
Under review as a conference paper at ICLR 2023

A APPENDIX

B GC VIT MODEL CONFIGURATIONS

GC ViT model configurations are presented in Table S.1 describing the choice of internal hyper
parameters to obtain models with various compute load and parameter number.

Output Size
(Downs. Rate) GC ViT-XT GC ViT-T GC ViT-S GC ViT-B

Stem 128×128
(2×)

Conv, C:64, S:2, LN Conv, C:64, S:2, LN Conv, C:96, S:2, LN Conv, C:128, S:2, LN[
F-MBConv

C:64

]
× 1

[
F-MBConv

C:64

]
× 1

[
F-MBConv

C:96

]
× 1

[
F-MBConv

C:128

]
× 1

Stage 1 56×56
(4×)

Conv, C:128, S:2, LN Conv, C:128, S:2, LN Conv, C:192, S:2, LN Conv, C:256, S:2, LN[
LG-SA,

C:64, head:2

]
× 3,

[
LG-SA,

C:64, head:2

]
× 3,

[
LG-SA,

C:96, head:3

]
× 3,

[
LG-SA,

C:128, head:4

]
× 3,

F-MBConv, C:128 F-MBConv, C:128 F-MBConv, C:192 F-MBConv, C:256

Stage 2 28×28
(8×)

Conv, C:256, S:2, LN Conv, C:256, S:2, LN Conv, C:384, S:2, LN Conv, C:512, S:2, LN[
LG-SA,

C:64, head:4

]
× 4,

[
LG-SA,

C:64, head:4

]
× 4,

[
LG-SA,

C:96, head:6

]
× 4,

[
LG-SA,

C:128, head:8

]
× 4,

F-MBConv, C:256 F-MBConv, C:256 F-MBConv, C:384 F-MBConv, C:512

Stage 3 14×14
(16×)

Conv, C:512, S:2, LN Conv, C:512, S:2, LN Conv, C:768, S:2, LN Conv, C:1024, S:2, LN[
LG-SA,

C:64, head:8

]
× 6 ,

[
LG-SA,

C:64, head:8

]
× 19,

[
LG-SA,

C:96, head:12

]
× 19,

[
LG-SA,

C:128, head:16

]
× 19,

F-MBConv, C:512 F-MBConv, C:512 F-MBConv, C:768 F-MBConv, C:1024

Stage 4 7×7
(32×)

Conv, C:1024, S:2, LN Conv, C:1024, S:2, LN Conv, C:1536, S:2, LN Conv, C:2048, S:2, LN[
LG-SA,

C:64, head:16

]
× 5,

[
LG-SA,

C:64, head:16

]
× 5,

[
LG-SA,

C:96, head:24

]
× 5,

[
LG-SA,

C:128, head:32

]
× 5,

F-MBConv, C:1024 F-MBConv, C:1024 F-MBConv, C:1536 F-MBConv, C:2048

Table S.1 – Architecture configurations for GC ViT. LG-SA and Conv denotes local, global self-attention and
3× 3 convolutional layer, respectively. GC ViT-XT, GC ViT-T, GC ViT-S and GC ViT-B denote XTiny, Tiny,
Small and Base variants, respectively.

C ABLATION

C.1 GLOBAL QUERY

We performed ablation studies to validate the effectiveness of the proposed global query. Using the
same architecture, instead of global query, we compute: (1) global key and value features and interact
them with local query (2) global value features and interact it with local query and key. As shown in
Table S.2, replacing global query may significantly impact the performance for image segmentation
and downstream tasks such as object detection, instance segmentation and semantic segmentation.

ImageNet COCO ADE20k
top-1 APbox APmask mIoU

w. Global KV 82.5 49.9 41.3 44.6
w. Global V 82.7 50.8 42.4 45.1
GC ViT-T 83.4 51.6 44.6 47.0

Table S.2 – Ablation study on the effectiveness of the proposed global query for classification, detection and
segmentation.

C.2 EMA AND BATCH SIZE

We also used used Exponential Moving Averages (EMA) and observed slight improvement in terms
of ImageNet TOp-1 accuracy. Furthermore, the performance of the model across different batch sizes
were stable as we did not observe significant changes. Table S.3 demonstrates the effect of EMA and
batch size on the accuracy of a GCViT-T model.
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Model Local Batch Size Global Batch Size EMA Top-1

GC ViT-T 32 1024 No 83.37
GC ViT-T 128 4096 No 83.38
GC ViT-T 32 1024 Yes 83.39
GC ViT-T 128 4096 Yes 83.40

Table S.3 – Ablation study on the effect of EMA and batch size on GC ViT-T ImageNet Top-1 accuracy.

(a) Original images from ImageNet-1K validation set.

(b) Learned global query tokens.

Figure S.1 – Visualization of : (a) input images (b) learned global query token feature maps.

D INTERPRETABILITY

In Fig. S.1, we illustrate the learned global query token maps and demonstrate their effectiveness in
capturing long-range contextual representations from different image regions.

