
Published as a conference paper at ICLR 2024

SET LEARNING FOR ACCURATE AND CALIBRATED
MODELS

Lukas Muttenthaler1,2,3,∗, †, Robert A. Vandermeulen1,2,*, Qiuyi (Richard) Zhang3, Thomas
Unterthiner3, and Klaus-Robert Müller1,2,3,4,5

1Machine Learning Group, Technische Universität Berlin, Germany
2Berlin Institute for the Foundations of Learning and Data, Berlin, Germany

3Google DeepMind
4Department of Artificial Intelligence, Korea University, Seoul
5Max Planck Institute for Informatics, Saarbrücken, Germany

ABSTRACT

Model overconfidence and poor calibration are common in machine learning and
difficult to account for when applying standard empirical risk minimization. In this
work, we propose a novel method to alleviate these problems that we call odd-k-out
learning (OKO), which minimizes the cross-entropy error for sets rather than for
single examples. This naturally allows the model to capture correlations across data
examples and achieves both better accuracy and calibration, especially in limited
training data and class-imbalanced regimes. Perhaps surprisingly, OKO often yields
better calibration even when training with hard labels and dropping any additional
calibration parameter tuning, such as temperature scaling. We demonstrate this
in extensive experimental analyses and provide a mathematical theory to interpret
our findings. We emphasize that OKO is a general framework that can be easily
adapted to many settings and a trained model can be applied to single examples at
inference time, without significant run-time overhead or architecture changes.

1 INTRODUCTION

In machine learning, a classifier is typically trained to minimize cross-entropy on individual examples
rather than on sets of examples. By construction, this paradigm ignores information that may be
found in correlations between sets of data. Therefore, we present odd-k-out learning (OKO), a new
training framework based on learning from sets. It draws inspiration from the odd-one-out task
which is commonly used in the cognitive sciences to infer notions of object similarity from human
decision-making processes (Robilotto & Zaidi, 2004; Fukuzawa et al., 1988; Hebart et al., 2020;
Muttenthaler et al., 2022; 2023a). The odd-one-out task is a similarity task where subjects choose
the most similar pair in a set of objects. We use an adapted version of that task to learn better model
parameters while not making any changes to the architecture (see Fig. 1; a).

Standard classification training often yields overconfident classifiers that are not well-calibrated
(Müller et al., 2019; Guo et al., 2017; Minderer et al., 2021). Classically, calibration has been
treated as an orthogonal problem to accuracy. Miscalibration has been observed to severely worsen
while accuracy improves, an interesting phenomenon attributed to over-parametrization, reduced
regularization, and biased loss functions (Guo et al., 2017; Vaicenavicius et al., 2019; Roelofs et al.,
2022). Even log-likelihood — a proper scoring rule — was accused of biasing network weights
to better classification accuracy at the expense of well-calibrated probabilities (Guo et al., 2017;
Roelofs et al., 2022). Other scoring rules were proposed that are differentiable versions of calibrative
measures but these approximations can be crude (Karandikar et al., 2021). Thus, calibration methods
are often treated as an afterthought, comprised of ad-hoc post-processing procedures that require an
additional hold-out dataset and monotonically transform the output probabilities, usually without
affecting the learned model parameters or accuracy.

∗Equal contributions.
†Work partly done while a Student Researcher at Google DeepMind.

1

Published as a conference paper at ICLR 2024

Calibration is inherently a performance metric on sets of data; so we propose training the classifier
on sets of examples rather than individual samples to find models that yield accurate calibration
without ad-hoc post-processing. This is especially crucial in low-data and class-imbalanced settings,
for which there is surprisingly little work on calibration (Dal Pozzolo et al., 2015b).

Various techniques have been proposed to improve accuracy for imbalanced datasets (Branco et al.,
2016; Johnson & Khoshgoftaar, 2019), which are typically based on non-uniform class sampling
or reweighting of the loss function. However, neural nets can still easily overfit to the few training
examples for the rare classes (Wang & Japkowicz, 2004). There is growing interest in the development
of new techniques for handling class imbalance (Johnson & Khoshgoftaar, 2019; Iscen et al., 2021;
Parisot et al., 2022; Guha Roy et al., 2022). Such techniques are adapted variants of non-uniform
sampling, often focusing exclusively on accuracy, and ignoring model calibration. However, tech-
niques for mitigating the effects of imbalance on classification accuracy do not improve calibration
for minority instances and standard calibration procedures tend to systematically underestimate the
probabilities for minority class instances (Wallace & Dahabreh, 2012). Moreover, it is widely known
that direct undersampling of overrepresented classes modifies the training set distribution and intro-
duces probabilistic biases (Dal Pozzolo et al., 2015a). Bayesian prior readjustments were introduced
to manipulate posterior probabilities for ameliorating that issue (Dal Pozzolo et al., 2015b).

It is known that hard labels tend to induce extreme logit values and therefore cause overconfidence in
model predictions (Hinton et al., 2015; Bellinger et al., 2020). Label smoothing has been proposed to
improve model calibration by changing the cross-entropy targets rather than scaling the logits after
training (Müller et al., 2019; Carratino et al., 2022). Label smoothing, in combination with batch
balancing — uniformly sampling over the classes rather than uniformly sampling over all samples
in the data (see Appx. B.3), achieves promising results on heavy-tail classification benchmarks,
i.e. datasets that contain many classes with few samples and a few classes with many samples
(Bellinger et al., 2020). Yet, all these methods ignore the need for accuracy on the underrepresented
classes, generally lack rigorous theoretical grounding, and require fine-tuned parameters for good
empirical performance, such as the noise parameter for label smoothing, or the scaling parameter for
temperature scaling for which additional held-out data is required.

In contrast to the popular philosophy of training for accuracy and then calibrating, we pose our main
question: Can we provide a training framework to learn network parameters that simultaneously
obtain better accuracy and calibration, especially with class imbalance?

Contributions. Indeed, we find that OKO achieves better calibration and uncertainty estimates
than standard cross-entropy training. The benefits of OKO over vanilla cross-entropy are even more
pronounced in limited training data settings and with heavy-tailed class distributions. 1

Empirical. First, through extensive experiments, we show that OKO often achieves better accuracy
while being better or equally well calibrated than other methods for improving calibration, especially
in low data regimes and for heavy-tailed class distribution settings (see Fig. 1; b). Second, OKO is a
principled approach that changes the learning objective by presenting a model with sets of examples
instead of individual examples, as calibration is inherently a metric on sets. As such, OKO does
not introduce additional hyperparameters for post-training tuning or require careful warping of the
label distribution via a noise parameter as in label smoothing (see Fig. 1). Third, surprisingly, this
differently posed set learning problem results in smoothed logits that yield accurate calibration,
although models are trained using hard labels. Fourth, we emphasize that OKO is extremely easy to
plug into any model architecture, as it provides a general training framework that does not modify
the model architecture and can therefore be applied to single examples at test time exactly like any
network trained via single-example learning (see Fig. 1; a). The training complexity scales linearly in
O(|S|) where |S| denotes the number of examples in a set and hence introduces little computational
overhead during training. Last, in few-shot settings, OKO achieves compellingly low calibration
and classification errors (see Fig. 1; b). Notably, OKO improves test accuracy for 10-shot MNIST by
8.59% over the best previously reported results (Liu et al., 2022).

Theoretical. To get a better understanding of OKO’s exceptional calibration performance, we offer
mathematical analyses that show why OKO yields logit values that are not as strongly encouraged
to diverge as in vanilla cross-entropy training. We develop a new scoring rule that measures excess
confidence on a per-datapoint basis to provably demonstrate improved calibration. This scoring rule

1A JAX implementation of OKO is publicly available at: https://github.com/LukasMut/OKO

2

https://github.com/LukasMut/OKO

Published as a conference paper at ICLR 2024

0.05 0.1 0.15 0.2 0.250.0

0.05

0.1

0.15

0.2

Ex
pe
ct
ed

Ca
lib

ra
tio

n
Er
ro
r MNIST

Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
100
200
300
400
500
1000
5000

0.1 0.15 0.2 0.25 0.30.0

0.05

0.1

0.15

0.2

FashionMNIST
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
200
300
400
500
1000
5000
10000

0.3 0.4 0.5 0.6 0.70.0

0.05

0.1

0.15

0.2

CIFAR-10
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
400
500
1000
5000
10000
20000

0.6 0.65 0.7 0.75 0.8 0.850.0

0.05

0.1

0.15

0.2

CIFAR-100
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
5000
10000
20000
30000

Un
ifo

rm

A

B

0.1 0.2 0.3 0.4

Test classification error

0.0

0.1

0.2

Ex
pe
ct
ed

Ca
lib

ra
tio

n
Er
ro
r

0.2 0.3 0.4 0.5

Test classification error

0.0

0.1

0.2

0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Test classification error

0.0

0.15

0.3

0.45

0.75 0.8 0.85 0.9 0.95 1.0

Test classification error

0.0

0.15

0.3

0.45

H
ea
vy
-t
ai
le
d

Figure 1: A: OKO minimizes cross-entropy on sets of examples rather than on single examples and naturally
yields smoothed logits after training. At inference time it can be applied to single examples without additional
computational overhead. B: Expected calibration error as a function of the classification error. Each point in the
graph represents the performance of a single seed; there are five for every number of training data points. For
each dataset, every model was evaluated on the same test set. Dashed diagonal lines indicate a linear regression
fit. Top: Uniform class distribution during training. Bottom: Heavy-tailed class distribution during training.

compares the predictive entropies and cross-entropies, and for calibrated predictors, we show that our
measure is consistent in that the average excess confidence is 0. By using this new scoring rule we
demonstrate that OKO implicitly performs a form of entropic regularization, giving insight into how
it prevents excess confidence in certain low entropy regions.

2 RELATED WORK

The odd-one-out task has been widely used in the cognitive sciences to infer notions of object
similarity from human participants (Robilotto & Zaidi, 2004; Hebart et al., 2020; Muttenthaler et al.,
2022; 2023a), and first uses are slowly percolating into machine learning: Fernando et al. (2017)
trained a self-supervised video understanding network by predicting which one out of three sequences
was in reverse time order, Locatello et al. (2020); Mohammadi et al. (2020) used comparisons between
samples as weak supervision target. Muttenthaler et al. (2023b) use human odd-one-out choices to
improve pretrained representations for few-shot learning and anomaly detection tasks. However, none
of these works investigated calibration or provided any theory for (odd-one-out) set learning.

Improving calibration is of practical interest for many applications. However, deep neural networks
often appear badly calibrated (Guo et al., 2017). Even though this depends on the concrete architecture
used, scaling up a model usually increases accuracy at the cost of calibration (Minderer et al., 2021).
Many post-hoc approaches to increase calibration have been proposed, such as temperature scaling
(Platt et al., 1999), isotonic regression (Zadrozny & Elkan, 2002; Niculescu-Mizil & Caruana, 2005),
and Bayesian binning (Naeini et al., 2015), while improving calibration during training is a less
explored topic. Most related to our approach are techniques that use data augmentations that blend

3

Published as a conference paper at ICLR 2024

different inputs together (Thulasidasan et al., 2019) or use ensembles to combine representations
(Lakshminarayanan et al., 2017). However, none of these works examined calibration for sets of
data. The task of classifying sets of instances is known as multiple instance learning (Carbonneau
et al., 2018). It is desirable to leverage the set structure, instead of simply using a concatenated
representation of the examples in each set. A common approach is to pool representations, either by
mean pooling, which is akin to OKO, or max pooling (Feng & Zhou, 2017; Pinheiro & Collobert,
2014). Other approaches include the use of permutation invariant networks (Zaheer et al., 2017) or
attention mechanisms (Ilse et al., 2018; Cordonnier et al., 2021). Also related are Error-correcting
output codingDietterich & Bakiri (1995), which looks at multiclass classification by training several
different binary classifiers. We are unaware of work that leverages set learning for improving the
calibration of standard cross-entropy training.

Learning from imbalanced data has a long history in machine learning (Japkowicz & Stephen, 2002;
He & Garcia, 2009; Branco et al., 2016). Approaches usually center around resampling the training
data (Chawla et al., 2002; Drummond & Holte, 2003; Liu et al., 2009) or modifying the loss function
(Chen et al., 2004; Ting, 2000; Wallace et al., 2011; Khan et al., 2018; Cui et al., 2019; Lin et al.,
2020; Du et al., 2023), or combinations thereof (Huang et al., 2016; Liu et al., 2019; Tian et al., 2022).
Transfer learning (Wang et al., 2017; Zhong et al., 2019; Parisot et al., 2022), self-supervised learning
(Yang & Xu, 2020; Kang et al., 2021), or ensembles of experts (Collell et al., 2018; Wang et al., 2021;
Guha Roy et al., 2022; Cui et al., 2023; Jiang et al., 2023) can also be helpful for rare classes. Our
method is a novel way to improve performance on imbalanced data at excellent calibration.

