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1 Proof of Theorem 1
Proof. Referring to the notation in the main paper, we have

y1 = A" +ws,
Y2 = Ag™ + Vne* + ws.

Next, because (3, &) minimize L(S,e), we have L(3,&) < L(8*,e*), that is

1 ~ 1 = - = ~
srllvn — ABI3 + ollys — AaB — Vel + Al + Aclell

1 * 1 * * * *
§ﬁ||y1—A15 ||§+ﬁ|\y2—A2ﬂ — Vne*||5 + Al B*|l1 + Aclle* |-

Let h:= 3 — B* and f := & — e*. Then, we have

1 * 1 * * Q =~
WHZII*Alﬁ *A1h\|§+ﬁ|\y2*A2ﬂ — Vne* — Agh — nf5 + AsllBll + Acll€]lx

1 * 1 % * * *
< ﬁ”yl—Alﬁ ||§+ﬁ|\y2—A2ﬂ — Vne*||3 4+ Asl|B* 1 + Aclle* |-

Next, we use equation [I] and equation [2] to obtain

1 1 ~ _
Wle — Ash|3+ ﬁ”wz — (Azh +Vnf)l5 + AsllBll + Acll€llx

1 1 * *
< sl + S llwallf + X187+ Aclle” s

or

1 1 1
VWi Ath + <[l Azh + Vnf|§ - Sws (Azh+vinf)

1
——lA-RIIZ =

< As((18* 1 = 1B111) + Ae(lle* [l — [1€]]1)-
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Following standard notation, the vector hr stands for a copy of vector h such that Vi € T, hy (i) = h(i) and
Vi ¢ T, hp(i) = 0. Next, we upper bound the term (||8*||; — ||B8]|1) as follows:

18*1 = 181 = 18*li = Ik 4 B*Ily = 18* 1 = bz + B*|1 = [hgelh < lhzli = |hgel.  (7)
The last step uses the reverse triangle inequality. Similarly, we also have

le*lly — el < [fslly — [ fsell- (8)

From equation [6] we have the following using Holder’s inequality as well as equation [7] and equation
1 1 . -
o lAthlz + oIl Az + Vi flls < A1h+ W2 (Azh 4 Vi f) + As([187]1 1B11) + e (lle* [l — l1€ll),

1
= y(ATw) h+£w§f+>\ﬂ(llﬂ I = 11B11) + Ac(lle* [l — lI€llr)

1 Vi
AT wl bl + X ozl £+ Azl = Ihzells) + Al £l — Ifsel).
(9)

IN

Next, we have that

1 1 1
o 14ah 13 + S Azt VAplE < orlls (3 + 14T wl ) + gl (=2 + 5147wl )
= (10)
n
sl (Aot S Tl ) + e (= A+ ol ).

Next, choose Ag, Ac such that +||ATw|lo < /\7/3 and %szﬂm < 2. Say \g = %”ATT“’H“’ and A\, =

%szﬂm. p € (0,1) is a positive constant which controls the sparsity level in the regression vector and
sparse error vector. If a large number of permutations is expected, then a smaller value of p should be used
and vice-versa. Now, from equation and using the bounds involving Ag, A¢, we have that

1 1 3\
WHAth% + ﬁHAzh +Vnfl3 < JH

3\
< 28y

hrll1 - thTclh

(11)

Note that the term on the left hand side in equation [11] is lower bounded by 0, and hence by definition of

set C from Sec. 3.1 of the main paper, we have (h, f) € C with A = ;—;. Using Gaussian tail bounds, it

can be shown that |ATw| s < 20./6(X)N logp with probability at least 1 — 2/p and ||ws||s < 20v/logn
with probability at least 1 — 2/n. Plugging the values in the expressions for A\g and A., we obtain A =

[n 1
P\ N 5(2();5170Lgp

Now, since we have established that (h, f) € C, we are ready to apply Lemma [3| (equation with all
the assumptions as mentioned in Lemma |3 to lower bound the term 7| A1h[3 + 55 |[A2h + nf||3 in
equation [TI] Doing so, we obtain

. Cmin b n 3\
(i (2, 2 ) oy ) Ul 15120 < 5 sl i lAahtif (B < 252 [l
(12)

Since ht is k-sparse and fg is s-sparse, we use the norm-inequalities to get

(Can(Z) n 3 3 3 3

Zmm\=) 7 Z Z < = =z
(1min (202 5557 ) = o) Ul + 171207 < Pl + 3l sl < SVEASIRIL + VAl Sl
(13)
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or

N W

K (Ihll2 + 11 £112)* <

(Vs VA [l + 171) where i o= ((C582, 20) <, ). a9

or
3, _
(IRll2 + [1F]l2) < Sk * max(vEAs, VsAe)

_ 2k 2y/ns
= 31 o (24 AP, 200 ).