E TRAINING DETAILS

For image classification, GC ViT models were trained using four computational nodes with 32
NVIDIA A100 GPUs. The total training batch size is 1024 (32 per GPU) for GC ViT-S, GC ViT-B,
GC ViT-L and 4096 (128 per GPU) for GC ViT-XXT, GC ViT-XT and GC ViT-T. On average, each
model required 32 hours of training with the specified hyper-parameters as indicated in the paper.
All classification models were trained using the timm package (Wightman, 2019). Object detection
and instance segmentation models as well as semantic segmentation models were trained using one
computational node with 8 NVIDIA A40 GPUs using a total batch size of 16, hence a batch size of 2
per GPU. Detection and instance segmentation models were trained using mmdetection (Chen
et al., 2019) package and on average required 56 hours of training. Semantic segmentation models
were trained using mmsegmentation (Contributors, 2020) package, and on average required 34
hours of training.

F COMPLEXITY ANALYSIS

Given an input feature map of x ∈ RH×W×C at each stage with a window size of h × w, the
computational complexity of GC ViT is as follows

O(GC ViT) = 2HW (2C2 + hwC), (7)

The efficient design of global query token generator and other components allows to maintain a
similar computational complexity in comparison to Swin Transformer Liu et al. (2021) while being
able to capture long-range information and achieve better higher accuracy for classification and
downstream tasks such as detection and segmentation.

G COMPARISON TO OTHER GLOBAL SELF-ATTENTION MODULES

Other efforts such as EdgeViT (Pan et al., 2022) in computer vision and BigBird (Zaheer et al., 2020)
in NLP have proposed global self-attention in their respective applications. In this section, we discuss
the differences between the proposed global self-attention in GC ViT and these efforts.
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Model Accuracy-Matched Frequency Accuracy-Threshold-0.7

GC ViT-XXT 69.3 77.2
GC ViT-XT 71.3 78.8
GC ViT-T 73.1 80.5
GC ViT-S 73.8 80.7
GC ViT-B 74.4 81.1
GC ViT-L 74.5 81.5

Table S.4 – Classiication benchmarks of GC ViT models on ImageNetV2 dataset.

Model Added Component Top-1

Swin-T None 81.3
Swin-T GC Module 82.2
Swin-S None 83.0
Swin-S GC Module 83.7

Table S.5 – Ablation study on the effectiveness of Global Context (GC) module in Swin Transformers
architecture on ImageNet Top-1 accuracy.

EdgeViT : EdgeViT and GC ViT use completely different self-attention blocks. The EdgeViT
uses a series of local aggregation (convolution), sparse attention and local propagation(depthwise
convolution), whereas GC ViT only uses an interleaved pattern of local and global self-attention
layers without convolution in order to compute self-attention. The proposed global sparse attention in
EdgeViT and GCViT are competently different. EdgeViT samples representative tokens and only
computes sparse self-attention between these representative tokens with reduced feature size. On the
contrary, GC ViT computes self-attention between the global queries (not just the token) and local
keys and values without any subsampling in their respective local regions. Furthermore, in EdgeViT,
only subsampled representative tokens per region interact In the self-attention module; however, in
GC ViT, the global queries interact with the entire local regions, instead of interacting with each
other, and hence provide an effective mechanism for capturing both short and long-range spatial
dependencies.

In addition, GC ViT generates global query tokens by using a series of modified Fused MB-Conv
from the entire image and without subsampling. Note that the resolution of global query tokens are
the same as local query and values. However, in EdgeViT: (A) the representative tokens are obtained
per local window, not the entire image, and by subsampling and reducing the feature resolution.
Hence, since generated tokens have a lower resolution compared to their respective local windows,
this could result in loss of spatial information and impact the effectiveness of self-attention. Unlike
EdgeViT, the downsampler in GCViT also benefits from modified Fused-MBConv blocks which
allows for modeling cross channel interactions and impose more locality and convolutional inductive
bias.

BigBird : Bigbird, which is primarily introduced for NLP applications with 1D inputs, has
significant differences compared to GC ViT, which is proposed for computer vision with mainly 2D
inputs. Firstly, BigBird uses a combination of random, window and global attention mechanisms,
which is different from the proposed local and global self-attention scheme in GC ViT. In addition,
BigBird does not have any specific mechanisms for extracting global tokens as the existing tokens
or additional special tokens can be specified as global tokens. On the contrary, the global tokens in
GC ViT are extracted by the proposed global query generator module which consists of a series of
modified Fused MB-Conv blocks to extract contextual information from the entire input features.
Lastly, BigBird employs a set of global tokens which attend to the entire input sequence; in this
case, select global query, key and values attend to local query, key and value tensors. However, as
opposed to this formulation, in GC ViT, the global query tokens attend to local key and value tokens
in partitioned windows. This is due to the fact that attending to the entire input sequence, as done in
BigBird, is not feasible considering the larger size of input features in computer vision.
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H IMAGENETV2 BENCHMARKS

In Table S.4, we have evaluated the performance of GC ViT on ImageNetV2 dataset (?) to further
measure its robustness. Specifically, we have used different sampling strategies of Matched Frequency
and Threshold-0.7. These benchmarks demonstrate the competetive performance of GC ViT on
ImageNetV2 dataset and validates its effectiveness in robustness and generalizability.

