a 2x2 test matrix in which OLC and A∗ are each run 21 times,652

with the number of failures a random variable depending on each algorithm’s behavior subject to the653

realized obstacle layouts. While we do not claim that our distribution of layouts exactly matches the654

‘true distribution in the world,’ we believe it to be similar enough such that the statistic should be655

meaningful here.656

To be precise, the statistic encapsulates the probability, in the null hypothesis that the two means are657

equal (or that one mean is greater), of achieving a small sample of realizations that is more extreme658

than that observed in the true data. By choosing the alternative hypothesis “collision rate of A∗ is659

higher,” a significant result (say, at α = 10% or α = 5% significance) would mean that we reject the660

null hypothesis. This, then, would provide evidence that the use of OLC meaningfully reduced the661

collision rate.662

Using the existing scipy implementation (scipy.stats.boschloo_exact), we find that for the data663

presented in Table 2, the test statistic is 0.1073 with p = 0.074, indicating significance at α = 0.1664

but not α = 0.05. Though not conclusive, this provides reasonable evidence that the reported665

improvement in the collision rate is not due to random chance in the obstacle layout realizations.666

C.3 Obstacle Layouts667

We provide a bird’s eye view of the layout configurations used during the experiments in Figure 3.668

Additionally see the supplementary video for the physical instantiation of the layouts used in the669

experiments.670
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Figure 3: Obstacle layouts from a bird’s eye view used during the experiments. Obstacles are denoted by the red
circles. The quadruped was placed at (0, 0) and tasked with traversing 10m in the the x direction.

671
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D Simulation Details and Resources672

D.1 Simulation Implementation: Parameters, Setup, and Runtime673

In this section, we report the hyperparameters used for the experiments results in the main text. We674

implemented our algorithm and environments in JAX. All experiments were carried out on a single675

CPU in minutes.676

We set the full horizon T to 100 and the history length H to 10. For random perturbation across677

environments, we sample noise from Gaussian distribution with mean 0 and standard deviation 0.5.678

For directional perturbation, we sample Gaussian noise with mean 0.5 and standard deviation 0.5. A679

random seed of 0 is used for all experiments. We obtain the nominal control from LQR with Q set to680

0.001 and R set to 1. We then learn the residual obstacle-avoiding parameter M via gradient descent.681

The learning rate of gradient descent is 0.008 in the centerline environment and is 0.001 for the other682

environments.683

An important note for these experiments: we do not implement existing heuristic techniques like684

obstacle padding to improve the RRT∗ collision-avoidance performance. As such, this performance685

is not meant to suggest that RRT∗ cannot work robustly in these settings, only that its nominal686

(and theoretically grounded) form does not account for disturbances or uncertainty and is therefore687

“optimistic” as compared to HJ methods, etc.688

D.2 Additional Figures and Trajectories – Centerline Environment689

This appendix includes sample trajectories and other relevant visualizations for each algorithm.690

D.2.1 RRT∗ / A∗691

Here, we demonstrate some sample paths for RRT∗ in each disturbance regime. Fig. 4 shows uniform692

random noise, Fig. 5 shows sinusoidal noise, and Fig. 6 shows adversarial noise. In each case, the693

shift at the final time (goal position, top of image) causing a horizontal shift in the path should be694

ignored.695

Figure 4: RRT∗ Planner trajectories against uniform random disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.
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Figure 5: RRT∗ Planner trajectories against sinusoidal disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 6: RRT∗ Planner trajectories against adversarial disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 7: Racer backwards reachable set (inside thick black line) and the obstacle (dashed black line).

D.2.2 HJ Reachability Planner696

For the centerline example, the HJ Reachability planner constructs in Fig. 7 the backwards-reachable697

set for a given obstacle (dashed line), subject to the dynamics constraints imposed on the racer.698
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Note that every positive-value region denotes an unsafe region. The interpretation is that there is a699

“pseudo-cone" in front of the obstacle from which the vehicle cannot escape hitting the obstacle if the700

disturbances are sufficiently adversarial. Note that this means that HJ planning is independent of the701

actual disturbances. For each of the disturbance patterns (random, sinusoid, adversarial), we plot702

a collapsed view of sample trajectories around an obstacle for the HJ planner in Fig. 8. Note how703

similar each plot is, due to this independence of the control from the actual observed disturbances.704

D.2.3 Online Learned Planner705

The key illustration here is that the trajectories of the online planner follow the structure of the706

disturbances, as illustrated by the following comparison of the uniform random and sinusoidal707

disturbances in Fig. 9 and Fig. 10.708

Figure 8: HJ Planner trajectories against (L) uniform random, (C) sinusoid, and (R) adversarial disturbances.
Obstacles are black spheres, with the nominal trajectory a dashed black (vertical) line.