3 METHOD

Here we present the core contribution of this work, odd-k-out training (OKO). In OKO a model is
simultaneously presented with multiple data points. At least two of these data points are from the
same class, while the remaining k data points are each from a different class, i.e., the odd-k-outs, or
odd classes. The objective is to predict the pair class. This forces a model to consider correlations
between sets of examples that would otherwise be ignored in standard, single-example learning.

Notation. More formally, we are interested in the classification setting on a training set D =
{(x1, y1) , . . . , (xn, yn)} ⊂ Rd × [C] of inputs xi and labels yi from C classes. The number of odd
classes k is chosen such that k + 1 ≤ C. We construct an OKO training example S as follows:

Let Xc be the set of all training inputs, xi, such that yi = c. One first, uniformly at random, selects
a label y′ ∈ [C] and sets y′1 = y′2 = y′ as the pair class. Next y′3, . . . , y

′
k+2 are sampled uniformly

without replacement from [C] \ {y′} as the odd classes. Finally x′
1, . . . , x

′
k+2 are selected uniformly

at random from Xy′
1
, . . . ,Xy′

k+2
, while enforcing x′

1 ̸= x′
2. So x′

1 and x′
2 have the same class

label, y′, and x′
3, . . . , x

′
k+2 all have unique class labels not equal to y′. A training example is then

S =
(
(x′

1, y
′
1), . . . ,

(
x′
k+2, y

′
k+2

))
. Let Sx :=

(
x′
1, . . . , x

′
k+2

)
and Sy =

(
y′1, . . . , y

′
k+2

)
. Alg. 1

describes the sampling process. The distribution of S according to Alg. 1 is A .

Algorithm 1 A - OKO set sampling

Input: D, C, k ▷ C is the number of classes and k is the number of odd classes
Output: Sx,Sy, y′

y′ ∼ U ([C]) ▷ Sample a pair class for constructing the set
y′1 ← y′, y′2 ← y′

y′3, . . . , y
′
k+2

NR∼ U ([C] \ {y′}) ▷ Sample k odd classes without replacement
for i = 3, . . . , k + 2 do

x′
i ← U

(
Xy′

i

)
▷ Choose a representative input for each of the k + 2 set members

end for
Sx ←

(
x′
1, . . . , x

′
k+2

)
; Sy ←

(
y′1, . . . , y

′
k+2

)

4

Published as a conference paper at ICLR 2024

OKO objective For a tuple of vectors, Sx :=
(
x′
1, . . . , x

′
k+2

)
and a neural network function fθ

parameterized by θ, we define fθ(Sx) :=
∑k+2

i=1 fθ (x
′
i) and the following soft loss for a fixed set S:

ℓsoftoko (Sy, fθ (Sx)) := −((k + 2)
−1

k+2∑
i=1

ey′
i
)⊤ log [softmax (fθ (Sx))] , (1)

where ea ∈ RC is the indicator vector at index a and softmax denotes the softmax function. The
soft loss encourages a model to learn the distribution of all labels in the set S . One may also consider
the case where the network is trained to identify the most common class y′, yielding the hard loss:

ℓhardoko (Sy, fθ (Sx)) := −e⊤y′ log [softmax (fθ(Sx))] . (2)

In ablation experiments, we found the hard loss to always outperform the soft loss and have thus
chosen not to include experimental results for the soft loss in the main text (see Appx. F.5 for further de-
tails). For OKO set sampling, S = (Sx,Sy) ∼ A , the empirical risk is ES∼A

[
ℓsoftoko (Sy, fθ (Sx))

]
.

4 PROPERTIES OF OKO

Here we theoretically analyze aspects of the OKO loss that are relevant to calibration. First, via rigor-
ous analysis of a simple problem setting, we demonstrate that OKO implicitly performs regularization
by preventing models from overfitting to regions with few samples, thereby lowering certainty for
predictions in those regions. We refer to these regions as low-entropy regions, where, for all inputs x
in such a region, p(y|x) has most of its probability mass assigned to one class. Second, we introduce
and analyze a novel measure for calibration that is based on the model output entropy rather than
label entropy. This has the advantage of directly examining the cross-entropy error as a function of
the model uncertainties and evaluate its correspondence. Additionally, in Appx. C, we include an
analysis of a simplified loss landscape of OKO, and show that it less strongly encourages logit outputs
to diverge compared to vanilla cross-entropy, while allowing more flexibility than label smoothing.

OKO is less certain in low-data regions. Imagine a dataset where the majority of the data is noisy.
Specifically, most of the data share the same feature vector but have different class labels — one-
feature-to-many-classes, and each class has 0 < ϵ≪ 1 fraction of data points in a low-entropy region
in which the data points are clustered together by one class label — many-features-to-one-class.

In such a high-noise dataset it is likely that the low-entropy regions are mislabeled. If fθ has high
capacity and was fitted via vanilla regression, it would overfit to low-entropy regions by classifying
them with high certainty since those examples are well-separated from the noise. As mentioned in
the previous section, even label smoothing only slightly alleviates overfitting (Müller et al., 2019).

A simple example should illustrate the previously mentioned setting: We will demonstrate that, for
this example, the OKO method assigns low certainty to low-entropy regions. To this end we will
consider a binary classification problem on an input space consisting of three elements. Let F be the
set of all functions in {0, 1, 2} 7→ R2, this is analogous to the space of all possible models that can be
used to classify, e.g., fθ from before.

Now let Aϵ with ϵ ∈ [0, 1] be defined as in Alg. 1 where the proportion
of the training data, (x1, y1) , . . . , (xn, yn), having specific values is defined in
Table 1. Note that n does not matter for the results that we present here.

yi = 1 yi = 2
xi = 0 (1− ϵ) /2 (1− ϵ) /2
xi = 1 ϵ/2 0
xi = 2 0 ϵ/2

Table 1: PMF for Theorem 1

For 0 < ϵ≪ 1 this indicates that the vast majority of the
data has x = 0 with equal probability of both labels. The
remainder of the data is split between x = 1 and x = 2
where the label always matches the feature and is thus
a zero-entropy region. For this setting, we introduce the
following theorem which we proof in Appx. D.
Theorem 1. For all ϵ ∈ (0, 1) there exists fϵ such that

fϵ ∈ argmin
f∈F

ES∼Aϵ

[
ℓhardoko (Sy, fθ (Sx))

]
. (3)

Furthermore, for any collection of such minimizers indexed by ϵ, fϵ, as ϵ → 0, then
softmax (fϵ (0))→ [1/2, 1/2], softmax (fϵ (1))→ [2/3, 1/3], and softmax (fϵ (2))→ [1/3, 2/3].

5

Published as a conference paper at ICLR 2024

The key from Theorem 1 is that, although x = 1 or x = 2 have zero entropy and are low-entropy
regions, OKO is still uncertain about these points because they occur infrequently. This may be
interpreted as the network manifesting epistemic uncertainty (label uncertainty in an input region due
to having few training samples) as aleatoric uncertainty (uncertainty in an input region due to the
intrinsic variance in the labels for that region) in the OKO test time outputs. The desirability of this
property may be somewhat dependent on the application. While it is conceivable that such regions
do indeed have low aleatoric uncertainty, and that the few samples do indeed characterize the entire
region, for safety-critical applications it is often desirable for the network to err towards uncertainty.

Relative Cross-Entropy for Calibration. We introduce an entropy-based measure of sample
calibration and demonstrate empirically that it is a useful measure of calibration, along with theoretical
justification for its utility. In a sense, our measure is inspired by the log-likelihood scoring function
and is a normalized scoring rule that gives sample-wise probabilistic insight (for details see Appx. E).
Definition 1. Let the relative cross-entropy of distributions P,Q be RC(P,Q) = H(P,Q)−H(Q).

Since RC can be computed for each (y, ŷ) datapoint, it is a scoring rule. The relative cross-entropy is
very similar to KL divergence but with a different entropy term. However, unlike the KL divergence,
it is not always non-negative. In fact, note that if an incorrect prediction is overconfident, then
RC(y, ŷ)→∞ is extremely positive, implying that RC captures some measure of excess confidence.
Specifically, we can show when the predictions are inaccurate, we have a provable deviation.
Lemma 1. For hard labels y, if e⊤y ŷ ≤ 1/|C|, then RC(y, ŷ) ≥ 0.

Furthermore, we show that RC captures some notion of calibration when averaged across all data
points. Specifically, when a predictor is perfectly calibrated, its average RC, a measure of excess
confidence, should be 0. Note that RC is no longer proper due to this zero mean.
Lemma 2. If ŷ is a predictor that is perfectly calibrated acrossD, then the average excess confidence,
as measured by relative cross-entropy, is E(x,y)∼D[RC(y, ŷ(x))] = 0

5 EXPERIMENTAL RESULTS

In this section, we present experimental results for both generalization performance and model
calibration. In general, model calibration and generalization performance are orthogonal quantities.
A classifier can show strong generalization performance while being poorly calibrated, and, vice
versa, a classifier can be well-calibrated although its generalization performance is weak. Here, we
are equally interested in both quantities.

Experimental details. For every experiment we present in this section, we use a simple randomly-
initialized CNN for MNIST and FashionMNIST and ResNet18 and ResNet34 architectures (He
et al., 2016) for CIFAR-10 and CIFAR-100 respectively. We use standard SGD with momentum and
schedule the learning rate via cosine annealing. We select hyperparameters and train every model
until convergence on a held-out validation set. To examine generalization performance and model
calibration in low data regimes, we vary the number of training data points while holding the number
of test data points fixed. We report accuracy for the official test sets of MNIST, FashionMNIST,
CIFAR-10, and CIFAR-100. We are specifically interested in heavy-tailed class distributions. Since
heavy-tailed class distributions are a special rather than a standard classification setting, we report
experimental results for both uniform and heavy-tailed class distributions during training. We consider
heavy-tailed class distributions with probability mass p = 0.9 distributed uniformly across three
overrepresented classes and (1− p) = 0.1 distributed across the remaining 7 or 97 underrepresented
classes respectively. In ablation experiments we have seen that, although odd class examples are
crucial, OKO is not sensitive to the particular choice of k (see App. F.4). Therefore, we set k in OKO
to 1 for all experiments. Note that k = 1 results in the computationally least expensive version of
OKO. Since preliminary experiments have shown that generalization performance can be boosted by
predicting the odd class using an additional classification head, in the following we report results for
a version of OKO with k = 1 where in addition to the pair class prediction (see Eq. 2) a model is
trained to classify the odd class with a second classification head that is discarded at inference time.

For simplicity and fairness of comparing against single example methods, we set the maximum
number of randomly sampled sets to the total number of training data points ntrain in every setting.
This is guaranteed to yield the same number of gradient updates as standard cross-entropy training.

6

Published as a conference paper at ICLR 2024

Training methods. Alongside OKO, we consider six different baseline methods for comparing
generalization performance and seven different methods for investigating model calibration: 1.)
Standard maximum-likelihood estimation (see Eq. 4 in Appx. B.1), 2.) Vanilla + label smoothing (LS;
Müller et al., 2019), 3.) Focal Loss (Lin et al., 2017), 4.) Cross-entropy error reweighting (see Eq. 5
in Appx. B.2), 5.) Batch-balancing (BB; see Alg. 2 in Appx. B.3), 6.) BB + LS, 7.) BB + temperature
scaling (TS; τ = 2.0). We consider label smoothing because it yields significantly better calibration
than using hard labels for training neural nets and equivalent model calibration to temperature scaling
(Müller et al., 2019). We deliberately ignore temperature scaling for generalization performance
analyses because it does not change the argmax of a classifier’s predicted probability distribution
after training and therefore yields the same test accuracy as BB.

100 200 300 400 500 1000 5000
80

85

90

95

100

Te
st

ac
cu

ra
cy

(%
) MNIST

OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

200 300 400 500 1000 5000 10000
75

80

85

90
FashionMNIST

400 500 1000 5000 10000 20000
30

40

50

60

70

80
CIFAR-10

5000 10000 20000 30000
20

25

30

35

40

45
CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

65

70

75

80

85

90

95

100

Te
st

ac
cu

ra
cy

(%
)

200 300 400 500 1000 5000 10000

Number of training data points

55

60

65

70

75

80

85

90

400 500 1000 5000 10000 20000

Number of training data points

20

30

40

50

60

70

5000 10000 20000 30000

Number of training data points

0

5

10

15

20

25

H
ea

vy
-t
ai
le
d

Figure 2: Test set accuracy in % as a function of different numbers of data points used during training. Error
bands depict 95% CIs and are computed over five random seeds for all training settings and methods. Top:
Uniform class distribution during training. Bottom: Heavy-tailed class distribution.

Generalization. For both uniform and heavy-tailed class distribution settings, OKO either outper-
forms or performs on par with the best baseline approaches considered in our analyses across all four
datasets (see Fig. 2). We observe the most substantial improvements over the baseline approaches for
both balanced and heavy-tailed MNIST, heavy-tailed FashionMNIST, and balanced CIFAR-10 and
CIFAR-100. For 10-shot MNIST OKO achieves an average test set accuracy of 87.62%, with the best
random seed achieving 90.14%. This improves upon the previously reported best accuracy by 8.59%
(Liu et al., 2022). For 20-shot and 50-shot MNIST, OKO improves upon the previously reported best
test set accuracies by 2.85% and 1.81% respectively (Liu et al., 2022). OKO achieves the strongest
average generalization performance across all datasets and class distribution settings (see Tab. 2).
Improvements over the other training methods are most substantial for heavy-tailed training settings.

