
A PROOF OF ASYMPTOTIC NORMALITY

Theorem 2. Assume the following.

1. The mis-estimation of conditional outcomes can be bounded as follows

max
a2{0,1}
E[(Q̂a(X )�Q(a, X ))2]

1
2 = o(n�

1
4 ). (4.9)

2. The propensity score function P(A= 1|·, ·) is Lipschitz continuous on R2, and 9 " > 0,
P
�
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�
= 1

3. The propensity score estimate converges at least as quickly as k nearest neighbor;
i.e., E[
�
ĝ⌘(X )� P(A= 1 | ⌘̂(X )

�2 | X ] 1
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4 ) Györfi et al. (2002);

4. There exist positive constants C1, C2, c, and q > 2 such that
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q  C2, sup
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��] 1
q  C1.

Then, the estimator ⌧̂TI is consistent and

p
n(⌧̂TI �⌧CDE)

d! N(0,�2) (4.10)

where �2 = E
�
�(X ;Q, g⌘,⌧CDE)

�2
.

Proof. We first prove that misestimation of propensity score has rate n�
1
4 . For simplic-

ity, we use fg , f̂ g : (u, v) 2 R2 ! R to denote conditional probability P(A = 1|u, v) =
fg(u, v) and the estimated propensity function by running the nonparametric regres-
sion P̂(A = 1|u, v) = f̂ g(u, v). Specifically, we have fg(Q(0, X ),Q(1, X )) = g⌘(X ) and

f̂ g(Q̂0(X ), Q̂1(X )) = P̂(A = 1|Q̂0(X ), Q̂1(X )) = ĝ⌘(X ). Since E[
�
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�2
]
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2 ,
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�2
]

1
2 = o(n�1/4) and fg is Lipschitz continuous, we have
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(A.1)

Since the true propensity function fg is Lipschitz continuous on R2, the mean squared
error rate of the k nearest neighbor is O(n�1/2) Györfi et al. (2002). In addition, since the
propensity score function and its estimation are bounded under 1, we have the following
equation

E
���� f̂ g(Q̂0(X ), Q̂1(X ))� fg(Q̂0(X ), Q̂1(X ))

����
2

= O(n�1/2), (A.2)
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due to the dominated convergence theorem. By (A.1) and (A.2), we can bound the mean
squared error of estimated propensity score in the following form:

E
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(A.3)

that is E
î�

ĝ⌘(X )� g⌘(X )
�2ó 12 = O(n�

1
4 ).

Before we apply the conclusion of Theorem 5.1 in (Chernozhukov et al., 2017b), we need
to check all assumptions in Assumption 5.1 hold in Chernozhukov et al. (2017b). Let
C :=max
¶
(2Cq

1 + 2q)
1
q , C2

©
.

(a) E[Y�Q(A, X ) | ⌘(X ), A] = 0, E[A�g⌘(X ) | ⌘(X )] = 0 are easily checked by invoking
definitions of Q and g⌘.

(b) E[|Y |q] 1
q  C , E[(Y �Q(A, X ))2]

1
2 � c and

sup⌘2supp(⌘(X ))E[(Y �Q(A, X ))2 | ⌘(X ) = ⌘]  C are guaranteed by the
fourth condition in the theorem.

(c) P
�
"  g⌘(X ) 1� "

�
= 1 is the second condition in the theorem.

(d) Since propensity score function and its estimation are bounded under 1, we have
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(e) Based on (A.3) and condition 1 in the theorem, we have
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(f) Based on condition 3 in the theorem, we have
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We consider a smaller positive constant "̃ instead of ". Note that for "̃ < ", we still
have P("̃  g⌘(X ) 1� "̃) = 1. Then,
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With (a)-(f), we can invoke the conclusion in Theorem 5.1 in (Chernozhukov et al., 2017b),
and get the asymptotic normality of the TI estimator.

