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1 Proof of Theorem 1

Proof. Referring to the notation in the main paper, we have

y1 = A1β∗ + w1, (1)
y2 = A2β∗ +

√
ne∗ + w2. (2)

Next, because (β̃, ẽ) minimize L(β, e), we have L(β̃, ẽ) ≤ L(β∗, e∗), that is

1
2N

∥y1 − A1β̃∥2
2 + 1

2N
∥y2 − A2β̃ −

√
nẽ∥2

2 + λβ∥β̃∥1 + λe∥ẽ∥1

≤ 1
2N

∥y1 − A1β∗∥2
2 + 1

2N
∥y2 − A2β∗ −

√
ne∗∥2

2 + λβ∥β∗∥1 + λe∥e∗∥1. (3)

Let h := β̃ − β∗ and f := ẽ − e∗. Then, we have

1
2N

∥y1 − A1β∗ − A1h∥2
2 + 1

2N
∥y2 − A2β∗ −

√
ne∗ − A2h −

√
nf∥2

2 + λβ∥β̃∥1 + λe∥ẽ∥1

≤ 1
2N

∥y1 − A1β∗∥2
2 + 1

2N
∥y2 − A2β∗ −

√
ne∗∥2

2 + λβ∥β∗∥1 + λe∥e∗∥1. (4)

Next, we use equation 1 and equation 2 to obtain

1
2N

∥w1 − A1h∥2
2 + 1

2N
∥w2 − (A2h +

√
nf)∥2

2 + λβ∥β̃∥1 + λe∥ẽ∥1

≤ 1
2N

∥w1∥2
2 + 1

2N
∥w2∥2

2 + λβ∥β∗∥1 + λe∥e∗∥1 (5)

or

1
2N

∥A1h∥2
2 − 1

N
wT

1 A1h + 1
2N

∥A2h +
√

nf∥2
2 − 1

N
wT

2 (A2h +
√

nf)

≤ λβ(∥β∗∥1 − ∥β̃∥1) + λe(∥e∗∥1 − ∥ẽ∥1). (6)
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Following standard notation, the vector hT stands for a copy of vector h such that ∀i ∈ T, hT (i) = h(i) and
∀i /∈ T, hT (i) = 0. Next, we upper bound the term (∥β∗∥1 − ∥β̃∥1) as follows:

∥β∗∥1 − ∥β̃∥1 = ∥β∗∥1 − ∥h + β∗∥1 = ∥β∗∥1 − ∥hT + β∗∥1 − ∥hT C ∥1 ≤ ∥hT ∥1 − ∥hT C ∥1. (7)

The last step uses the reverse triangle inequality. Similarly, we also have

∥e∗∥1 − ∥ẽ∥1 ≤ |fS∥1 − ∥fSC ∥1. (8)

From equation 6, we have the following using Hölder’s inequality as well as equation 7 and equation 8:

1
2N

∥A1h∥2
2 + 1

2N
∥A2h +

√
nf∥2

2 ≤ 1
N

wT
1 A1h + 1

N
wT

2 (A2h +
√

nf) + λβ(∥β∗∥1 − ∥β̃∥1) + λe(∥e∗∥1 − ∥ẽ∥1),

= 1
N

(AT w)T
h +

√
n

N
wT

2 f + λβ(∥β∗∥1 − ∥β̃∥1) + λe(∥e∗∥1 − ∥ẽ∥1)

≤ 1
N

∥AT w∥∞∥h∥1 +
√

n

N
∥w2∥∞∥f∥1 + λβ(∥hT ∥1 − ∥hT C ∥1) + λe(∥fS∥1 − ∥fSC ∥1).

(9)

Next, we have that

1
2N

∥A1h∥2
2 + 1

2N
∥A2h +

√
nf∥2

2 ≤ ∥hT ∥1

(
λβ + 1

N
∥AT w∥∞

)
+ ∥hT C ∥1

(
− λβ + 1

N
∥AT w∥∞

)
+ ∥fS∥1

(
λe +

√
n

N
∥w2∥∞

)
+ ∥fSC ∥1

(
− λe +

√
n

N
∥w2∥∞

)
.