Figure 9: Collapsed trajectories of the racer using
the online planner with random disturbances. The
racer passes on each side evenly.

Figure 10: Collapsed trajectories of the racer using
the online planner with sin disturbances. The racer
learns to pass on the right.
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D.3 Failures in the Slalom Setting709

We include an image of the four major environments in Fig. 11. Our simulated performance was710

strong in all environments except for the slalom environment, which we discuss further below.
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Figure 11: Illustration of the four environments used as a proof-of-concept for our Online algorithm.

711

The “slalom" setting allows us to tune its difficulty by varying the x-position (i.e. offset) of the gates712

or by narrowing their width. Fig. 12 illustrates the effect of increasing gate offset from center (i.e.,713

error in the nominal planned trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity714

to disturbances – y-axis) on failure rate through the slalom gates. As expected, reduced gate width715

and increased offset broadly increase failure rates. This is due to the online planner being forced716

to overcome a poor nominal planned trajectory; in combination with the gated passageways, this717

requires very precise sequences of inputs and a longer memory of previously observed gates (due to718

the limited sensing horizon). This is discussed further in Supp. D.3.1.719

D.3.1 Discussion720

The first answer is relatively direct: in all of our examples, we are implicitly acting in a kind of Frenet721

frame, where all obstacle positions and other referencing is to the ego vehicle (racer) position. As722

such, the nominal planned trajectory can always be thought of as mapped to a straight line ahead of723

the racer. In this context, some slalom gates represent a 20m deviation from the nominal trajectory.724

However, this flies in the face of the central modeling intuition of the online framework – that725

obstacle avoidance is local, with local sensing, local deviations from the nominal trajectory, and726

“reactive" control to disturbances as they arise. In this vein, the nominal slalom is a challenging727

task, precisely because it stretches the limits of what can be met by our setup. Concretely: limited728

sensing makes each slalom wall a kind of “gradient-less" observation (shifting left and right yields729

only a continuation of the wall unless the gap is already sensed), meaning that choosing the correct730

Left/Right action is difficult. Additionally, the map displays memory, because going the wrong way731

early through one gate can render the next gate infeasible.732

It is in light of these considerations that we argue that the slalom case is actually a case for our model,733

because it interpretably creates a setting in which the key assumptions are broken. Just like an actual734

skier who overshoots through one gate and cannot recover for the next gate, so too does our obstacle735

avoidance algorithm run the risk of “dooming" itself due to a wrong turn – but this is, as described,736

fundamental to the hardness of the obstacle avoidance problem! As such, we consider the slalom gate737

as a fundamentally hard problem, and consider a case for future work a fuller characterization of how738

our planner works for slaloms of varying difficulty, as measured by the sensor range, the distance739

between gates (both laterally and longitudinally), and the fundamental “cost memory" as it depends740

on these and other parameters.741

D.3.2 Experimental Parameter Sweep – Slalom Course742

In an effort to better represent the effects of the slalom setting and the dependence on gate width and743

offset, Fig. 12 illustrates the effect of increasing gate offset from center (i.e., error in the nominal744

planner trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity to disturbances – y-axis)745
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Figure 12: Failure rate heatmap for increasing gate offset (left to right) and decreasing gate width (bottom to
top). As expected, failure increases with narrower gates (top) and larger offsets (right).

on failure rate through the slalom gates. As expected, reduced gate width and increased offset broadly746

increase failure rates.747

We note that for narrow gates, a zero-offset slalom is actually quite challenging to ensure - we believe748

this is due to the fundamental H∞ limit of stabilization of disturbances for this system; namely, a749

too-narrow gate requires too-strong robustness about the setpoint (origin), causing failure. This also750

explains why failure rates are high but not one for moderate offsets in the narrow-gate environment751

as well: specifically, they allow some freedom away from the zero-offset regularization problem.752

Besides this, the trend quite clearly demonstrates the fundamental increases in difficulty observed for753

narrower gates and larger offsets, as expected.754
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