B PROOF OF CAUSAL IDENTIFICATION

Theorem 1. Assume the following:
1. (Causal structure) The causal relationships among A, Ã, Z, Y , and X satisfy the causal DAG
in Figure 2;
2. (Overlap) 0< P(A= 1|XA^Z , XZ)< 1;
3. (Intention equals perception) A= Ã almost surely with respect to all interventional distribu-
tions. Then, the CDE is identified from observational data as

CDE= ⌧CDE := EX |Ã=1

⇥
E[Y | ⌘(X ), Ã= 1]�E[Y | ⌘(X ), Ã= 0]

⇤
, (3.4)

where ⌘(X ) := (Q(0, X ),Q(1, X )).

Proof. We first prove that this two-dimensional confounding part ⌘(X ) satisfies positivity.
Since (Q(0, X ), Q(1, X )) = (E [Y | A= 1, XA^Z , XZ] , E [Y | A= 0, XA^Z , XZ]) is a function
of (XA^Z , XZ), the following equations hold:

P(A= 1 | Q(0, X ),Q(1, X )) =E(A | Q(0, X ),Q(1, X ))
=E [E (A | XA^Z , XZ) | Q(0, X ),Q(1, X )]
=E [P(A= 1| XA^Z , XZ) | Q(0, X ),Q(1, X )] .

(B.1)

As 0 < P(A= 1| XA^Z , XZ) < 1, we have 0 < P(A= 1| Q(0, X ),Q(1, X )) < 1. Furthermore,
we have 0< P(Ã= 1| Q(0, X ),Q(1, X ))< 1 due to almost everywhere equivalence of A and
Ã.
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Since A= Ã, we can rewrite (3.1) by replacing A with Ã in the following form:

CDE=EXA^Z ,XZ | Ã=1

⇥
E(Y | do(Ã= 1), XA^Z , XZ)�E(Y | do(Ã= 0), XA^Z , XZ)

⇤

=EXA^Z ,XZ | Ã=1

⇥
E(Y | Ã= 1, XA^Z , XZ)�E(Y | Ã= 0, XA^Z , XZ)

⇤

=EXA^Z ,XZ | Ã=1

⇥
E(Y | Ã= 1, X )�E(Y | Ã= 0, X )

⇤

=EXA^Z ,XZ | Ã=1

⇥
E(Y | Ã= 1,Q(0, X ),Q(1, X ))

⇤
�E
⇥
E(Y | Ã= 0,Q(0, X ),Q(1, X ))

⇤

=EXA^Z ,XZ | Ã=1

⇥
E(Y | Ã= 1,⌘(X ))

⇤
�E
⇥
E(Y | Ã= 0,⌘(X ))

⇤

=EX | Ã=1

⇥
E(Y | Ã= 1,⌘(X ))

⇤
�E
⇥
E(Y | Ã= 0,⌘(X ))

⇤
.

(B.2)

The equivalence of the first and the second line is because XA^Z , XZ block all backdoor
paths between Ã and Y (See Figure 2) and 0 < P(Ã= 1| Q(0, X ),Q(1, X )) < 1. Thus, the
“do-operation” in the first line can be safely removed. Equivalence of the second line and
the third line is due to Q(Ã, X ) = E

�
Y | Ã, XA^Z , XZ

�
, which is subject to the causal model in

Figure 2. The last equation is based on the fact that ⌘(X ) is a function of only XA^Z and XZ .
(It can be easily checked by using the definition of the expectation.)

(B.2) shows that (Q(0, X ),Q(1, X )) is a two-dimensional confounding variable such that
CDE is identifiable when we adjust for it as the confounding part.

Note that if f and h are two invertible functions on R, ( f (Q(0, X )), h(Q(1, X ))) also suffices
the identification for CDE. Since the sigma algebra should be the same for (Q(0, X ),Q(1, X ))
and f (Q(0, X )), h(Q(1, X )), i.e.,

� (Q(0, X ),Q(1, X )) = � ( f (Q(0, X )), h(Q(1, X ))) .