(10)

Next, choose λβ , λe such that 1
N ∥AT w∥∞ ≤ λβ

2 and
√

n
N ∥w2∥∞ ≤ λe

2 . Say λβ = 2
ρ

∥AT w∥∞
N and λe =

2
√

n
N ∥w2∥∞. ρ ∈ (0, 1) is a positive constant which controls the sparsity level in the regression vector and

sparse error vector. If a large number of permutations is expected, then a smaller value of ρ should be used
and vice-versa. Now, from equation 10, and using the bounds involving λβ , λe, we have that

1
2N

∥A1h∥2
2 + 1

2N
∥A2h +

√
nf∥2

2 ≤ 3λβ

2 ∥hT ∥1 − λβ

2 ∥hT C ∥1 + 3λe

2 ∥fS∥1 − λe

2 ∥fSC ∥1,

≤ 3λβ

2 ∥hT ∥1 + 3λe

2 ∥fS∥1. (11)

Note that the term on the left hand side in equation 11 is lower bounded by 0, and hence by definition of
set C from Sec. 3.1 of the main paper, we have (h, f) ∈ C with λ = λe

λβ
. Using Gaussian tail bounds, it

can be shown that ∥AT w∥∞ ≤ 2σ
√

ξ(Σ)N log p with probability at least 1 − 2/p and ∥w2∥∞ ≤ 2σ
√

log n
with probability at least 1 − 2/n. Plugging the values in the expressions for λβ and λe, we obtain λ =
ρ
√

n
N

log n
ξ(Σ) log p .

Now, since we have established that (h, f) ∈ C, we are ready to apply Lemma 3 (equation 24) with all
the assumptions as mentioned in Lemma 3 to lower bound the term 1

2N ∥A1h∥2
2 + 1

2N ∥A2h +
√

nf∥2
2 in

equation 11. Doing so, we obtain

(
min

(
Cmin(Σ)

512 ,
n

32N

)
−km

n

N

)
(∥h∥2+∥f∥2)2 ≤ 1

2N
∥A1h∥2

2+ 1
2N

∥A2h+
√

nf∥2
2 ≤ 3λβ

2 ∥hT ∥1+3λe

2 ∥fS∥1.

(12)
Since hT is k-sparse and fS is s-sparse, we use the norm-inequalities to get(

min
(

Cmin(Σ)
512 ,

n

32N

)
− km

n

N

)
(∥h∥2 + ∥f∥2)2 ≤ 3

2λβ∥hT ∥1 + 3
2λe∥fS∥1 ≤ 3

2
√

kλβ∥h∥2 + 3
2

√
sλe∥f∥2,

(13)
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or

k2
l (∥h∥2 + ∥f∥2)2 ≤ 3

2 max(
√

kλβ ,
√

sλe)(∥h∥2 + ∥f∥2) where k2
l :=

((
Cmin(Σ)

512 ,
n

32N

)
− km

n

N

)
, (14)

or

(∥h∥2 + ∥f∥2) ≤ 3
2k−2

l max(
√

kλβ ,
√

sλe)

= 3
2k−2

l max
(

2
√

k

ρN
∥AT w∥∞,

2
√

ns

N
∥w2∥∞

)
.

(15)

Note that we have substituted the expressions for λβ , λe in the last step.

Using Gaussian tail bounds since the elements of w1 and w2 are Gaussian distributed, we now substitute
expressions for λβ and λe in the last step. Using the results that ∥AT w∥∞ ≤ 2σ

√
ξ(Σ)N log p with

probability at least 1 − 2/p and ∥w2∥∞ ≤ 2σ
√

log n with probability at least 1 − 2/n, we obtain:

(∥h∥2 + ∥f∥2) ≤ 6σk−2
l max

(
1
ρ

√
ξ(Σ)k log p

N
,

√
n

N

s log n

N

)
. (16)

By the complement of Boole’s inequality, this occurs with probability greater than or equal to 1 − 2/p −
2/n.