Table 2: Test set accuracy averaged across all training settings shown in Fig. 2.

MNIST FashionMNIST CIFAR-10 CIFAR-100
Training \ Distribution uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed

Vanilla 92.34% 78.21% 81.05% 68.16% 55.84% 30.24% 32.72% 02.68%
Vanilla + LS 91.84% 77.38% 81.10% 66.46% 55.06% 27.16% 31.20% 02.62%
Weighted CE 92.14% 80.18% 79.52% 71.45% 55.74% 33.76% 32.42% 05.20%
Focal Loss (Lin et al., 2017) 90.98% 76.42% 80.13% 69.86% 54.39% 33.89% 32.72% 05.98%
BB 92.31% 81.42% 81.11% 71.24% 55.87% 44.69% 32.63% 13.67%
BB + LS 91.86% 80.81% 81.12% 71.13% 54.96% 44.72% 31.26% 13.96%
OKO (ours) 93.62% 85.67% 81.49% 74.02% 57.63% 44.95% 35.11% 14.13%

Calibration. We present different qualitative and quantitative results for model calibration. Although
model calibration is an orthogonal quantity to generalization performance, it is equally important for
the deployment of machine learning models.

Reliability. The reliability of a model can be measured by looking at a model’s accuracy as a
function of its confidence. An optimally calibrated classifier is a model whose predicted class is

7

Published as a conference paper at ICLR 2024

correct with probability p̂θ(x), where p̂θ(x) is the confidence of a model’s prediction, i.e., optimal
calibration occurs along the diagonal of a reliability diagram (see Fig. 3). OKO’s reliability lies along
the diagonal substantially more often than to any competing method. This is quantified by lower
Expected Calibration Errors (see Fig. 1; 10) of OKO compared to the other methods. Its calibration is
on par with BB + LS or BB + TS in some settings. In Fig. 3, we show reliability diagrams for MNIST,
FashionMNIST, CIFAR-10, and CIFAR-100 averaged over all training settings using a uniform class
distribution. Reliability diagrams for the heavy-tail training settings can be found in Appx. F.

Uncertainty. Entropy is a measure of uncertainty and therefore can be used to quantify the confi-
dence of a classifier’s prediction. Here, we examine the distribution of entropies of the predicted
probability distributions for individual test data points as a function of (in-)correct predictions.

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

M
NI

ST

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

Fa
sh

io
nM

NI
ST

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

CI
FA

R-
10

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

CI
FA

R-
10

0

Figure 3: Reliability diagrams for balanced datasets. Confidence and accuracy
scores were averaged over random seeds and the number of training data points.
Dashed diagonal lines indicate perfect calibration.

An optimally calibrated
classifier has much density
at entropy close to log 1
and little density at en-
tropy close to logC for cor-
rect predictions, and, vice
versa, small density at en-
tropy close to log 1 and
much density at entropy
close to logC for incorrect
predictions, irrespective of
whether classes were in the
tail or the mode of the train-
ing class distribution. In
Fig. 4, we show the distri-
bution of entropies of the
models’ probabilistic out-
puts partitioned into correct
and incorrect predictions re-
spectively for MNIST and
FashionMNIST across all
training settings with heavy-
tailed class distributions.
We observe that label
smoothing does alleviate the overconfidence problem to some extent, but is worse calibrated than
OKO. More entropy visualizations can be found in Appx. F.

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Mode
Tail

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

M
NI

ST

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Mode
Tail

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

Fa
sh

io
nM

NI
ST

Figure 4: Here, we show the distribution of entropies of the predicted probabil-
ity distributions for individual test data points across all heavy-tailed training
settings partitioned into correct and incorrect predictions respectively.

ECE. ECE is a widely used
scoring rule to measure a
classifier’s calibration. It is
complementary to reliabil-
ity diagrams (see Fig. 3) in
that it quantifies the reliabil-
ity of a model’s confidence
with a single score, whereas
reliability diagrams quali-
tatively demonstrate model
calibration. A high ECE
indicates poor calibration,
whereas a classifier that
achieves a low ECE is gen-
erally well-calibrated. Aside from CIFAR-100 where batch-balancing in combination label smoothing
shows slightly lower ECEs than OKO, OKO achieves lower ECE scores than any other method across
training settings (see Fig. 1 in §1 and Fig 10 in Appx. F).

RC. Here, we demonstrate empirically that our novel entropy-based measure of datapoint calibration
is a useful measure of calibration. Following Def. 1 and Lemma 2 in §4, we quantify the average
excess confidence RC (y, ŷ(x)) by measuring the mean absolute difference (MAE) between H̄(P,Q)
and H̄(Q) for the different number of training data point settings (see Fig. 5). We find that OKO

8

Published as a conference paper at ICLR 2024

Table 3: MAE between entropies and cross-entropies averaged over the entire test set for different numbers of
training data points. Lower is better and therefore bolded.

MNIST FashionMNIST CIFAR-10 CIFAR-100
Training \ Distribution uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed

Vanilla 0.189 0.723 0.455 1.075 0.330 1.845 0.708 2.638
Vanilla + LS 0.475 0.342 0.243 0.119 0.230 1.158 0.236 2.171
Weighted CE 0.207 0.558 0.505 0.758 0.315 0.366 0.705 0.189
Focal Loss (Lin et al., 2017) 0.044 0.333 0.107 0.308 0.222 0.296 0.526 0.198
BB 0.201 0.709 0.455 1.275 0.330 1.438 0.918 6.362
BB + LS 0.475 0.380 0.240 0.114 0.225 0.471 0.337 1.141
OKO (ours) 0.073 0.094 0.080 0.334 0.116 0.498 0.314 1.164

0.0 0.5 1.0 1.50

1

H
(P

,Q
)

MNIST
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
100
200
300
400
500
1000
5000

0.0 0.5 1.0 1.50

1

FashionMNIST
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
200
300
400
500
1000
5000
10000

0.0 0.5 1.0 1.5 2.0log(10)0

1

2

CIFAR-10
Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
400
500
1000
5000
10000
20000

0.0 1.0 2.0 3.0 log(100)0

1

2

3

4

CIFAR-100

Training
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

Data points
5000
10000
20000
30000

Un
ifo

rm

0.0 0.5 1.0 1.5
H(Q)

0

1

H
(P

,Q
)

0.0 0.5 1.0 1.5
H(Q)

0

1

2

0.0 0.5 1.0 1.5 2.0log(10)
H(Q)

0

1

2

3

0.0 1.0 2.0 3.0 log(100)
H(Q)

0
1
2
3
4
5
6
7
8

He
av

y-
ta

ile
d

Figure 5: For different numbers of training data points, OKO achieves a substantially lower MAE for the average
cross-entropy error between true and predicted class distributions and the average entropy of the predictions —
across both uniform and heavy-tailed class distributions during training.

achieves the lowest MAE for all balanced training settings and is among the top-2 or top-3 training
methods with the lowest MAE for the heavy-tailed training settings (see Tab. 3).

6 CONCLUSION

In standard empirical risk minimization, a classifier minimizes the risk on individual examples;
thereby ignoring more complex correlations that may emerge when considering sets of data. Our
proposed odd-k-out (OKO) framework addresses this caveat — inspired by the odd-one-out task
used in the cognitive sciences (Hebart et al., 2020; Muttenthaler et al., 2022; 2023a). Specifically,
in OKO, a classifier learns from sets of data, leveraging the odd-one-out task rather than single
example classification (see Fig. 1). We find that OKO yields well-calibrated model predictions, being
better or equally well-calibrated as models that are either trained with label smoothing or whose
logits are scaled with a temperature parameter found via grid search after training (see §5). This
alleviates the ubiquitous calibration problem in ML in a more principled manner. In addition to
being well-calibrated, OKO achieves better test set accuracy than all training approaches considered
in our analyses (see Tab. 2). Improvements are particularly pronounced for the heavy-tailed class
distribution settings.

OKO modifies the training objective into a classification problem for sets of data. We provide
theoretical analyses that demonstrate why OKO yields smoother logits than standard cross-entropy,
as corroborated by empirical results. OKO does not require any grid search over an additional
hyperparameter. While OKO is trained on sets, at test time it can be applied to single examples
exactly like any model trained via a standard single example loss. The training complexity scales
linearly in O(|S|) where |S| denotes the number of examples in a set and hence introduces little
computational overhead during training.

9

Published as a conference paper at ICLR 2024

One caveat of OKO is that classes are treated as semantically equally distant — similar to standard
cross-entropy training. An objective function that better reflects global similarity structure may
alleviate this limitation. In addition, we remark that we have developed OKO only for supervised
learning with labeled data. It may thus be interesting to extend OKO to self-supervised learning.

We expect OKO to benefit areas that are in need of reliable aleatoric uncertainty estimates but suffer
from a lack of training data — such as medicine, physics, or chemistry, where data collection is costly
and class distributions are often heavy-tailed.

ACKNOWLEDGMENTS

LM, RV, and KRM acknowledge funding from the German Federal Ministry of Education and
Research (BMBF) for the grants BIFOLD22B and BIFOLD23B. LM acknowledges support through
the Google Research Collabs Programme. We thank Rodolphe Jenatton for helpful comments on an
earlier version of the manuscript.

REFERENCES

Colin Bellinger, Roberto Corizzo, and Nathalie Japkowicz. Remix: Calibrated resampling for class
imbalance in deep learning. arXiv preprint arXiv:2012.02312, 2020.

Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. A unifying theory of distance
from calibration. arXiv preprint arXiv:2211.16886, 2022.

Paula Branco, Luís Torgo, and Rita P Ribeiro. A survey of predictive modeling on imbalanced
domains. ACM computing surveys (CSUR), 49(2):1–50, 2016.

Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon. Multiple
instance learning: A survey of problem characteristics and applications. Pattern Recognit., 77,
2018.

Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe Vert. On mixup regulariza-
tion. JMLR, 2022.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, jun 2002.

Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced data. Technical
Report 666, Department of Statistics, UC Berkley, 2004.

Guillem Collell, Drazen Prelec, and Kaustubh R Patil. A simple plug-in bagging ensemble based on
threshold-moving for classifying binary and multiclass imbalanced data. Neurocomputing, 275:
330–340, 2018.

J. Cordonnier, A. Mahendran, A. Dosovitskiy, D. Weissenborn, J. Uszkoreit, and T. Unterthiner.
Differentiable patch selection for image recognition. In CVPR, 2021.

Jiequan Cui, Shu Liu, Zhuotao Tian, Zhisheng Zhong, and Jiaya Jia. Reslt: Residual learning for
long-tailed recognition. IEEE Trans. Pattern Anal. Mach. Intell, 45(3):3695–3706, 2023.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In CVPR, 2019.

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When is undersampling effective in
unbalanced classification tasks? In ECML PKDD, 2015a.

Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating probability
with undersampling for unbalanced classification. In IEEE Int. Symp. Comput. Intell. Inform., pp.
159–166, 2015b.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. J. Artif. Int. Res., 2(1):263–286, jan 1995. ISSN 1076-9757.

10

Published as a conference paper at ICLR 2024

Chris Drummond and Robert Holte. C4.5, class imbalance, and cost sensitivity: Why under-sampling
beats oversampling. PICML’03 Workshop on Learning from Imbalanced Datasets, 2003.

Fei Du, Peng Yang, Qi Jia, Fengtao Nan, Xiaoting Chen, and Yun Yang. Global and local mixture
consistency cumulative learning for long-tailed visual recognitions. In CVPR, 2023.

Ji Feng and Zhi-Hua Zhou. Deep miml network. In AAAI, 2017.

B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video representation learning with
odd-one-out networks. In CVPR, 2017.

Dean P Foster and Sergiu Hart. Smooth calibration, leaky forecasts, finite recall, and nash dynamics.
Games and Economic Behavior, 109:271–293, 2018.

Kazuyoshi Fukuzawa, Motonobu Itoh, Sumiko Sasanuma, Tsutomu Suzuki, Yoko Fukusako, and
Tohru Masui. Internal representations and the conceptual operation of color in pure alexia with
color naming defects. Brain and Language, 34(1):98–126, 1988. ISSN 0093-934X.

Abhijit Guha Roy, Jie Ren, Shekoofeh Azizi, Aaron Loh, Vivek Natarajan, Basil Mustafa, Nick
Pawlowski, Jan Freyberg, Yuan Liu, Zach Beaver, Nam Vo, Peggy Bui, Samantha Winter, Patricia
MacWilliams, Greg S. Corrado, Umesh Telang, Yun Liu, Taylan Cemgil, Alan Karthikesalingam,
Balaji Lakshminarayanan, and Jim Winkens. Does your dermatology classifier know what it
doesn’t know? detecting the long-tail of unseen conditions. Medical Image Analysis, 75:102274,
2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1263–1284, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Martin N. Hebart, Charles Y. Zheng, Francisco Pereira, and Chris I. Baker. Revealing the multidimen-
sional mental representations of natural objects underlying human similarity judgements. Nature
Human Behaviour, 4(11):1173–1185, October 2020.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for
imbalanced classification. In CVPR, 2016.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.
In ICML, 2018.