Hence, we have

P (A= 1 | Q(0, X ),Q(1, X )) = P (A= 1 | f (Q(0, X )), h(Q(1, X ))) ,
E (Y | Q(0, X ),Q(1, X )) = E (Y | f (Q(0, X )), h(Q(1, X ))) .

(B.3)

C ADDITIONAL EXPERIMENTS

We conduct additional experiments to show how the estimation of causal effect changes
1) over different nonparametric models for the propensity score estimation, and 2) when
using different double machine learning estimators on causal estimation. Specifically, for
the first study, we apply different nonparametric models and the logistic regression to the
estimated confounding part ⌘̂(X ) =

�
Q̂0(X ), Q̂1(X )
�

to obtain propensity scores. We use
ATT AIPTW in all above cases for causal effect estimation. For the second study, we fix the
first two stages of the TI estimator, i.e. we apply Q-Net for the conditional outcomes and
compute propensity scores with the Gaussian process regression where the kernel function
is the summation of dot product and white noise. Estimated conditional outcomes and
propensity scores are plugged into different double machine learning estimators. We make
the following conclusions with results of above experiments.

The choice of nonparametric models is significant. Table 3 summarizes results with
applying different regression models for the propensity estimation. We can see that suitable
nonparametric models will strongly increase the coverage proportion over true causal
estimand. Therefore, we conclude that the accuracy in causal estimation is highly dependent
on the choice of nonparametric models. In practice, when there is some prior information
about the propensity score function, we should apply the most suitable nonparametric
model to increase the reliability of our causal estimation.

The ATT AIPTW is consistently the best double machine learning estimator. Table 4
shows results by applying different double machine learning estimators. We apply both
estimators for the average treatment effect (ATE) and the controlled direct effect (CDE). The
bias of “unadjusted” estimator ⌧̂naive is also included in Table 4 (a). For bias, ATT AIPTW
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⌧̂TI has comparable results with other double machine learning estimators in most cases.
For coverage proportion of confidence intervals, though it has lower rates in some cases,
⌧̂TI has consistently the best performance. Especially in high confounding situations, the
advantage of ⌧̂TI is obvious.

Estimator For each dataset, we compute estimators as follows. n1 and n0 stands for the
number of individuals in the treated and controlled group. n= n1 + n0 is the total number
of individuals.

• “Unadjusted” baseline estimator: ⌧̂naive = 1
n1

P
i:Ai=1 Yi � 1

n0

P
i:Ai=0 Yi

• “Outcome-only” estimator: ⌧̂Q = 1
n1

P
i:Ai=1 Q̂1,i � Q̂0,i

• ATT AIPTW: ⌧̂TI = 1
n1

P
i:Ai=1 Ai(Yi � Q̂0,i)� (1� Ai)(Yi � Q̂0,i)

ĝi
1� ĝi

Table 3: The choice of nonparametric models for the TI-estimator is significant. Tables
show average bias and 95% confidence intervals’ coverage of ⌧̂TI with applying different
nonparametric models in the second stage. The Gaussian process regression with the dot
product+ white noise kernel has the best performance (lowest bias and highest coverage
proportion). The treatment level is equal to true CDE, which takes 1.0 (with causal effect)
and 0.0 (without causal effect). Low and high noise level corresponds to �= 1.0 and 4.0.
Low and high confounding level corresponds to �c = 50.0 and 100.0.