2 Lemmas

Lemma 1 (Generalised, extended, restricted eigen-value condition). Consider the Gaussian sensing
matrix A ∈ RN×p whose rows are i.i.d. N (0, Σ) where 0 has p elements and Σ is a p×p covariance matrix.
We have the set C := {(h, f) ∈ (Rp × Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} as defined
earlier. Select λ = ρ

√
n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. If s ≤ c1

N
ρ2 log n and N ≥ c2

ξ(Σ)
Cmin(Σ) k log p,

then the following inequality holds with probability atleast 1 − c3 exp (−c4N):

min
(

Cmin(Σ)
128 ,

n

8N

)
(∥h∥2

2 + ∥f∥2
2) ≤ 1

N
∥Ah∥2

2 + n

N
∥f∥2

2 ∀ (h, f) ∈ C, (17)

where c1, c2, c3, c4 are positive constants.

Proof. We lower bound the term 1√
N

∥Ah∥2 by using a concentration result from Raskutti et al. (2010). We
get

√
Cmin(Σ)

4 ∥h∥2 − 9
√

ξ(Σ) log p

N
∥h∥1 ≤ 1√

N
∥Ah∥2 with probability greater than 1 − c1 exp (−c2N), (18)

where c1 > 0, c2 > 0 are some constants. Next, note that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} implies
∥h∥1 ≤ 4∥hT ∥1 + 3λ∥fS∥1} ≤ 4

√
k∥h∥2 + 3λ

√
s∥f∥2}. We use this inequality to replace ∥h∥1 term in

equation 18 and we get

(√
Cmin(Σ)

4 − 36
√

ξ(Σ)k log p

N

)
∥h∥2 − 27λ

√
ξ(Σ)s log p

N
∥f∥2 ≤ 1√

N
∥Ah∥2, (19)

or(√
Cmin(Σ)

4 − 36
√

ξ(Σ)k log p

N

)
∥h∥2 +

(√
n

N
− 27λ

√
ξ(Σ)s log p

N

)
∥f∥2 ≤ 1√

N
∥Ah∥2 +

√
n

N
∥f∥2. (20)

3



Published in Transactions on Machine Learning Research (/)

The assumption N ≥ c2
ξ(Σ)

Cmin(Σ) k log p in the lemma implies 36
√

ξ(Σ)k log p
N ≤

√
Cmin(Σ)

8 for c2 ≥ 2882.

Similarly, the assumption s ≤ c1
N

ρ2 log n in the lemma implies 27λ
√

ξ(Σ)s log p
N ≤ 1

2
√

n
N for c1 ≤ 1/542. Using

these two inequalities, the two terms inside the brackets can be simplified to obtain the following:√
Cmin(Σ)

8 ∥h∥2 + 1
2

√
n

N
∥f∥2 ≤ 1√

N
∥Ah∥2 +

√
n

N
∥f∥2. (21)

After a straightforward application of Lemma 5, we further get
Cmin(Σ)

128 ∥h∥2
2 + n

8N
∥f∥2

2 ≤ 1
N

∥Ah∥2
2 + n

N
∥f∥2

2,

or
min

(
Cmin(Σ)

128 ,
n

8N

)
(∥h∥2

2 + ∥f∥2
2) ≤ 1

N
∥Ah∥2

2 + n

N
∥f∥2

2, (22)

which completes the proof.

Lemma 2 (Mutual incoherence condition (Nguyen & Tran, 2012)). Consider the Gaussian sens-
ing matrix A2 ∈ Rn×p whose rows are i.i.d. N (0, Σ). We have the set C = {(h, f) ∈ (Rp ×
Rn) such that ∥hT C ∥1 + λ∥fSC ∥1 ≤ 3∥hT ∥1 + 3λ∥fS∥1} with |T | = k and |S| = s as defined earlier. Select

λ = ρ
√

n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. Assume that s ≤ min

(
N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
and

n ≥ c6ξ(Σ) Cmax(Σ)
C2

min(Σ) k log p for some sufficiently small positive constant c5 and sufficiently large constant c6,
then the following inequality holds with probability greater than 1 − exp (−c7n):

1√
n

|⟨A2h, f⟩| ≤ km(∥h∥2 + ∥f∥2)2 ∀ (h, f) ∈ C, (23)

where c7, km are positive constants. We refer to km as the mutual incoherence constant.
Lemma 3. Consider the Gaussian sensing matrix A1 ∈ Rm×p and A2 ∈ Rn×p whose rows are i.i.d.
N (0, Σ). We have the set C = {(h, f) ∈ (Rp ×Rn) such that ∥hT C ∥1 +λ∥fSC ∥1 ≤ 3∥hT ∥1 +3λ∥fS∥1} with
|T | = k and |S| = s as defined earlier. Select λ = ρ