Ahmet Iscen, Andre Araujo, Boqing Gong, and Cordelia Schmid. Class-balanced distillation for
long-tailed visual recognition. In BMVC, 2021.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intell.
Data Anal., 6(5):429–449, 2002. ISSN 1088-467X.

Yuchang Jiang, Vivien Sainte Fare Garnot, Konrad Schindler, and Jan Dirk Wegner. Mixture of
Experts with Uncertainty Voting for Imbalanced Deep Regression Problems. arXiv e-prints, art.
arXiv:2305.15178, May 2023. doi: 10.48550/arXiv.2305.15178.

Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning with class imbalance. Journal
of Big Data, 6(1), March 2019. doi: 10.1186/s40537-019-0192-5.

Sham M Kakade and Dean P Foster. Deterministic calibration and nash equilibrium. In COLT.
Springer, 2004.

Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
representation learning. In ICLR, 2021.

11

Published as a conference paper at ICLR 2024

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon Shlens,
Michael C Mozer, and Becca Roelofs. Soft calibration objectives for neural networks. Advances in
Neural Information Processing Systems, 34:29768–29779, 2021.

Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A. Sohel, and Roberto Togneri.
Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural
Netw. Learn. Syst., 29(8):3573–3587, 2018.

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter Flach.
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with dirichlet
calibration. NeurIPS, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NIPS, 2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. IEEE Trans. Pattern Anal. Mach. Intell, 42(2):318–327, 2020.

Tao Liu, P. R. Kumar, Ruida Zhou, and Xi Liu. Learning from few samples: Transformation-invariant
svms with composition and locality at multiple scales. In NeurIPS, volume 35, 2022.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, 39(2):539–550, 2009.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-scale
long-tailed recognition in an open world. In CVPR, 2019.

Philipp Liznerski, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Klaus Robert Muller, and
Marius Kloft. Exposing outlier exposure: What can be learned from few, one, and zero outlier
images. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In ICML, 2020.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. NeurIPS,
2021.

Salman Mohammadi, Anders Kirk Uhrenholt, and Bjørn Sand Jensen. Odd-one-out representation
learning. ArXiv, abs/2012.07966, 2020.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
NeurIPS, volume 32, 2019.

Lukas Muttenthaler, Charles Y Zheng, Patrick McClure, Robert A Vandermeulen, Martin N Hebart,
and Francisco Pereira. VICE: Variational Interpretable Concept Embeddings. Advances in Neural
Information Processing Systems, 35:33661–33675, 2022.

Lukas Muttenthaler, Jonas Dippel, Lorenz Linhardt, Robert A Vandermeulen, and Simon Kornblith.
Human alignment of neural network representations. In ICLR, 2023a.

Lukas Muttenthaler, Lorenz Linhardt, Jonas Dippel, Robert A Vandermeulen, Katherine Hermann,
Andrew K Lampinen, and Simon Kornblith. Improving neural network representations using
human similarity judgments. arXiv preprint arXiv:2306.04507, 2023b.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In AAAI, 2015.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning.
In ICML, 2005.

12

Published as a conference paper at ICLR 2024

Sarah Parisot, Pedro M. Esperança, Steven McDonagh, Tamas J. Madarasz, Yongxin Yang, and
Zhenguo Li. Long-tail recognition via compositional knowledge transfer. In CVPR, 2022.

Pedro H. O. Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with convolu-
tional networks. CVPR, 2014.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Rocco Robilotto and Qasim Zaidi. Limits of lightness identification for real objects under natural
viewing conditions. Journal of Vision, 4(9):9–9, 09 2004.

Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, and Michael C. Mozer. Mitigating bias in
calibration error estimation. In AISTATS, 2022.

Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Klaus-Robert Müller, and Marius Kloft.
Rethinking Assumptions in Deep Anomaly Detection. arXiv e-prints, art. arXiv:2006.00339, May
2020. doi: 10.48550/arXiv.2006.00339.

Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks.
2019.

Changyao Tian, Wenhai Wang, Xizhou Zhu, Jifeng Dai, and Yu Qiao. Vl-ltr: Learning class-wise
visual-linguistic representation for long-tailed visual recognition. In ECCV, 2022.

Kai Ming Ting. A comparative study of cost-sensitive boosting algorithms. In ICML, 2000.

Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and Thomas
Schön. Evaluating model calibration in classification. In AISTATS, 2019.

Byron C Wallace and Issa J Dahabreh. Class probability estimates are unreliable for imbalanced data
(and how to fix them). In ICDM, pp. 695–704, 2012.

Byron C. Wallace, Kevin Small, Carla E. Brodley, and Thomas A. Trikalinos. Class imbalance, redux.
In ICDM, 2011.

Benjamin X Wang and Nathalie Japkowicz. Imbalanced data set learning with synthetic samples. In
Proc. IRIS machine learning workshop, volume 19, pp. 435, 2004.

Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X. Yu. Long-tailed recognition by
routing diverse distribution-aware experts. In ICLR, 2021.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In NIPS, 2017.

Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced learning. In
NeurIPS, 2020.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probabil-
ity estimates. In KDD, pp. 694–699, 2002.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In NIPS, 2017.

Shengjia Zhao, Michael Kim, Roshni Sahoo, Tengyu Ma, and Stefano Ermon. Calibrating predictions
to decisions: A novel approach to multi-class calibration. NeurIPS, 2021.

Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu, Jianteng Peng, Xunqiang Tao, and Yaohai
Huang. Unequal-training for deep face recognition with long-tailed noisy data. In CVPR, 2019.

13

Published as a conference paper at ICLR 2024

A OKO CLASSIFICATION HEAD

Here, we demonstrate how easily OKO can be applied to any neural network model in practice,
irrespective of its architecture. OKO does not require an additional set of parameters. OKO essentially
is just a sum over the logits in a set of inputs. Below we provide JAX code for the classification head
that is used for OKO. During training, logits obtained from the classification head are summed across
the inputs in a set. At inference time, the classification head is applied to single inputs just as any
standard classification head.

import flax.linen as nn
import jax.numpy as jnp
from einops import rearrange
from jax import vmap

Array = jnp.ndarray

class OKOHead(nn.Module):
num_classes: int # number of classes in the data
k: int # number of odd classes in a set

def setup(self) -> None:
self.clf = nn.Dense(self.num_classes)
self.scard = self.k+2 # set card is number of odd classes + 2

def set_sum(self, x: Array) -> Array:
"""Aggregate the logits across all examples in a set."""
x = rearrange(x, "(b scard) d -> b scard d", scard=self.scard)
dots = vmap(self.clf, in_axes=1, out_axes=1)(x)
set_logits = dots.sum(axis=1) # set sum
return set_logits

@nn.compact
def __call__(self, x: Array, train: bool) -> Array:

x \in \mathbb{R}^{b(k+2) \times d}
if train:

logits = self.set_sum(x_p)
else:

logits = self.clf(x)
return logits

Listing 1: OKO classification head implemented in JAX.

B BACKGROUND

B.1 PROBLEM SETTING

In the heavy-tailed class distribution setting, we are interested in the classification setting where a
classifier has access to training data D = {(x1, y1) , . . . , (xn, yn)} ⊂ Rd × [C] consisting of inputs
xi and labels yi from C classes. For c ∈ [C], Dc ⊂ D will denote those samples with label c, so
D =

⋃C
c=1Dc. Class imbalance occurs when |Dc| ≫ |Dc′ | for some c and c′. Let ea ∈ RC be the

indicator vector at index a and softmax be the softmax function. Let µn be the uniform empirical
measure of D.

Cross-entropy. The cross-entropy error between the original and the predicted labels is the following
risk function when averaged over all n data points in the dataset D,

Lvanilla (D, θ) := E(X,Y)∼µn
[ℓx-ent.(eY , softmax (fθ (X))] = − 1

n

n∑
i=1

eTyi
log [softmax (fθ(xi))] .

(4)

In the class imbalanced setting optimizing Eq. 4 is known to produce classifiers that strongly favor
common classes and are therefore likely to incorrectly label rare classes during test time. Here we

14

Published as a conference paper at ICLR 2024

describe a few methods designed to counteract this phenomenon, which we will use as competitors in
our experiments.

B.2 ERROR RE-WEIGHTING

To counteract the fact that there are fewer terms in the summation in Eq. 4 for rare classes, one may
simply weight those terms more greatly. Let µ̂n,Y (·) := µn

(
Rd × ·

)
be the empirical distribution

over the class labels. In error re-weighting, the terms in Eq. 4 are weighted inversely to their class
frequency, such that the contribution of a sample in class c to the error decreases with its number of
unique examples nc,

Lre-weighted(D, θ) := E(X,Y)∼µn

[
ℓ(eY , softmax (fθ(xi)))

µn,Y (Y)

]
∝ − 1

n

n∑
i=1

a

nyi

eTyi
log
[
softmax

(
fθ(xi)

)]
,

(5)

where a ∈ R is a constant to bring the error term back onto the correct scale to avoid vanishing
gradient problems or a learning rate η that is unusually large, since nc ≫ 1∀c ∈ {1, . . . , C}.

B.3 BATCH-BALANCING

Algorithm 2 Batch-balancing

Input: D, C,B ▷ C is the number of classes, B is the batch size
D =

⋃C
c=1Dc ▷ D is the union of its class partitions

Dc := (xc
i , y

c
i)

nc
i=1 ⊂ Xc × Yc ▷ Each class partition contains nc ordered pairs

[C] = {1, . . . , C} ▷ |[C]| = C
for i ∈ {1, . . . , B} do

c ∼ U([C]) ▷ Sample a class c
(x̃i, ỹi) ∼ U(Dc) ▷ Sample an image and label pair from Dc

end for
Output: D̃ := (x̃i, ỹi)

B
i=1 ▷ Balanced mini-batch of B image and label pairs

In normal batch construction, a sample for a batch is selected uniformly at random from the entire
dataset D. Compensating for this by including additional copies of samples from rare classes in the
training dataset, or during batch construction, is known as resampling or oversampling (Chawla et al.,
2002; Bellinger et al., 2020). The prototypical version of this selects batch samples by first selecting
a class c ∈ [C], uniformly at random, and then selecting a sample from Dc, uniformly at random.
This causes a batch to contain an equal number of samples from each class on average. We term this
batch-balancing. The works (Ruff et al., 2020; Liznerski et al., 2022) use a slight modification of
this where the stochasticity of the labels for each batch is removed so each batch contains an equal
number of samples from each class.

The pseudo-code for batch-balancing is described in Alg. 2 in Appx. B.3. Error re-weighting and
batch-balancing are not specific to the cross-entropy loss and may be applied to any loss that is the
empirical expectation of some loss function. They represent two different ways of remedying class
imbalance: one can weigh the rare examples more heavily or one can present the rare examples more
often. The following proposition shows that two methods are equivalent in expectation, although
we find that batch-balancing always works better in practice (see §5). The sampling distribution for
batch-balancing is denoted by µ̃n.

Proposition 1. Let B be a batch selected uniformly at random and B′ be a batch selected using
batch-balancing. Then there exists λ > 0 such that λEB [Lre−weighted (B, θ)] = EB′ [Lvanilla (B′, θ)]
for all θ.

15

Published as a conference paper at ICLR 2024

Proof. Let q = U([n]). For the empirical class distribution, µn,Y (Y) = |{i | yi = yq}| /n. So now
we have

E(X,Y)∼µn

[
ℓ(Y, fθ(X))

µn,Y (Y)

]
= nEq∼U([n])

[
ℓ(yq, fθ (xq))

|{i | yi = yq}|

]
= n

C∑
j=1

Eq∼U([n])

[
ℓ(yq, fθ (xq)

|{i | yi = yq}|
| q = j

]
Pq∼U([n]) (yq = j)

= n

C∑
j=1

Eq∼U([n])

[
ℓ(yq, fθ (xq)

|{i | yi = j}|
| q = j

]
|{i | yi = j}|

n

=

C∑
j=1

Eq∼U([n]) [ℓ(yq, fθ (xq) | yq = j]

= C

C∑
j=1

Eq∼U([n]) [ℓ(yq, fθ (xq) | yq = j]C−1. (6)

Let B be the distribution over [n] according to batch-balancing. We know that U and B select
uniformly, conditioned on class label, so

Eq∼U([n]) [ℓ(yq, fθ (xq) | yq = j] = Eq∼B [ℓ(yq, fθ (xq) | yq = j] ,

and that B selects class label uniformly

Pq∼B[yq = j] = C−1,

for all j ∈ [n], so Eq. 6 is equal to

C

C∑
j=1

Eq∼U([n]) [ℓ(yq, fθ (xq) | yq = j]C−1 = C

C∑
j=1

Eq∼B [ℓ(yq, fθ (xq) | yq = j]Pq∼B[yq = j]

= CEq∼B [ℓ(yq, fθ (xq)]

= CE(X,Y)∼µ̃n
[ℓ (Y, fθ(X))] .