(a) Average bias

Noise: Low High
Treatment (oracle causal effect): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High

GPR (Dot Product+White Noise) 0.069 0.059 0.113 0.074 0.088 0.049 0.002 0.089
GPR (RBF) 0.150 0.348 0.156 0.329 0.363 0.452 0.344 0.424
KNN 0.147 0.334 0.144 0.313 0.316 0.372 0.304 0.356
AdaBoost 0.074 0.349 0.061 0.323 0.526 0.497 0.479 0.464
Logistic 0.070 0.057 0.114 0.073 0.086 0.047 -0.001 0.087

(b) Coverage proportions of 95% confidence intervals

Noise: Low High
Treatment (oracle causal effect): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High

GPR (Dot Product+White Noise) 57% 84% 57% 79% 87% 80% 77% 81%
GPR (RBF) 31% 0% 41% 0% 7% 7% 17% 19%
KNN 18% 0% 39% 0% 11% 8% 11% 8%
AdaBoost 25% 0% 35% 0% 0% 0% 0% 0%
Logistic 58% 84% 57% 79% 87% 80% 78% 81%

D DISCUSSION OF LOW COVERAGE

In this section, we discuss why the confidence intervals we get (See Table 1) have lower
coverage than the nominated level 95%. We conduct diagnostics and find that the inaccuracy
of Q’s estimations is responsible for the low coverage. We compute biases, variances, and
coverages of ⌧TI’s with different mean squared errors Ê[(Q�Q̂)2] by using different numbers
of datasets. According to Figure 4–Figure 5, as the mean squared error of Q increases, the
bias of ⌧TI grows and the coverage of ⌧TI drops. Specifically, the highest coverage of each
setting is almost 95% (use 50 datasets with most accurate conditional outcome estimations).
In practice, one direct way to improve the TI estimator’s accuracy is to apply better NLP
models so that more accurate conditional outcome estimations can be obtained.
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Table 4: The ATT AIPTW is consistently the best double machine learning estimator for
this causal problem. Tables show average bias and 95% confidence intervals’ coverage of
different causal estimations. ATT AIPTW ⌧̂TI shows consistently the lowest bias and highest
coverage rate. For propensity score estimation, the Gaussian process regression with the
dot product+ white noise kernel is applied for all estimators. The treatment level is equal
to true CDE/true ATE, which takes 1.0 (with causal effect) and 0.0 (without causal effect).
Low and high noise level corresponds to � = 1.0 and 4.0. Low and high confounding level
corresponds to �c = 50.0 and 100.0.

(a) Average bias

Noise: Low High
Treatment (oracle CDE): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High

unadjusted ⌧̂naive 1.071 2.143 1.071 2.1453 1.068 2.140 1.069 2.140
ATE AIPTW 0.094 0.178 0.128 0.195 0.122 0.106 0.061 0.140
ATE BMM 0.094 0.176 0.128 0.193 0.122 0.106 0.061 0.140
ATE IPTW -0.574 -1.492 -1.839 -1.807 -0.082 -0.592 -0.393 -0.649
ATT AIPTW: ⌧̂TI 0.069 0.059 0.114 0.074 0.088 0.049 0.002 0.089
ATT BMM 0.075 0.147 -0.031 0.062 0.621 0.454 0.464 0.337
ATT TMLE: 0.084 0.194 0.085 0.196 0.186 0.136 0.174 0.163

(b) Coverage Proportions of 95% confidence intervals

Noise: Low High
Treatment (oracle CDE): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High

ATE AIPTW 37% 36% 69% 33% 75% 79% 79% 71%
ATE BMM 39% 35% 70% 36% 75% 79% 79% 71%
ATE IPTW 11% 1% 0% 1% 90% 39% 44% 37%
ATT AIPTW: ⌧̂TI 57% 84% 57% 79% 87% 80% 77% 81%
ATT BMM 26% 4% 49% 41% 1% 3% 1% 14%
ATT TMLE 48% 22% 75% 24% 51% 77% 72% 67%
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Figure 4: Biases and variances increase while coverages decrease as the mean squared
errors of Q (Q loss) becomes larger. This experiment uses 100 datasets with �t = 1 (with
causal effect), �c = 50.0 (low confounding), and �= 4.0 (high noise).
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Figure 5: Biases and variances increase while coverages decrease as the mean squared
errors of Q becomes larger. This experiment uses 100 datasets with �t = 1 (with causal
effect), �c = 100.0 (high confounding), and �= 4.0 (high noise).
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