√
n
N

log n
ξ(Σ) log p , where ρ ∈ (0, 1) is a constant. Assume

that s ≤ min
(

c1
N

ρ2 log n , N
n

ξ(Σ)
Cmin(Σ)

k log p
ρ2 log n , c5

Cmin(Σ)
Cmax(Σ) n

)
, N ≥ c2

ξ(Σ)
Cmin(Σ) k log p, n ≥ c6ξ(Σ) Cmax(Σ)

C2
min(Σ) k log p and

A2 satisfies the mutual incoherence condition stated in Lemma 2 with mutual incoherence constant km <

min
(

N
n

Cmin(Σ)
512 , 1

32

)
. Then the following inequality holds with probability greater than 1 − c3 exp (−c4N) −

exp (−c7n):

min
((

Cmin(Σ)
512 ,

n

32N

)
− km

n

N

)
(∥h∥2 + ∥f∥2)2 ≤ 1

2N
∥A1h∥2

2 + 1
2N

∥A2h +
√

nf∥2
2 ∀ (h, f) ∈ C, (24)

where c1, c2, c3, c4, c5, c6, c7 are positive constants.

Proof. The proof involves applying Lemma 1 and Lemma 2 to lower bound the term 1
2N ∥A1h∥2

2 + 1
2N ∥A2h+√

nf∥2
2. To start, we have

1
2N

∥A1h∥2
2 + 1

2N
∥A2h +

√
nf∥2

2 = 1
2N

∥A1h∥2
2 + 1

2N
∥A2h∥2

2 + n

2N
∥f∥2

2 +
√

n

N
⟨A2h, f⟩

≥ 1
2N

∥A1h∥2
2 + 1

2N
∥A2h∥2

2 + n

2N
∥f∥2

2 −
√

n

N
|⟨A2h, f⟩|

= 1
2N

∥Ah∥2
2 + n

2N
∥f∥2

2 −
√

n

N
|⟨A2h, f⟩|

≥ min
(

Cmin(Σ)
256 ,

n

16N

)
(∥h∥2

2 + ∥f∥2
2) − km

n

N
(∥h∥2 + ∥f∥2)2.

(25)
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We used Lemma 1 and Lemma 2 in the last step. Next, we use the fact that (a2 + b2) ≥ 1
2 (a + b)2 ∀a, b > 0

to obtain

1
2N

∥A1h∥2
2 + 1

2N
∥A2h +

√
nf∥2

2 ≥ min
(

Cmin(Σ)
512 ,

n

32N

)
(∥h∥2 + ∥f∥2)2 − km

n

N
(∥h∥2 + ∥f∥2)2

=
(

min
(

Cmin(Σ)
512 ,

n

32N

)
− km

n

N

)
(∥h∥2 + ∥f∥2)2,

(26)

which completes the proof.

Lemma 4. Consider the Gaussian sensing matrices A1 ∈ Rm×p and A2 ∈ Rn×p with i.i.d. N (0, 1/N)

entries. There exist positive constants c8, c9 such that the augmented matrix H =
[
A1 0m×n

A2 In×n

]
satisfies the

structured-sparsity restricted isometry property (SS-RIP) of order [(p, k), (n, s)] provided that k log (p/k) +
s log (n/s) ≤ c8N , with probability atleast 1 − 3 exp (−c9N). The constants c8, c9 depend on the restricted
isometry constant δ. Equivalently, we have the following result:

P
(

(1−δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1+δ)∥x∥2
2 for all x such that ∥x(1 : p)∥0 ≤ k and ∥x(p+1 : p+n)∥0 ≤ s

)
≥

1 − 3 exp (−c9N). (27)

Proof. Referring to the notation in the main paper, we expand the term ∥Hx∥2
2 as following:

∥Hx∥2
2 = ∥A1β∥2

2 + ∥A2β + z∥2
2

= ∥A1β∥2
2 + ∥A2β∥2

2 + ∥z∥2
2 + 2zT A2β

= ∥Aβ∥2
2 + ∥z∥2

2 + 2zT A2β.