C ANALYZING THE OKO LOSS LANDSCAPE

Here we analyze the optimal network output for the OKO loss and how the loss behaves around
such an optimum. Such an optimization landscape analysis is notoriously difficult for non-convex
optimization; hence we make some simplifying assumptions. It has been repeatedly observed that
well-trained neural networks typically “overfit” the training data. We assume that when a model has
memorized its training data, its outputs will be identical for each input corresponding to the same class.
In other words, its output on training data only depends on the training label: fθ(xi) ≈ F (yi) := Fyi

.
Here we will consider a matrix F of logit outputs, such that Fi,j denotes the logit for class j when
the true label is i.

One issue with standard cross-entropy is that it strongly encourages the entries of F to diverge: For
the cross-entropy riskR(F) = E

[
−eTy log (softmax (f(x)))

]
= E

[
−eTy log (softmax (Fy))

]
, and

for all F and i, j, ∂R(F)
∂Fi,i

> 0 and for all i ̸= j, ∂R(F)
∂Fi,j

< 0. In other words: standard cross-entropy
loss always encourages the logits of the true class to move towards∞ and the logits of the wrong
class towards −∞. As a result, neural networks tend to be overconfident. In particular, if fθ(x)
predicts class ŷ then P (ŷ | x) < [softmax (fθ(x))]ŷ .

A natural way to counteract this issue is via weight decay. Indeed, weight decay has been shown
to improve calibration. However, this improvement comes at a cost of generalization, and modern
networks therefore typically utilize little to no weight decay (Guo et al., 2017). Thus, there is a desire
to find ways to calibrate networks without using weight decay. Label smoothing is one potential
solution to this since it encourages expFy to be proportional to ey(1− α) + α/C (Carratino et al.,
2022). We include label smoothing as a competitor for our method in the experimental section.

16

Published as a conference paper at ICLR 2024

Figure 6: This figure shows the contour lines and gradient descent path of f(x, y) = −x − y + (y − x)2.
Note that for fixed x or y, f is convex in the other variable. While gradient descent does indeed diverge to
(x, y) → (∞,∞) the properties of f slow its divergence.

Before deriving the risk functions for the hard and soft OKO losses, we must introduce further
notation. Let Yi =

{
S | S ∈ 2[C], |S| = k, i /∈ S

}
. Yi represents a potential set of odd labels when

y′ = i. For OKO we have

Rsoft(F) = −
C∑

i=1

∑
Y ∈Yi

k+2∑
j=1

log

[
softmax

(
k+2∑
ℓ=1

FY ′
ℓ

)]
Y ′
j

(7)

Rhard(F) = −
C∑

i=1

∑
Y ∈Yi

log

[
softmax

(
k+2∑
ℓ=1

FY ′
ℓ

)]
i

. (8)

See Appx. C for a derivation of these. The following proposition demonstrates that the OKO risks
naturally encourage the risk not to overfit by constraining when each index of F is viewed individually.

Proposition 2. For a fixed i, j, bothRsoft (F) andRhard (F) are convex and each admits a unique
global minimum with respect to Fi,j .

This acts as an implicit form of smoothing and helps to keep the logits from diverging during training.
This is because the gradient descent path for functions like those described in Proposition 2 tend to
meander rather than directly diverge. A toy example of this phenomenon can be found in Figure 6.
Unlike label smoothing (Müller et al., 2019; Carratino et al., 2022), however, F is not encouraged to
converge to a unique minimum. Optimizing the (hard) OKO risk still allows F to diverge if that’s
advantageous — as we demonstrate in the following proposition.

Proposition 3. There exist an initial value, F (0), such that the sequence of points given by minimizing
Rhard with fixed step size gradient descent, F (0), F (1), F (2), . . ., yields, lima→∞ F

(a)
i,i → ∞ and

lima→∞ F
(a)
i,j → −∞, for all i and j ̸= i.

Hence, the OKO risk strikes a balance between the excessive overconfidence caused by standard
cross-entropy and the inflexible calibration of fixed minima in label smoothing (Carratino et al.,
2022).

17

Published as a conference paper at ICLR 2024

Here we derive the expressions in Eq. 7 and Eq. 8 in the main text. We have that

ES∼A

[
ℓsoftoko (Sy, fθ (Sx))

]
=

k∑
i=1

P (y′ = i)ES∼A

[
ℓsoftoko (Sy, fθ (Sx)) | y′ = i

]
=

k∑
i=1

P (y′ = i)
∑
Y ∈Yi

(
P
({

y′3, .., y
′
k+2

}
= Y | y′ = i

)
(9)

· · · × ES∼A

[
ℓsoftoko (Sy, fθ (Sx)) | y′ = i,

{
y′3, .., y

′
k+2

}
= Y

])
, (10)

noting that the parenthesis after the second summation in Eq. 9 extends to the end of Eq. 10. Since y′
is chosen uniformly at random P (y′ = i) are equal for all i and similarly

(
y′3, . . . , y

′
k+2

)
are chosen

uniformly at random given y′ and |Yi| are all equal so P
({

y′3, . . . , y
′
k+2

}
= Y | y′ = i

)
are equal for

all Y and i, thus we can ignore these terms when optimizing over F . Letting Y ′ = (i, i, Y1, . . . , Yk)
in the summation we have, that ES∼A

[
ℓsoftoko (Sy, fθ (Sx))

]
is proportional to,

k∑
i=1

∑
Y ∈Yi

ES∼A

[
ℓsoftoko (Sy, fθ (Sx)) | y′ = i,

{
y′3, . . . , y

′
k+2

}
= Y

]

=

k∑
i=1

∑
Y ∈Yi

ES∼A

((k + 2)
−1

k+2∑
i=1

ey′
i

)T

log [softmax (fθ (Sx))] | y′ = i,
{
y′3, . . . , y

′
k+2

}
= Y


∝

k∑
i=1

∑
Y ∈Yi

ES∼A

(k+2∑
i=1

eY ′
i

)T

log

[
softmax

(
k+2∑
i=1

FY ′
i

)]
=

k∑
i=1

∑
Y ∈Yi

(
k+2∑
i=1

eY ′
i

)T

log

[
softmax

(
k+2∑
i=1

FY ′
i

)]

=

k∑
i=1

∑
Y ∈Yi

k+2∑
j=1

log

[
softmax

(
k+2∑
ℓ=1

FY ′
ℓ

)]
Y ′
j

. (11)

The derivation of the hard risk is similar, however the third summation in Eq. 11 only contains the i
term, for the single hard label.

C.1 PROOFS

Before proving Proposition 2 we will first introduce the following support lemma, which will be
proven later.

Lemma 3. Let, N,N ′ ∈ N be positive. Let qi, q′i ∈ RC , with qi,1 = aix+ bi, q′i,1 = a′ix+ b′i (the
remaining entries of qi and q′i are fixed and do not depend on x) with ai > 0 and a′i > 0, and ni be a
sequence of N ′ elements in [C] \ {1}. Then

f(x) = −
N∑
i=1

log (softmax (qi))1︸ ︷︷ ︸
L

−
N ′∑
i=1

log (softmax (q′i))ni︸ ︷︷ ︸
R

(12)

is strictly convex and admits a unique minimizer.

Proof of Proposition 2. This proof will be proven using surrogate indices i′, j′ in place of i, j in the
proposition for Fi,j ; it will be useful to be able to use i and j to refer to indices in other expressions.

Observe that simply relabeling the network outputs does not affect the risk so, for a permutation σ
and G defined by Gi′,j′ = Fσ(i′),σ(j′) we have thatR(F) = R(G). Because of this we will simply
let j′ = 1 for concreteness. We will begin with the case where i′ = j′.

18

Published as a conference paper at ICLR 2024

Case i′ = j′ = 1: Note that each summand in Eq. 7 and Eq. 8 is either a constant with respect
to F1,1 or has the form of the left hand sum, L , or right hand sum, R, of Eq. 12, substituting in
x← F1,1 in the statement of Lemma 3. To finish the i′ = j′ case we will show that both Eq. 7 and
Eq. 8 has a summand of the form in L and one summand of the form in R:

• For L : Consider i = 1 and an arbitrary Y ∈ Y1 for Eq. 8; for Eq. 7 we use the same values
with j = 1 since Y ′

1 = 1.

• For R: In Eq. 7 we can let i = 1, Y ∈ Y1 be arbitrary, and j = 3 since Y ′
3 ̸= 1 = j′ in that

case. For Eq. 8 we need only consider i = 2 and some Y = Y2 that contains an entry with
1.

From Lemma 3 it follows that bothRsoft(F) andRhard(F) are strictly convex and contain a unique
minimum when optimizing over Fi′,i′ .

Case i′ ̸= j′ = 1: This case proceeds in a similar fashion to the last.

• For L : In Eq. 8 we have i = 1 and some Y ∈ Y1, so that Y ′
3 = i′; for Eq. 7 we add j = 1

so Y ′
1 = 1.

• For R: In Eq. 8 we have i = 2, Y ∈ Y2 such that i′ is in Y . We can use the same values for
i and Y for Eq. 7, with j = 1 since Y1 = 2.

Proof of Lemma 3. To show strict convexity, we will show that d2f
dx2 is strictly positive. First, we have

that

df

dx
= −

N∑
i=1

ai (1− softmax (qi)1)−
N ′∑
i=1

a′i (−softmax (q′i)1)

=

N∑
i=1

ai (softmax (qi)1 − 1) +

N ′∑
i=1

a′i (softmax (q′i)1) (13)

and thus

d2f

dx2
=

N∑
i=1

a2i (1− softmax (qi)1) softmax (qi)1 +

N ′∑
i=1

a′2i (softmax (q′i)1) (1− softmax (q′i))

which is clearly positive for all x. To demonstrate the existence of a minimizer we will show that df
dx

attains both positive and negative values as a function of x and, by the intermediate value theorem,
df
dx must equal 0 somewhere. To see this observe that

lim
x→∞

N∑
i=1

ai (softmax (qi)1 − 1) +

N ′∑
i=1

a′i (softmax (q′i)1) =

N ′∑
i=1

a′i > 0

lim
x→−∞

N∑
i=1

ai (softmax (qi)1 − 1) +

N ′∑
i=1

a′i (softmax (q′i)1) =

N∑
i=1

−ai < 0,

which completes the proof.

Proof of Proposition 3. Let F ⊂ RC×C be the set of matrices F where Fi,i = Fj,j for all i, j, and
Fi,j = Fi′,j′ for all i ̸= j, i′ ̸= j′. Let F (a, b) ∈ F be the matrix which contains a in the diagonal
entries and b in all other entries. The chain rule tells us that

∂

∂a
Rhard (F (a, b)) =

C∑
i=1

∂

∂Fi,i
Rhard (F)

∣∣∣∣
F=F (a,b)

, (14)

19

Published as a conference paper at ICLR 2024

the sum of all the partial derivatives along the diagonal, and

∂

∂b
Rhard (F (a, b)) =

∑
i̸=j

∂

∂Fi,j
Rhard (F)

∣∣∣∣
F=F (a,b)

, (15)

the sum of all partial derivatives for the entries off the diagonal. Due to the invariance with respect
to labeling, as in the proof of Proposition 2, for any F ∈ F it follows that ∂

∂Fi,i
Rhard(F) =

∂
∂Fi′,i′

Rhard(F) for all i and i′, and ∂
∂Fi,j
Rhard(F) = ∂

∂Fi′,j′
Rhard(F) for all i ̸= j, i′ ̸= j′.

Because of this ∇Rhard (F (a, b)) will always lie in F and thus a path following gradient descent
starting in F will always remain in F .

Considering Eq. 14 and Eq. 15, if we show that− ∂
∂aRhard (F (a, b)) > 0 and− ∂

∂bRhard (F (a, b)) <
0, for any a, b, it would follow that, for F ∈ F , −∇Rhard (F) = F (a′, b′) for some a′ > 0 and
b′ < 0. This would imply that gradient descent starting from an element of F will diverge to
F (∞,−∞), which would complete the proof. We will now proceed proving− ∂

∂aRhard (F (a, b)) >

0 and − ∂
∂bRhard (F (a, b)) < 0.