I EFFECT OF GLOBAL CONTEXT MODULE

In order to demonstrate the effectiveness of Global Context (GC) module, we use Swin Transformers
as the base model and add our propoped GC module. In this analysis, we remove the window shifting
operation from Swin Transformers, since GC module is capable of modeling cross-region interactions.
As shown in Table S.5, addition of GC module improves the ImageNet Top-1 accuracy by +0.9%
and +0.7% for Swin Transformers Tiny and Small variants respectively.

J IMAGENET CLASSIFICATION BENCHMARKS

In Table S.6, we provide a comprehensive benchmark in terms of Top-1 accuracy for the models that
are only trained on ImageNet-1K (Deng et al., 2009) dataset, and without additional data.
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Table S.6 – Image classification benchmarks on ImageNet-1K dataset (Deng et al., 2009).

Method Param (M) FLOPs (G) Image Size Top-1 (%)

ResMLP-S12 (Touvron et al., 2021a) 15 3.0 2242 76.6
PVT-v2-B1 (Wang et al., 2022) 13 2.1 2242 78.7

GC ViT-XXT 12 2.1 2242 79.8
EdgeViT-S (Pan et al., 2022) 11 1.9 2242 81.0

DeiT-Small/16 (Touvron et al., 2021b) 22 4.6 2242 79.9
T2T-ViT-14 (Yuan et al., 2021) 22 5.2 2242 81.5

GC ViT-XT 20 2.6 2242 82.0

ResNet50 (He et al., 2016) 25 4.1 2242 76.1
PVT-Small (Wang et al., 2021) 24 3.8 2242 79.8

Swin-T (Liu et al., 2021) 29 4.5 2242 81.3
CoAtNet-0 (Dai et al., 2021) 25 4.2 2242 81.6

Twins-SVT-S (Chu et al., 2021a) 24 2.9 2242 81.7
PVT-v2-B2 (Wang et al., 2022) 25 4.0 2242 82.0
ConvNeXt-T (Liu et al., 2022) 29 4.5 2242 82.1

Focal-T (Yang et al., 2021b) 29 4.9 2242 82.2
CSwin-T (Dong et al., 2022) 23 4.3 2242 82.7

GC ViT-T 28 4.7 2242 83.4

ResNet-101 (He et al., 2016) 44 7.9 2242 77.4
ResMLP-S24 (Touvron et al., 2021a) 30 6.0 2242 79.3

PVT-Medium (Wang et al., 2021) 44 6.7 2242 81.2
T2T-ViT-19 (Yuan et al., 2021) 39 8.9 2242 81.9

Twins-PCPVT-B (Chu et al., 2021a) 44 6.7 2242 82.7
Swin-S (Liu et al., 2021) 50 8.7 2242 83.0

Twins-SVT-B (Chu et al., 2021a) 56 8.6 2242 83.2
ConvNeXt-S (Liu et al., 2022) 50 8.7 2242 83.1

PVT-v2-B3 (Wang et al., 2022) 45 6.9 2242 83.2
CoAtNet-1 (Dai et al., 2021) 42 8.4 2242 83.3
Focal-S (Yang et al., 2021b) 51 9.1 2242 83.5
CSwin-S (Dong et al., 2022) 35 6.9 2242 83.6

GC ViT-S 51 8.5 2242 83.9

ResNet-152 (He et al., 2016) 60 11.6 2242 78.3
ViT-Base/16 (Dosovitskiy et al., 2020) 86 17.6 2242 77.9
ResMLP-B24 (Touvron et al., 2021a) 116 23.0 2242 81.0

PVT-Large (Wang et al., 2021) 61 9.8 2242 81.7
DeiT-Base/16 (Touvron et al., 2021b) 86 17.6 2242 81.8

CrossViT-B (Chen et al., 2021) 104 21.2 2242 82.2
T2T-ViT-24 (Yuan et al., 2021) 64 14.1 2242 82.3

CPVT-B (Chu et al., 2021b) 88 17.6 2242 82.3
Twins-PCPVT-L (Chu et al., 2021a) 61 9.8 2242 83.1

Swin-B (Liu et al., 2021) 88 15.4 2242 83.3
CoAtNet-2 (Dai et al., 2021) 42 8.4 2242 83.3

PVT-v2-B4 (Wang et al., 2022) 62 10.1 2242 83.6
Twins-SVT-L (Chu et al., 2021a) 99 15.1 2242 83.7

ConvNeXt-B (Liu et al., 2022) 89 15.4 2242 83.8
Focal-B (Yang et al., 2021b) 90 16.0 2242 83.8

PVT-v2-B5 (Wang et al., 2022) 82 11.8 2242 83.8
CSwin-B (Dong et al., 2022) 78 15.0 2242 84.2

BoTNet (Dong et al., 2022) 79 19.3 2562 84.2
GC ViT-B 90 14.8 2242 84.4

ConvNeXt-L (Liu et al., 2022) 198 34.4 2242 84.3
CoAtNet-3 (Dai et al., 2021) 168 34.7 2242 84.5

GC ViT-L 201 32.6 2242 84.6
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