(28)

Since A2 has i.i.d. N (0, 1/N) entries, we have that 2zT A2β ∼ N (0, 4
N ∥β∥2

2∥z∥2
2). Consequently,

P(|2zT A2β| ≥ ϵ1∥β∥2∥z∥2) = P
(

|2zT A2β|
2∥β∥2∥z∥2√

N

≥ ϵ1
√

N
2

)
= 2Q

(
ϵ1

√
N
2

)
where Q(.) denotes the tail integral of

the standard normal distribution. Using the result that Q(t) ≤ 1
2 exp (−t2/2), we obtain

P
(
|2zT A2β| ≤ ϵ1∥β∥2∥z∥2

)
≥ 1 − exp (−Nϵ2

1/8). (29)

Next, using the Gaussian concentration results, we have that

P
(
(1 − ϵ2)∥β∥2

2 ≤ ∥Aβ∥2
2 ≤ (1 + ϵ2)∥β∥2

2
)

≥ 1 − 2 exp (−Nϵ2
2/8). (30)

Next, applying intersection bound with equation 29 and equation 30, we get

(1 − ϵ2)∥β∥2
2 − ϵ1∥β∥2∥z∥2 ≤ ∥Aβ∥2

2 + 2zT A2β ≤ (1 + ϵ2)∥β∥2
2 + ϵ1∥β∥2∥z∥2 w.p. atleast
1 − exp (−Nϵ2

1/8) − 2 exp (−Nϵ2
2/8). (31)

Adding ∥z∥2
2 to equation 31, we obtain

(1 − ϵ2)∥β∥2
2 − ϵ1∥β∥2∥z∥2 + ∥z∥2

2 ≤ ∥Hx∥2
2 ≤ (1 + ϵ2)∥β∥2

2 + ϵ1∥β∥2∥z∥2 + ∥z∥2
2 w.p. atleast

1 − exp (−Nϵ2
1/8) − 2 exp (−Nϵ2

2/8). (32)

Denote ϵ = ϵ1 + ϵ2. Next, using the results ∥β∥2
2 + ∥z∥2

2 = ∥x∥2
2, ∥β∥2∥z∥2 ≤ ∥x∥2

2 and ∥β∥2
2 ≤ ∥x∥2

2,
equation 32 can be simplified to obtain the following inequality:

(1 − ϵ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + ϵ)∥x∥2
2 w.p. atleast 1 − exp (−Nϵ2

1/8) − 2 exp (−Nϵ2
2/8). (33)
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The aforementioned inequality is satisfied for any x with the specified probability. However, we have some
structure in the sparsity of x, that is, ∥x(1 : p)∥0 ≤ k and ∥x(p + 1 : p + n)∥0 ≤ s. And hence, we
restrict our attention to such (k + s) sparse x. Let J denote a set whose elements are all such

(
p
k

)(
n
s

)
possible support sets. We denote the individual elements in J by Ji, where i = 1, 2, 3, . . . ,

(
p
k

)(
n
s

)
. Using

Lemma 5.1 in Baraniuk et al. (2008), we have the following result.: For any Ji ∈ J and any δ ∈ (0, 1), the
following inequality is satisfied with probability atleast 1−(12/δ)(k+s)(exp (−Nδ2/128)+2 exp (−Nδ2/128))
or 1 − 3(12/δ)(k+s) exp (−Nδ2/128):

(1 + δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + δ)∥x∥2
2 for all x ∈ Rp+n with support Ji. (34)

Note that, within Lemma 5.1 in Baraniuk et al. (2008), we chose ϵ1 = ϵ2 = δ/4 and accordingly ϵ = δ/2.