The risk expression applied to F (a, b) is equal to

Rhard(F (a, b)) = −
k∑

i=1

∑
Y ∈Yi

log

[
softmax

(
k+2∑
ℓ=1

F (a, b)Y ′
ℓ

)]
i

. (16)

For concreteness we will consider the summand with i = 1 and Y = [2, . . . , k + 1] fixed, which
implies Y ′ = [1, 1, 2, . . . , k + 1] is also fixed. In this case we have that

k+2∑
ℓ=1

F (a, b)Y ′
ℓ
=



2a+ kb
a+ (k + 1)b

...
a+ (k + 1)b
(k + 2)b

...
(k + 2)b


,

with k entries containing a + (k + 1)b and C − (k + 1) entries containing (k + 2)b (note that
C − (k + 1) is nonnegative). Continuing with fixed i and Y ′ have that

log

[
softmax

(
k+2∑
ℓ=1

F (a, b)Y ′
ℓ

)]
i

= log

(
exp (2a+ bk)

exp (2a+ bk) + k exp (a+ b(k + 1)) + (C − k − 1) exp ((k + 2)b)

)
. (17)

We will define R(a, b) to be equal to Eq. 17 Note that every summand in Eq. 16 is equal to Eq. 17.
Because of this we need only show that ∂

∂aR(a, b) > 0 and ∂
∂bR(a, b) < 0 to finish the proof.

Differentiating with respect to a gives us

∂

∂a
R(a, b) = 2− 2 exp (2a+ bk) + k exp (a+ b(k + 1))

exp (2a+ bk) + k exp (a+ b(k + 1)) + (C − k − 1) exp ((k + 2)b)
.

Letting

Q(a, b) := exp (2a+ bk) + k exp (a+ b(k + 1)) + (C − k − 1) exp ((k + 2)b)

it follows that
∂

∂a
R(a, b) = 2− exp (2a+ bk) + k exp (a+ b(k + 1))

Q(a, b)
− exp (2a+ bk)

Q(a, b)
.

We have that
exp (2a+ bk) + k exp (a+ b(k + 1))

Q(a, b)
≤ 1 and

exp (2a+ bk)

Q(a, b)
< 1

20

Published as a conference paper at ICLR 2024

so ∂
∂aR(a, b) > 0.

Differentiating with respect to b we get

∂

∂b
R(a, b)

= k − k exp (2a+ bk) + k(k + 1) exp (a+ b(k + 1)) + (k + 2)(C − k − 1) exp ((k + 2)b)

exp (2a+ bk) + k exp (a+ b(k + 1)) + (C − k − 1) exp ((k + 2)b)
.

Observe that

k <
k exp (2a+ bk) + k(k + 1) exp (a+ b(k + 1)) + (k + 2)(C − k − 1) exp ((k + 2)b)

exp (2a+ bk) + k exp (a+ b(k + 1)) + (C − k − 1) exp ((k + 2)b)

so ∂
∂bR(a, b) < 0, which completes the proof.

D PROOF OF THEOREM 1

To prove this let F0 ⊂ F be such that f ∈ F0 satisfies f(i)1 = 0 for all i. We have the following
lemma showing that F0 can be used in place of F in our proof.

Lemma 4. Let v1, . . . , vM be in Rd. Then there exists v′1, . . . , v
′
M with v′i,1 = 0 for all i, such that,

for all w1, . . . , wM in R, the following holds

softmax

(
M∑
i=1

wivi

)
= softmax

(
M∑
i=1

wiv
′
i

)
.

This essentially allows us avoid the complications arising from that fact that there exists an uncount-
able infinitude of distinct vectors, in particular f(a) with various a ∈ R and f(a)1 = a, such that
softmax(f(a)) = softmax(f(a′)) when a ̸= a′, by simply selecting the unique representative with
f1 = 0.

Proof of Lemma 4. First we will show for all x ∈ Rd and c ∈ R that softmax (x) =

softmax
(
x+ c1⃗

)
, where 1⃗ ∈ Rd is the ones vector. Let j ∈ [d] be an arbitrary index. We

will show that softmax
(
x+ c1⃗

)
j
= softmax (x)j . Observe that

softmax
(
x+ c1⃗

)
j
=

exp (xj + c)∑d
k=1 exp (xk + c)

=
exp (xj) exp (c)∑d
k=1 exp (xk) exp (c)

=
exp (c) exp (xj)

exp (c)
∑d

k=1 exp (xk)

=
exp (xj)∑d
k=1 exp (xk)

= softmax (x)j .

Because the above equality is true for all indices j, it holds for the whole vector, so softmax (x) =

softmax
(
x+ c1⃗

)
.

21

Published as a conference paper at ICLR 2024

Let v′i = vi − vi,11⃗ for all i. Note that v′i,1 = 0 for all i. Now we have that

softmax

(
M∑
i=1

wiv
′
i

)
= softmax

(
M∑
i=1

wi

(
vi − vi,11⃗

))

= softmax

(
M∑
i=1

wivi − wivi,11⃗

)

= softmax

((
M∑
i=1

wivi

)
+

(
−

M∑
i=1

wivi,11⃗

))

= softmax

(
M∑
i=1

wivi

)
,

where the last line follows from the equality shown at the beginning of this proof.

Using this we can prove the main theorem.

Proof of Theorem 1. From Lemma 4 the theorem statement is true iff it holds for minimizers in F0,
so we will prove the theorem for f where f(·)1 = 0.

Let Qϵ(a0, a1, a2) = Qϵ(a) ≜ ES∼A

[
ℓhardoko (Sy, f (Sx))

]
, with f satisfying f(0) = [0, a0], f(1) =

[0, a1], and f(2) = [0, a2]. For the remainder for this proof we will denote the entries of vectors like
a beginning with 0, as above, rather than 1.

To begin note that

Qϵ(a) =

16∑
i=1

−pϵ,i log (Vi(a)) ,

where the Vi are defined in the following table (Table 4).

y1 y2 y3 x1 x2 x3 PAϵ
(x1, x2, x3, y1, y2, y3) = pϵ,# V#(a)

1 1 1 2 0 0 0 (1− ϵ)
3
/2 exp(0)

exp(0)+exp(3a0)

2 2 2 1 0 0 0 (1− ϵ)
3
/2 exp(3a0)

exp(0)+exp(3a0)

3 1 1 2 0 0 2 ϵ (1− ϵ)
2
/2 exp(0)

exp(0)+exp(2a0+a2)

4 1 1 2 1 0 0 ϵ (1− ϵ)
2
/2 exp(0)

exp(0)+exp(2a0+a1)

5 1 1 2 0 1 0 ϵ (1− ϵ)
2
/2 exp(0)

exp(0)+exp(2a0+a1)

6 2 2 1 0 0 1 ϵ (1− ϵ)
2
/2 exp(2a0+a1)

exp(0)+exp(2a0+a1)

7 2 2 1 2 0 0 ϵ (1− ϵ)
2
/2 exp(2a0+a2)

exp(0)+exp(2a0+a2)

8 2 2 1 0 2 0 ϵ (1− ϵ)
2
/2 exp(2a0+a2)

exp(0)+exp(2a0+a2)

9 1 1 2 1 1 0 ϵ2 (1− ϵ) /2 exp(0)
exp(0)+exp(a0+2a1)

10 1 1 2 1 0 2 ϵ2 (1− ϵ) /2 exp(0)
exp(0)+exp(a0+a1+a2)

11 1 1 2 0 1 2 ϵ2 (1− ϵ) /2 exp(0)
exp(0)+exp(a0+a1+a2)

12 2 2 1 2 2 0 ϵ2 (1− ϵ) /2 exp(a0+2a2)
exp(0)+exp(a0+2a2)

13 2 2 1 2 0 1 ϵ2 (1− ϵ) /2 exp(a0+a1+a2)
exp(0)+exp(a0+a1+a2)

14 2 2 1 2 1 0 ϵ2 (1− ϵ) /2 exp(a0+a1+a2)
exp(0)+exp(a0+a1+a2)

15 1 1 2 1 1 2 ϵ3/2 exp(0)
exp(0)+exp(2a1+a2)

16 2 2 1 2 2 1 ϵ3/2 exp(a1+2a2)
exp(0)+exp(a1+2a2)

Table 4: Terms in expectation

22

Published as a conference paper at ICLR 2024

From this it is clear that Qϵ is continuous for all ϵ.

We will now show that for all ϵ ∈ (0, 1) there exists a minimizer aϵ ∈ argmina Qε(a) by con-
tradiction. For sake of contradiction suppose there exists ϵ′ for which no such minimizer exists.
Because Qϵ′ is bounded from below we can find a sequence (ai)

∞
i=1 such that Qϵ′ (ai)→ infa Qϵ′(a).

Because
∑2

i=1−pϵ′,i log (Vi(a)) → ∞ as |a0| → ∞ (here a0 is the first entry of a, rather than
one vector from the sequence ai, incurring a slight abuse of notation) it follows that the sequence
(ai,0)

∞
i=1 must be bounded and thus contains a convergent subsequence. We will now assume that

(ai)
∞
i=1 is such a sequence. Note that

∑8
i=3−pϵ′,i log (Vi(aj)) would diverge were aj,1 or aj,2 to

diverge (because aj,0 remains bounded) and, because every term −pϵ,i log (Vi(a)) > 0, (ai)
∞
i=1 must

remain bounded otherwise Qϵ(aj) would diverge. Thus ai has a convergent subsequence and its limit
must be a minimizer by continuity, a contradiction. Therefore minimizers aϵ exist.

Let a⋆ = [0,− log(2), log(2)] and define

Q1 : a 7→
2∑

i=1

−pϵ,i log (Vi(a))

Q2 : a 7→
8∑

i=3

−pϵ,i log (Vi(a))

Q3 : a 7→
16∑
i=9

−pϵ,i log (Vi(a)) ,

with the ϵ subscript for Q left implicit to simplify notation. Observe that a⋆0 minimizes Q1, which
holds iff a⋆0 = 0, and that a⋆ minimizes Q2 with a⋆0 fixed to 0. Showing that these are minima follows
from simple calculus and algebra. The functions Q1 and Q2 can be shown to be strictly convex by
showing that the second derivative/Hessian is positive/positive-definite. The minima can be found by
simply taking the derivative/gradient of these terms and setting them equal to zero. All instances in
this proof where we assert strict convexity and find minima follow from this kind of argument.

We will now show that aϵ,0 → 0 by contradiction. All limits are with respect to ϵ→ 0. For the sake
of contradiction assume there is a decreasing subsequence (ϵi)

∞
i=1 which converges to 0 and δ > 0

such that |aϵi,0 − a⋆0| ≥ δ. Since a 7→
∑2

i=1− log (Vi (a)) is strictly convex in its first index and is
minimized when a0 = 0, there exists ∆1 > 0 such that

∑2
i=1− log

(
Vi

(
aϵj
))
−− log (Vi (a

⋆)) ≥
∆1, for all j (we’ve left in the double negative to emphasize that we are subtracting the convex term).
Now we have that

Qϵi(aϵi)−Qϵi(a
⋆) ≥ (1− ϵi)

3

2
∆1 −

3∑
j=2

Qj (a
⋆)

=
(1− ϵi)

3

2
∆1 −O(ϵi)

and thus, for sufficiently large i, Qϵi(aϵi) > Qϵi(a
⋆), a contradiction. We have now shown that

aϵ,0 → 0.

We will now show that aϵ,1 and aϵ,2 must be bounded, again via contradiction. As before we can
consider the case where ϵi converges to zero with aϵi,1 diverging (the proof is virtually identical for
aϵi,2). Note that a minimizer of Qϵ is also a minimizer of ϵ−1Qϵ. Now we have

ϵ−1
i Qϵi(aϵi)− ϵ−1

i Qϵi(a
⋆)

= ϵ−1
i Q1(aϵi)− ϵ−1

i Q1(a
⋆)︸ ︷︷ ︸

≥0

+ϵ−1
i Q2(aϵi)− ϵ−1

i Q2(a
⋆) + ϵ−1

i Q3(aϵi)︸ ︷︷ ︸
≥0

− ϵ−1
i Q3(a

⋆)︸ ︷︷ ︸
O(ϵi)

≥ ϵ−1
i Q2(aϵi)− ϵ−1

i Q2(a
⋆) +O(ϵi). (18)

Observe that if aϵi,1 diverges with aϵi,0 → 0 then the first term in the last line goes to∞ (see terms 4
and 6 in Table 4) which would contradict the optimality of aϵi due to Eq. 18. Thus we have that aϵ
must remain bounded as ϵ→ 0.

23

Published as a conference paper at ICLR 2024

Since aϵ is bounded, there exists yet another sequence ϵi such that aϵi converges. We will call this
limit a′ noting that a′0 = 0. Again we have

ϵ−1
i Qϵi(aϵi)− ϵ−1

i Qϵi(a
⋆)

= ϵ−1
i Q1(aϵi)− ϵ−1

i Q1(a
⋆)︸ ︷︷ ︸

≥0

+ϵ−1
i Q2(aϵi)− ϵ−1

i Q2(a
⋆) +Q3(aϵi)︸ ︷︷ ︸

≥0

− ϵ−1
i Q3(a

⋆)︸ ︷︷ ︸
O(ϵi)

≥ ϵ−1
i Q2(aϵi)− ϵ−1

i Q2(a
⋆)− ϵ−1

i Q3(a
⋆)︸ ︷︷ ︸

O(ϵi)

=
(1− ϵi)

2

2

 8∑
j=3

− log (Vj (aϵi)))−− log (Vj (a
⋆))

−O(ϵi). (19)

Note that the interior summation of the last line converges to
∑8

i=3− log (Vi (a
′))−− log (Vi (a

⋆))

which must equal zero since
∑8

i=3− log (Vi (·)) is continuous and otherwise the optimality of aϵi
would be violated in Eq. 19 for sufficiently large i. Finally note that

∑8
i=3− log (Vi (·)) is strictly

convex and thus a′ = a⋆. Since aϵ is bounded for small ϵ and because every convergent subsequence
ϵi → 0 causes aϵi → a⋆, it follows that aϵ → a⋆.