Note that we have substituted the expressions for Ag, A in the last step.

Using Gaussian tail bounds since the elements of w; and ws are Gaussian distributed, we now substitute
expressions for Ag and A, in the last step. Using the results that |[ATw|. < 20/&(X)Nlogp with
probability at least 1 — 2/p and ||waz||s < 20+/logn with probability at least 1 — 2/n, we obtain:

_ 1 )klogp n slogn
(ol + 151) < 6ok (1 [ECEI 2 [ slogony, (16)

By the complement of Boole’s inequality, this occurs with probability greater than or equal to 1 — 2/p —
2/n. O

2 Lemmas

Lemma 1 (Generalised, extended, restricted eigen-value condition). Consider the Gaussian sensing
matriz A € RN*P whose rows are i.i.d. N(0,X) where 0 has p elements and X is a p X p covariance matriz.
We have the set C := {(h, f) € (R? x R") such that |hpc|i + A||fgc|li < 3|lhr|i + 3| fs|1} as defined

earlier. Select A = p,/ Nﬂgﬁ, where p € (0,1) is a constant. If s < 01/)21% and N > ¢y Cfbgf(:)z)klogp,

then the following inequality holds with probability atleast 1 — c5 exp (—cyN):

A Crin(B) n 9 9 1 5 N 9
- <7 -
min( ), SV UBIB -+ 1713) < pIARIE + IS8 ¥ (1) <. ")

where ¢y, ca, C3,Cq4 are PoSitive constants.

Proof. We lower bound the term \/%HAh”Q by using a concentration result from [Raskutti et al.| (2010]). We
get

\/ “min b )1 1 . o1s

Cf()HhHg -9 M%Hhﬂl < \/—NHAth with probability greater than 1 — ¢; exp (—caN), (18)

where ¢; > 0,cz > 0 are some constants. Next, note that ||hpc |1 + A fgelli < 3||lhr|li + 3X||fs|l1} implies

kil < 4llhrlls + 3A\|Ffslli} < 4VE[R|2 + 305 fllz}. We use this inequality to replace ||h||; term in
equation [I8 and we get

(m_ga (2>“"gp)||h||2 27A\/mllflz<\ﬁllAhllz7 (19)

len
(V) g [CCID Yy, 4 (7 o[ S8 g, <« Lpans [ %11 )
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E)klogp in the lemma implies 364/ g(z)klogp < X "‘”‘(E for co > 2882

Similarly, the assumption s < 01% in the lemma implies 274/ w < %, /+ for e < 1/542. Using
these two inequalities, the two terms inside the brackets can be simplified to obtain the following:

S fhll + 551l < < lABle + (21)

After a straightforward application of Lemma [5] we further get

The assumption N > CQC

nnn

CYmin( ) 2 1 2 n 2
< _
2 RIE + P < RIS + FIB,
o Couin(Z) |
. min n n
mm<128 N) (IRl +1£13) < NHAhH% + N||f||§7 (22)
which completes the proof. O

Lemma 2 (Mutual incoherence condition (Nguyen & Tran, |2012)). Consider the Gaussian sens-
ing matriv As € R™ P whose rows are i.i.d. N(0,%X). We have the set C = {(h,f) € (RP x
R™) such that ||hpc |1 + A fgelli < 3|\hr|li+ 3N fs|li} with |T| =k and |S| = s as defined earlier. Select

A=p %g(g)glggp, where p € (0,1) is a constant. Assume that s < min (gcg(z&) ’glﬁ)ggziﬂ . Cmﬁg n) and

n > cﬁf(E)C"LEZ;klogp for some sufficiently small positive constant cs and sufficiently large constant cg,

then the following inequality holds with probability greater than 1 — exp (—cyn):

1

ﬁl(Agh, P < knlllbllz + [ £l2)* ¥ (R, f) €C, (23)
where c7, ky, are positive constants. We refer to k,, as the mutual incoherence constant.