We denote the event

Ei := (1 + δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + δ)∥x∥2
2 for all x ∈ Rp+n with support Ji, (35)

where i = 1, 2, 3, . . . ,
(

p
k

)(
n
s

)
. From equation 34, we have that

P(Ēi) ≤ 3(12/δ)(k+s) exp (−Nδ2/128). (36)

Using equation 36 with union bound, we have that

P
(

∪(p
k)(n

s)
i=1 Ēi

)
≤

(p
k)(n

s)∑
i=1

P(Ēi) ≤ 3
(

p

k

)(
n

s

)
(12/δ)(k+s) exp (−Nδ2/128), (37)

or
P

(
∩(p

k)(n
s)

i=1 Ei

)
≥ 1 − 3

(
p

k

)(
n

s

)
(12/δ)(k+s) exp (−Nδ2/128), (38)

or

P
(

(1 − δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + δ)∥x∥2
2 for all x with ∥x(1 : p)∥0 ≤ k and ∥x(p + 1 : p + n)∥0 ≤ s

)
≥

1 − 3
(

p

k

)(
n

s

)
(12/δ)(k+s) exp (−Nδ2/128). (39)

Now, it only remains to simplify the term on the right-hand side. Assume that k log (p/k)+s log (n/s) ≤ c8N
for some c8 > 0. With this assumption and using the well-known results that

(
p
k

)
≤ (ep/k)k and

(
n
s

)
≤

(en/s)s, the term 3
(

p
k

)(
n
s

)
(12/δ)(k+s) exp (−Nδ2/128) in equation 39 can be upper-bounded as following:

3
(

p

k

)(
n

s

)
(12/δ)(k+s) exp (−Nδ2/128) ≤ 3

(
ep

k

)k(
en

s

)s(
12
δ

)(k+s)
exp (−Nδ2/128),

≤ 3 exp
(

(k + s)(1 + log (12/δ)) + c8N − Nδ2

128

)
,

≤ 3 exp
([

(1 + log (12/δ))
(

1
log (p/k) + 1

log (n/s)

)
+ 1

]
c8N − Nδ2

128

)
,

(40)

where we use k log (p/k) + s log (n/s) ≤ c8N in the second last step and k ≤ c8N/ log(p/k) and s ≤

c8N/ log(n/s) in the last step. Denote c9 := −
[
(1 + log (12/δ))

(
1

log (p/k) + 1
log (n/s)

)
+ 1

]
c8 + δ2

128 . We can

always choose c8 > 0 sufficiently small to ensure that c9 > 0. Consequently, we have that

3
(

p

k

)(
n

s

)
(12/δ)(k+s) exp (−Nδ2/128) ≤ 3 exp(−c9N). (41)
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Ar-Lasso with ZSC R-Lasso with ZSC ℓ1-Htp ℓ2-Htp
0.116 secs 0.151 secs 3.327 secs 0.533 secs

Table 1: Time taken for the four unlabeled sensing algorithms to execute

From equation 39 and equation 41, we get the following final result:

P
(

(1 − δ)∥x∥2
2 ≤ ∥Hx∥2

2 ≤ (1 + δ)∥x∥2
2 for all x with ∥x(1 : p)∥0 ≤ k and ∥x(p + 1 : p + n)∥0 ≤ s

)
≥

1 − 3 exp (−c9N). (42)

Lemma 5. Let a, b, c, d ≥ 0 and assume that c + d ≤ a + b. Then, we have that:

1
2(c2 + d2) ≤ a2 + b2. (43)

Proof. The above result is a trivial application of Cauchy-Schwarz inequality. Take u = (1, 1) and v = (a, b).
Then we have that |⟨u, v⟩|2 ≤ ∥u∥2

2∥v∥2
2 or (a + b)2 ≤ 2(a2 + b2) or (c + d)2 ≤ 2(a2 + b2) or 1

2 (c2 + d2) ≤
(a2 + b2).

3 Experiments with Execution Timings

In Table 1, we show the time taken for the four algorithms to execute for p = 240, N = 120, k = 14, m = 32,
s = 16 and 2% measurement noise. The timing values in Table 1 are averaged over 50 noise and permutation
instances. These timing values do not include the time taken for choosing the best hyper-parameters using
cross-validation for any of the methods. Note that Ar-Lasso is around five times faster than ℓ2-Htp.
ℓ1-Htp is the slowest among them as it requires a larger number of iteration to finish and also because of
the computationally expensive ℓ1-norm optimization. In summary, Ar-Lasso is more efficient, timing-wise
while ℓ2-Htp estimates β∗ more accurately.
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