E CALIBRATION

Here, we provide more intuition about our new entropy-based measure of datapoint calibration. In a
sense, our measure is a normalized scoring rule that provides localized probabilistic insight.

E.1 BACKGROUND

Rare classes make it difficult for calibration in practice, that is the predicted probabilities match
the true probabilities of an event occurring, essential for making reliable decisions based on the
model’s predictions. Specifically, if f : X → [0, 1] is a probabilistic model for binary labels, we want
E[y|f(x) = v] = v. For multi-class labels, this generalizes for each class such that for predicted
probability vector p ∈ [0, 1]C , E[ey|f(x) = p] = p.

There are also various ways to measure calibration error. The most common is the expected calibration
error; however, arbitrarily small perturbations to the predictor f can cause large fluctuations in
ECE(f) (Kakade & Foster, 2004; Foster & Hart, 2018). As a simple example, consider the uniform
distribution over a two-point space X = {x1, x2}, where the labels are y1 = 0, y2 = 1 respectively.
The predictor f which simply predicts 1/2 is perfectly calibrated, so ECE(f) = 0. However, a more
accurate estimator f(x1) = 1/2 − ϵ and f(x2) = 1/2 + ϵ for any small ϵ > 0 suffers calibration
error ECE(f) = 1/2− ϵ. Note that this discontinuity also presents a barrier to popular heuristics
for estimating the ECE. However, it has been show that ECE and most binning based variants give
an upper bound on the true distance to calibration (Błasiok et al., 2022). It has been shown that
sample-efficient continuous, complete and sound calibration measures do exist and they all generally
measure a distance to the most calibrated predictor, and many of them are similar to binned ECE.
Therefore, we utilize binned ECE and brier score as two notions of calibration.

In the multiclass setting, while there is not a consensus on how to measure calibration error, we use
the most common way to extend calibration metrics, which is widely implemented via the one-vs-all
method (Zadrozny & Elkan, 2002). Recently, there were other multi-class calibration measures
proposed, such as class-wise calibration (Kull et al., 2019) and decision calibration (Zhao et al.,
2021).

Scoring Rules and Likelihood A scoring rule provides a local measure of fit or calibration given a
predictive distribution and its corresponding labels. Specifically, for a datapoint (xi, yi), let ŷi be the
predictive distribution of a model. Then, a scoring rule is any function that outputs a scalar evaluation
of the goodness of fit: S(yi, ŷi). Such a scoring rule is called proper if Ey∼Q[S(y, ŷ)] is maximized
when ŷ = Q, meaning that when the predictive distribution is perfectly calibrated and equal to the
true label distribution, the score is maximal.

24

Published as a conference paper at ICLR 2024

A common proper scoring rule is the log likelihood. Recall that for distributions over [C], p and q
that cross-entropy is H(p, q) = −

∑
i pi log(qi) and entropy is H(p) = H(p, p) = −

∑
i pi log(pi).

In the classification setting the log likelihood is equivalent to the negative cross-entropy S(y, ŷ) =
−H(y, ŷ) = e⊤y log(ŷ). Indeed, we see that for any predictive distribution ŷ and label distribution
Q, Ey∼Q[S(y, ŷ)] = −H(Q, ŷ). If ŷ = Q and our label distribution is uniform, then this is equal
to the maximum entropy of log(|C|). When ŷ is perfectly calibrated, the average negative cross-
entropy will be equal to the negative entropy: Ey∼ŷ[e

⊤
y log(ŷ)] =

∑
i ŷi log(ŷi) = −H(ŷ). It is

easy to see that this is a proper rule since for any predictive distribution ŷ and label distribution
Q, Ey∼Q[S(y,Q)] − Ey∼Q[S(y, ŷ)] = −H(Q) + H(Q, ŷ) = KL(Q||ŷ) ≥ 0, where the relative
entropy or KL divergence is non-negative.

The definition of proper scoring rule works well when the label distribution is static and continuous,
as when Q is a point mass, the KL divergence becomes H(Q, ŷ), which is the case with hard labels.
However, in most settings, y is dependent on x and Q = E(x,y)∼µ [ey|x] and H(Q) is not known
for each x. Furthermore, this gets even trickier when the predicted classes are non uniform, but
under-represented classes require better calibration.

Cross-Entropy vs Entropy Due to the limitations of proper scoring rules, such calibrative measures
are not meaningful measures of over-confidence on a per-datapoint level. Specifically, we consider
the question of whether each datapoint is calibrated and note that the scoring rule of H(y, ŷ) does
not give an inherent notion of calibration. Instead, we motivate the following definition of relative
cross-entropy by noting that if y ∼ ŷ, then S(y, ŷ)−H(ŷ) is a random variable with expectation 0.

E.2 PROOFS OF LEMMAS IN § 4

Proof of Lemma 1. Let i be the index corresponding to y. Then, by definitions of corresponding
entropy measures,

RC(y, ŷ) = − log(ŷi)−

∑
j

−ŷj log(ŷj)


= (ŷi − 1) log(ŷi)−

∑
j ̸=i

−ŷj log(ŷj)

 (20)

≥ (ŷi − 1) log(ŷi) + (1− ŷi) log

(
1− ŷi
|C| − 1

)
(21)

= (1− ŷi)

[
log

(
1− ŷi
|C| − 1

)
− log(ŷi)

]
. (22)

The third line uses the principle that entropy is maximized when uniform. To see this let α =∑
j ̸=i ŷj = 1− ŷi and observe that the maximizing of the left hand side of the following equation

admits the same argument as the subtrahend in Eq. 20,

α−1
∑
j ̸=i

−ŷj (log(ŷj)− logα) =
∑
j ̸=i

−(ŷj/α) log(ŷj/α),

and the right hand side is maximized with a uniform distribution. The lemma follows since both
terms in Eq. 22 are positive.

Proof of Lemma 2. This follows since that ŷ is a perfectly calibrated predictor, then
Ey∼ŷ[RC(y, ŷ)] = Ey∼ŷ[C(y, ŷ)]−H(ŷ) = 0.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we expand upon the results that we presented in §5 and show additional experimental
results and visualizations for model calibration. We start by presenting reliability diagrams for the
heavy-tailed class distribution settings and continue with uncertainty and expected calibration error
analyses.

25

Published as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

M
NI

ST

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

Fa
sh

io
nM

NI
ST

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

CI
FA

R-
10

0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

Vanilla

0.2 0.4 0.6 0.8 1.0

Vanilla + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

Weighted CE

0.2 0.4 0.6 0.8 1.0

Confidence

Focal Loss

0.2 0.4 0.6 0.8 1.0

Batch-balancing (BB)

0.2 0.4 0.6 0.8 1.0

BB + LS (= 0.1)

0.2 0.4 0.6 0.8 1.0

BB + TS (= 2.0)

0.2 0.4 0.6 0.8 1.0

Odd-k-out (k=1)

CI
FA

R-
10

0

Figure 7: Reliability diagrams for heavy-tailed MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. Confidence
and accuracy scores are averaged over five random seeds and across the different number of training data points.
Dashed diagonal lines indicate the best possible calibration.

F.1 RELIABILITY

In Figure 7, we present reliability diagrams for heavy-tailed MNIST, FashionMNIST, CIFAR-10 and
CIFAR-100. Both confidence and accuracy scores are averaged over five random seeds and across the
number of training data points, similarly to Figure 3 in §5. Note that optimal calibration occurs along
the diagonal of a reliability diagram, highlighted by the blue dashed lines. For training regimes with
heavy-tailed class distributions, either OKO, batch-balancing in combination with label smoothing,
or batch-balancing in combination with posthoc temperature scaling achieves the best calibration on
the held-out test set.

F.2 UNCERTAINTY

In Figure 8 we show the distribution of entropies of the predicted probability distributions for
individual test data points across all heavy-tailed training settings for CIFAR-10 and CIFAR-100
respectively. In addition to the distribution of entropies of the predicted probability distribution
for heavy-tailed training settings, in Figure 9 we show similar distributions for individual test data
points across all balanced training settings for all four datasets. We find OKO to be very certain —
H(Q) is close to log (1) – for the majority of correct predictions and to be highly uncertain — H(Q)
is close to log (C) – for the majority of incorrect predictions across all datasets. Batch-balancing
in combination with either label smoothing or temperature scaling shows a similar distribution of
entropies for the incorrect predictions, but is often too uncertain for the correct predictions, indicating
random guesses rather than certain predictions for a significant number of predictions (see Fig. 8).

F.3 EXPECTED CALIBRATION ERROR (ECE)

Here we present ECE as a function of the number of data points used during training for both uniform
and heavy-tailed class distributions for all four datasets considered in our analyses. We remark that for

26

Published as a conference paper at ICLR 2024

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

CI
FA

R-
10

incorrect correct
0.1
1.2
2.4
3.5

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

CI
FA

R-
10

0

Figure 8: Here, we show the distribution of entropies of the predicted probability distributions for individual test
data points across all training settings partitioned into correct and incorrect predictions respectively.

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

M
NI

ST

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

Fa
sh

io
nM

NI
ST

incorrect correct

0.1
0.7
1.2
1.8

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

CI
FA

R-
10

incorrect correct
0.1
1.2
2.4
3.5

log (C)

Un
ce

rta
in

ty

Vanilla

Class distribution
Tail
Mode

incorrect correct

Vanilla + LS (= 0.1)

incorrect correct

Weighted CE

incorrect correct

Prediction

Focal Loss

incorrect correct

Batch-balancing (BB)

incorrect correct

BB + LS (= 0.1)

incorrect correct

BB + TS (= 2.0)

incorrect correct

Odd-k-out (k=1)

CI
FA

R-
10

0

Figure 9: Here, we show the distribution of entropies of the predicted probability distributions for individual test
data points across all training settings with a uniform class distribution partitioned into correct and incorrect
predictions respectively.

every method the ECE was computed on the official test set. For balanced MNIST, FashionMNIST,
and CIFAR-10 as well as for heavy-tailed MNIST OKO achieves a lower ECE than any other training
method. For the other training settings, OKO is either on par with label smoothing or achieves a
slightly larger ECE compared to label smoothing. This suggests that OKO is either better calibrated
than or equally well-calibrated as label smoothing. The results are most striking in the low data
settings.

27

Published as a conference paper at ICLR 2024

100 200 300 400 500 1000 50000.0

0.05

0.1

0.15

0.2

EC
E

MNIST
OKO
Vanilla
Vanilla + LS
Weighted CE
Focal Loss
Batch-balancing (BB)
BB + LS

200 300 400 500 1000 5000 100000.0

0.05

0.1

0.15

0.2

FashionMNIST

400 500 1000 5000 10000 200000.0

0.05

0.1

0.15

0.2

0.25

CIFAR-10

5000 10000 20000 300000.0

0.05

0.1

0.15

0.2

0.25

0.3

CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

0.0

0.1

0.2

0.3

EC
E

200 300 400 500 1000 5000 10000

Number of training data points

0.0

0.1

0.2

0.3

400 500 1000 5000 10000 20000

Number of training data points

0.0

0.15

0.3

0.45

5000 10000 20000 30000

Number of training data points

0.0

0.15

0.3

0.45

He
av

y-
ta

ile
d

Figure 10: ECE as a function of different numbers of training data points. Error bands depict 95% CIs and are
computed over five random seeds for all training settings and methods. Top: Uniform class distribution during
training. Bottom: Heavy-tailed class distribution during training.

F.4 HOW TO SELECT k, THE NUMBER OF ODD CLASSES

In this section, we compare different values of k for generalization performance and calibration.
Recall that k determines the number of examples coming from the odd classes — the classes that are
different from the pair class — in a set S.

Odd class examples are crucial. Removing any odd class examples from the training sets — i.e.,
setting k to zero — decreases generalization performance and worsens calibration across almost all
training settings (see Fig. 11, Fig. 12, and Fig. 13). Although odd class examples are ignored in the
training labels, they are crucial for OKO’s superior classification and calibration performance. Odd
class examples appear to be particularly important for heavy-tailed training settings.

The value of k does not really matter. Concerning test set accuracy, we find that although odd
class examples are crucial, OKO is fairly insensitive to the particular value of k apart from balanced
CIFAR-10 and CIFAR-100 where k = 1 achieves stronger generalization performance than larger
values of k (see Fig. 11). However, this may be due to the additional classification head that we used
for predicting the odd class in a set rather than a special advantage of k = 1 over larger values of k.