Lemma 3. Consider the Gaussian sensing matriz A; € R™*P and Ay € R"™ P whose rows are i.i.d.
N(0,X). We have the set C = {(h, f) € (R? x R™) such that [|hpc|i + || fsclli < 3|lhr|li+3A||fs|l1} with

|T| = k and |S| = s as defined earlier. Select A = p,/Ng(lo)nggp, where p € (0,1) is a constant. Assume

that s < min | c15 fggn, %Ci(z&) p’zlﬁ)ggfl,cs Cngzg s N > o & () yklogp, n > c6é(X) ’”‘“ézgklogp and

As satisfies the mutual incoherence condition stated in Lemma @ with mutual incoherence constant k,, <

mm(i\{ C"g’l‘(zz), 312) Then the following inequality holds with probability greater than 1 — czexp (—cyN) —

exp (—ern):

. Cmin(Z) n 1 9
T r1o9  aon A A 24
mm(( 512 ,32N> )(||h||2+||f|| )? < 2NII 1h|l5 + ol A2k + VI3 (R f) €C, (24)
where cq, co, c3, C4, C5, Cg, C7 are positive constants.

Proof. The proof involves applying Lemma and Lemmalto lower bound the term 5% || A1k |3+ 5% || A2h+
Vnfl3. To start, we have

1 1 1 1 n NG
ﬁHAth% + ﬁHAzh +Vnfl3 = *||A1h||§ + W||A2h||§ + ﬁ”f”% + W(Aﬂb, )

1 n n
S ATRIE 4 S Ak 4 S 712~ Y Ash, 1)

- 2N
(25)
= AR+ S 712 - Aok )
Cmin b))
> i () ) 16N)<”h'2+ I£12) Ko+ 117112)%
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We used Lemma (1| and Lemma in the last step. Next, we use the fact that (a +b%) > 1 (a +b)* Va,b > 0
to obtain

o 14an I3 + oAzt Viapl > min( S22 AN e+ 17102 - b (bl + 17127 .
= (i (S, 2 ) b )l + 11122
which completes the proof.
O
Lemma 4. Consider the Gaussian sensing matrices Ay € R™*P and Ag € R" P with i.i.d. N(0,1/N)
entries. There exist positive constants cg, cg such that the augmented matriz H = 3; (}7::: satisfies the

structured-sparsity restricted isometry property (SS-RIP) of order [(p, k), (n, s)] provided that klog (p/k) +
slog(n/s) < cgN, with probability atleast 1 — 3exp (—coN). The constants cg,co depend on the restricted
isometry constant §. Equivalently, we have the following result:

((1 52l < | Hel2 < (L+8)al3 for all @ such that (1 : p)llo < k and [@(p+1: p+n>||o<s)>

1—3exp(—coN). (27)
Proof. Referring to the notation in the main paper, we expand the term ||Hz||3 as following:

|He|3 = A8l + [ A28 + =3
= [ A1B13 + | A2BII3 + ||=II5 + 22" A28 (28)
= [ ABIE + 1215 + 22" A28.
Since A has iid. AN(0,1/N) entries, we have that 2z7 A28 ~ N(0,+|B3]2[3). Consequently,

22T A
P(1227 A28 > €| Bll2]|z]|2) = P(leﬂlz”i@ > € \F) =2Q(e —) where Q(.) denotes the tail integral of

VN
the standard normal distribution. Using the result that Q(t) < 1 exp (—t%/2), we obtain

P(|22" A28 < e1l|Bll2]|z]l2) = 1 — exp (~Nei/8). (29)

Next, using the Gaussian concentration results, we have that

P((1—e)[Bl3 < [ABI3 < 1+ €)]B]3) 21— 2exp (~Ney/8). (30)

Next, applying intersection bound with equation 29) and equation [30] we get

(1= e)[1813 = e1llBl2llzll2 < [[AB]3 + 22" A28 < (1 + &2)[|B]3 + e1[|B12]| 2|2 w.p. atleast
1 —exp(—Ne?/8) —2exp (—Ne3/8). (31)

Adding ||z||3 to equation 31} we obtain

(1= e)lBII3 = evllBll2lizll2 + [12]13 < [Hz|3 < (1+ e)lIB13 + el Bllallz]l2 + [|2]3 w.p. atleast
1 —exp(—Nei/8) —2exp (—Ne3/8). (32)

Denote € = €1 + 2. Next, using the results |[|B[3 + [[2[13 = [|=l3, [Blzllzl2 < llzl|3 and [B]3 < [l[]3,
equation [32] can be simplified to obtain the following inequality:

(1 - Olzlz < |Hzl3 < (1 + ¢)|x||3 w.p. atleast 1 — exp(—Ne3/8) — 2exp (—Ne3/8). (33)
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The aforementioned inequality is satisfied for any x with the specified probability. However, we have some
structure in the sparsity of x, that is, ||£(1 : p)llo < k and ||lz(p+ 1 : p+n)|o < s. And hence, we
restrict our attention to such (k + s) sparse @. Let J denote a set whose elements are all such (¥)(7)
possible support sets. We denote the individual elements in J by J;, where i = 1,2,3,..., (Z) (Z) Using
Lemma 5.1 in [Baraniuk et al.| (2008, we have the following result.: For any J; € J and any ¢ € (0,1), the
following inequality is satisfied with probability atleast 1— (12/8)*+5) (exp (—N§2/128) 42 exp (—N§2/128))
or 1—3(12/8)*+9) exp (—N§2/128):

(14 6)||z||3 < |Hz|j3 < (1+6)||x|j3 for all & € RP™ with support J;. (34)
Note that, within Lemma 5.1 in Baraniuk et al.| (2008), we chose €; = e2 = §/4 and accordingly € = §/2.
We denote the event

Ei = (1406)|x|3 < |[Hz|3 < (1+ 6)||z|3 for all z € RP™™ with support .J;, (35)
where i = 1,2,3,..., (2) (). From equation we have that
P(E;) < 3(12/6) ) exp (—~N§2/128). (36)
Using equation [36] with union bound, we have that

)

]P’( u®) E> < Z P(E;) < 3(2) (Z) (12/6)5+9) exp (— N§2/128), (37)
N IP( A®E) Ei> >1- 3(2) (Z) (12/8)5+9) exp (—N§2/128), (38)

P((l = 0)|lz|3 < |[Hz|3 < (1+0)||3 for all @ with [la(1: p)llo < k and [lz(p+1:p+n)llo < S> >

1- 3<Z> C‘) (12/8)*+%) exp (—~N4§2/128).  (39)
Now, it only remains to simplify the term on the right-hand side. Assume that klog (p/k)+slog(n/s) < cgN
for some cg > 0. With this assumption and using the well-known results that (z) < (ep/k)* and (f) <
(en/s)®, the term 3(%) (") (12/6)*+*) exp (—N4§?/128) in equation [39| can be upper-bounded as following:

S S

3 (i) (”) (12/8)5+) exp (—N4§2/128) < 3 (if) ' (e”> ’ Cf) o exp (—N§2/128),

N§?
< 3exp <(k +8)(1 +log(12/6)) + csN — 128)7
1 1 N§?
<3 1+4log(12/6 1{cgN — ——
- eXp({( Floe(12/ ))(log(p/k) i log(n/8)> i }CS 128)’
(40)
where we use klog(p/k) + slog(n/s) < cgN in the second last step and k < cgN/log(p/k) and s <
cgIN/log(n/s) in the last step. Denote ¢y := — {(1 + log (12/4)) <log(;/k) + 1o (171/5) +1jcs+ %. We can
always choose cg > 0 sufficiently small to ensure that c¢g > 0. Consequently, we have that
3(2) (”) (12/6)#+%) exp (—N§2/128) < 3exp(—coN). (41)
s
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AR-LASsoO with ZSC | R-LAsso with ZSC ¢/1-HTP lo-HTP
0.116 secs 0.151 secs 3.327 secs | 0.533 secs

Table 1: Time taken for the four unlabeled sensing algorithms to execute

From equation [39| and equation we get the following final result:

P((l — O)llzl3 < |1 Hz|3 < (1+8)l|l2 for all @ with (1 : p)llo < & and [&(p+1: p+n)lo < ) >
1—3exp(—coN). (42)
O

Lemma 5. Let a,b,c,d > 0 and assume that c+d < a+0b. Then, we have that:
1
5(62 +d?) < a® + b2 (43)

Proof. The above result is a trivial application of Cauchy-Schwarz inequality. Take uw = (1,1) and v = (a, b).
Then we have that [(u,v)|> < [[u3|v[|3 or (a + b)* < 2(a® +b?) or (c+ d)? < 2(a® +b?) or 1(c? +d?) <
(a® + b?). O

3 Experiments with Execution Timings

In Table|l] we show the time taken for the four algorithms to execute for p = 240, N = 120, k = 14, m = 32,
s = 16 and 2% measurement noise. The timing values in Table[l|are averaged over 50 noise and permutation
instances. These timing values do not include the time taken for choosing the best hyper-parameters using
cross-validation for any of the methods. Note that AR-LLASSO is around five times faster than fo-HTP.
£1-HTP is the slowest among them as it requires a larger number of iteration to finish and also because of
the computationally expensive £1-norm optimization. In summary, AR-LASSO is more efficient, timing-wise
while /o-HTP estimates 8* more accurately.
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