We find larger values of k to result in worse ECEs for training settings with a uniform class distribution
and similarly low or slightly lower ECEs for heavy-tailed class distribution settings (see Fig. 12).
Similarly, we find the mean absolute difference (MAE) between the average cross-entropy errors,
H̄(P,Q), and the average entropies, H̄(Q), on the test sets for different numbers of training data
points to be slightly lower for k = 1 than for larger values of k for uniform class distribution settings
and equally low or slightly larger for k = 1 compared to larger values of k for heavy-tailed class
distribution settings (see Fig. 13 for a visualization of this relationship and Tab. 6 for a quantification
thereof). Across all training settings the MAE between H̄(P,Q) and H̄(Q) is the largest and therefore
the worst for k = 0.

Table 5: MAE between entropies and cross-entropies averaged over the entire test set for different numbers of
training data points. Lower is better and therefore bolded. This quantifies the relationships shown in Fig. 13.

MNIST FashionMNIST CIFAR-10 CIFAR-100
Training \ Distribution uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed

Odd-k-out (k=0) / Pair 0.091 0.318 0.136 0.542 0.657 1.370 2.088 3.739
Odd-k-out (k=1) 0.073 0.094 0.080 0.334 0.116 0.498 0.314 1.164
Odd-k-out (k=2) 0.224 0.123 0.204 0.208 0.352 0.194 0.527 1.040
Odd-k-out (k=3) 0.285 0.180 0.279 0.160 0.376 0.153 0.682 0.769

28

Published as a conference paper at ICLR 2024

100 200 300 400 500 1000 500080

85

90

95

100

Te
st

 a
cc

ur
ac

y
(%

)

MNIST

Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

200 300 400 500 1000 5000 1000075

80

85

90
FashionMNIST

400 500 1000 5000 10000 2000030

40

50

60

70

80
CIFAR-10

5000 10000 20000 3000020

25

30

35

40

45
CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

60

70

80

90

100

Te
st

 a
cc

ur
ac

y
(%

)

200 300 400 500 1000 5000 10000

Number of training data points

60

70

80

90

400 500 1000 5000 10000 20000

Number of training data points

20

30

40

50

60

70

5000 10000 20000 30000

Number of training data points

0

5

10

15

20

25

He
av

y-
ta

ile
d

Figure 11: Test set accuracy in % as a function of different numbers of data points used during training. Error
bands depict 95% CIs and are computed over five random seeds for all training settings and values of k. Top:
Uniform class distribution during training. Bottom: Heavy-tailed class distribution.

100 200 300 400 500 1000 50000.0

0.05

0.1

0.15

0.2

EC
E

MNIST
Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

200 300 400 500 1000 5000 100000.0

0.05

0.1

0.15

0.2

FashionMNIST

400 500 1000 5000 10000 200000.0

0.05

0.1

0.15

0.2

0.25

CIFAR-10

5000 10000 20000 300000.0

0.05

0.1

0.15

0.2

0.25

0.3

CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

0.0

0.1

0.2

0.3

EC
E

200 300 400 500 1000 5000 10000

Number of training data points

0.0

0.1

0.2

0.3

400 500 1000 5000 10000 20000

Number of training data points

0.0

0.15

0.3

0.45

5000 10000 20000 30000

Number of training data points

0.0

0.15

0.3

0.45

He
av

y-
ta

ile
d

Figure 12: ECE as a function of different numbers of training data points. Error bands depict 95% CIs and are
computed over five random seeds for all training settings and values of k. Top: Uniform class distribution during
training. Bottom: Heavy-tailed class distribution during training.

F.5 HARD VS. SOFT LOSS OPTIMIZATION

Soft loss optimization spreads out probability mass almost uniformly. Empirically, we find that
the soft loss optimization produces model predictions that tend to be more uncertain compared to the
predictions obtained from using the hard loss (see the large entropy values for models trained with
the soft loss in Fig. 16). The soft loss optimization appears to result in output logits whose probability
mass is spread out almost uniformly across classes and, thus, produces probabilistic outputs with high
entropy values (often close to logC). Fig. 16 visually depicts this phenomenon. These uniformly
spread out probabilistic outputs lead to worse ECEs, where differences between the hard and soft loss
optimization are more substantial for MNIST and FashionMNIST than for CIFAR-10 and CIFAR-100
respectively (see Fig. 15). Interestingly, for CIFAR-100 there is often barely any difference in the
ECEs between the hard and soft loss optimization in the balanced class distribution setting, and in the
heavy-tailed distribution setting, soft targets even yield lower ECEs than hard targets.

The test set accuracy of models trained with the soft loss is substantially worse in all balanced
class distribution training settings (the differences appear to be more pronounced for MNIST and

29

Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.50

1
H

(P
,Q

)

MNIST
Training
Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

Data points
100
200
300
400
500
1000
5000

0.0 0.5 1.0 1.50

1

FashionMNIST
Training
Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

Data points
200
300
400
500
1000
5000
10000

0.0 0.5 1.0 1.5 2.0log(10)0

1

2

CIFAR-10
Training
Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

Data points
400
500
1000
5000
10000
20000

0.0 1.0 2.0 3.0 log(100)0

1

2

3

4

CIFAR-100

Training
Pair
Odd-k-out (k=1)
Odd-k-out (k=2)
Odd-k-out (k=3)

Data points
5000
10000
20000
30000

Un
ifo

rm

0.0 0.5 1.0 1.5
H(Q)

0

1

2

H
(P

,Q
)

0.0 0.5 1.0 1.5
H(Q)

0

1

0.0 0.5 1.0 1.5 2.0log(10)
H(Q)

0

1

2

3

0.0 1.0 2.0 3.0 log(100)
H(Q)

0
1
2
3
4
5
6
7

He
av

y-
ta

ile
d

Figure 13: Average cross-entropy as a function of the average entropy for different numbers of training data
points and different numbers of k. Top: Uniform class distribution during training. Bottom: Heavy-tailed class
distribution during training.

CIFAR-100 than for FashionMNIST and CIFAR-10 respectively), but classification performance is
only slightly worse compared to the hard loss in the heavy-tailed distribution settings (see Fig. 14).

100 200 300 400 500 1000 500080

85

90

95

100

Te
st

 a
cc

ur
ac

y
(%

)

MNIST

Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)

200 300 400 500 1000 500070

75

80

85

90
FashionMNIST

400 500 1000 5000 10000 2000030

40

50

60

70

80
CIFAR-10

5000 10000 20000 3000020

25

30

35

40

45
CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

65
70
75
80
85
90
95

100

Te
st

 a
cc

ur
ac

y
(%

)

200 300 400 500 1000 5000

Number of training data points

55
60
65
70
75
80
85
90

400 500 1000 5000 10000 20000

Number of training data points

20

30

40

50

60

70

5000 10000 20000 30000

Number of training data points

0

5

10

15

20

25

He
av

y-
ta

ile
d

Figure 14: Test set accuracy in % as a function of different numbers of data points used during training. Error
bands depict 95% CIs and are computed over five random seeds for all training settings. Top: Uniform class
distribution during training. Bottom: Heavy-tailed class distribution.

Table 6: MAE between entropies and cross-entropies averaged over the entire test set for different numbers of
training data points. Lower is better and therefore bolded. This quantifies the relationships shown in Fig. 16.

MNIST FashionMNIST CIFAR-10 CIFAR-100
Training \ Class distribution uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed uniform heavy-tailed

Odd-k-out (k=1; hard) 0.073 0.094 0.080 0.334 0.116 0.498 0.314 1.164
Odd-k-out (k=2; hard) 0.224 0.123 0.204 0.208 0.352 0.194 0.527 1.040
Odd-k-out (k=3; hard) 0.285 0.180 0.279 0.160 0.376 0.153 0.682 0.769
Odd-k-out (k=1; soft) 0.893 0.759 0.761 0.627 0.417 0.243 0.331 0.281
Odd-k-out (k=2; soft) 0.845 0.717 0.733 0.620 0.394 0.248 0.564 0.082
Odd-k-out (k=3; soft) 0.772 0.667 0.668 0.585 0.301 0.268 0.626 0.107

30

Published as a conference paper at ICLR 2024

100 200 300 400 500 1000 50000.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

EC
E

MNIST

Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)

200 300 400 500 1000 50000.0

0.1

0.2

0.3

0.4

0.5

0.6

FashionMNIST

400 500 1000 5000 10000 200000.0

0.1

0.2

0.3

0.4

0.5
CIFAR-10

5000 10000 20000 300000.0

0.1

0.2

0.3

CIFAR-100

Un
ifo

rm

100 200 300 400 500 1000 5000

Number of training data points

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

EC
E

200 300 400 500 1000 5000

Number of training data points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

400 500 1000 5000 10000 20000

Number of training data points

0.0

0.15

0.3

0.45

5000 10000 20000 30000

Number of training data points

0.0

0.15

0.3

He
av

y-
ta

ile
d

Figure 15: ECE as a function of different numbers of training data points. Error bands depict 95% CIs and
are computed over five random seeds for all training settings. Top: Uniform class distribution during training.
Bottom: Heavy-tailed class distribution during training.

0.0 0.5 1.0 1.5 2.0 2.50

1

2

H
(P

,Q
)

MNIST
Training
Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)

Data points
100
200
300
400
500
1000
5000

0.0 0.5 1.0 1.5 2.0 2.50

1

2

FashionMNIST
Training
Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)

Data points
200
300
400
500
1000
5000

0.0 0.5 1.0 1.5 2.0log(10)0

1

2

CIFAR-10

Training
Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)

Data points
400
500
1000
5000
10000
20000

0.0 1.0 2.0 3.0 log(100)0

1

2

3

4

CIFAR-100

Training
Odd-k-out (k=1; hard)
Odd-k-out (k=2; hard)
Odd-k-out (k=3; hard)
Odd-k-out (k=1; soft)
Odd-k-out (k=2; soft)
Odd-k-out (k=3; soft)
Data points

5000
10000
20000
30000

Un
ifo

rm

0.0 0.5 1.0 1.5 2.0 2.5
H(Q)

0

1

2

H
(P

,Q
)

0.0 0.5 1.0 1.5 2.0 2.5
H(Q)

0

1

2

0.0 0.5 1.0 1.5 2.0log(10)
H(Q)

0

1

2

0.0 1.0 2.0 3.0 log(100)
H(Q)

0

1

2

3

4

5

He
av

y-
ta

ile
d

Figure 16: Average cross-entropy as a function of the average entropy for different numbers of training data
points and different numbers of k. Top: Uniform class distribution during training. Bottom: Heavy-tailed class
distribution during training.

F.5.1 WHY DO SOFT TARGETS PRODUCE WORSE ACCURATE CLASSIFIERS?

Understanding why the soft loss optimization (see Eq. 7) results in worse accurate classifiers than the
hard loss optimization (see Eq. 8) requires experiments that, unfortunately, go beyond the scope of
this paper. However, using the theory that we developed for understanding the properties of OKO
in combination with the experimental results from the ablation experiments for comparing the hard
against the soft loss (see above), we can try providing an intuition about why the soft loss produces
worse accurate classifiers. We remark that this should be read as an interpretation rather than a
conclusion because we have no clear evidence for our intuition. Recall that the soft loss (see Eq. 7) in
combination with Alg. 1 results in twice a mitigation of the overconfidence problem:

31

Published as a conference paper at ICLR 2024

(a) The output logits are aggregated across all examples in a set and, thus, the loss is computed
for a set of inputs rather than a single input (here, an input is an image). This step happens
in both the hard and the soft loss optimization.

(b) Probability mass in the target distribution is spread out across the different classes in a set
and, hence, transforms the majority class prediction problem — which is what the hard
loss optimizes for — into a proportion estimation problem, which may make the model
unnecessarily underconfident about the correct class.

Since the output logits aggregation step (a) is part of both the hard and the soft loss optimization, the
hard loss may better strike the balance between mitigating the overconfidence problem and potentially
shooting the optimization into local minima that amplify uncertainty where uncertainty/underconfi-
dence is actually not desirable (which could be what is happening in the second step).

G COMPUTE

We used a compute time of approximately 50 hours on a single Nvidia A100 GPU with 40GB VRAM
for all CIFAR-10 and CIFAR-100 experiments using a ResNet-18 or ResNet-34 respectively and
approximately 100 CPU-hours of 2.90GHz Intel Xeon Gold 6326 CPUs for MNIST and FashionM-
NIST experiments using the custom convolutional neural network architecture. The computations
were performed on a standard, large-scale academic SLURM cluster.

32

	Introduction
	Related Work
	Method
	Properties of OKO
	Experimental results
	Conclusion
	OKO classification head
	Background
	Problem Setting
	Error re-weighting
	Batch-Balancing

	Analyzing The OKO Loss Landscape
	Proofs

	Proof of Theorem 1
	Calibration
	Background
	Proofs of Lemmas in § 4

	Additional experimental results
	Reliability
	Uncertainty
	Expected Calibration Error (ECE)
	How to select TEXT, the number of odd classes
	Hard vs. soft loss optimization
	Why do soft targets produce worse accurate classifiers?

	Compute

