PROOF OF THEOREM 1 А

Considering $||\epsilon||_2$ or $||\epsilon||_{\infty}$ is usually very small for adversarial examples, we utilize Taylor Expansion for x as the approximation for the adversarial loss $\mathcal{L}(x + \epsilon; \theta)$, such that:

$$\mathcal{L}(x+\epsilon;\theta) = \mathcal{L}(x;\theta) + \left(\frac{\partial \mathcal{L}(x;\theta)}{\partial x}\right)^T \epsilon + \mathcal{O}(\|\epsilon\|^2)$$
(5)

To derive an upper bound on the gradient conflict in the regime that $\|\epsilon\|$ gets small, we will only consider the first-order term above. We then take the derivative of both sides of the equation with respect to θ to obtain:

$$g_{a} = g_{c} + \frac{\partial^{2} \mathcal{L}(x;\theta)}{\partial x \partial \theta} \epsilon = g_{c} + \frac{\partial g_{c}}{\partial x} \epsilon = g_{c} + H\epsilon$$
(6)

where $H = \frac{\partial g_c}{\partial x} \in \mathbb{R}^{d_\theta \times d_x}$. d_θ/d_x denotes the dimension of parameter θ and input data x. By multiplying g_a^T and g_c^T on the two sides of Eq. (6), respectively, we can obtain Eq. (7) and Eq. (8) as follows.

$$g_{\rm c}^T g_{\rm a} = ||g_{\rm c}||_2^2 + g_{\rm c}^T H\epsilon \tag{7}$$

$$||g_{\mathbf{a}}||_{2}^{2} = g_{\mathbf{a}}^{T}g_{\mathbf{c}} + g_{\mathbf{a}}^{T}H\epsilon$$

$$\tag{8}$$

Eq. (7) minus Eq. (8):

$$g_{\rm c}^T g_{\rm a} = \frac{||g_{\rm a}||_2^2 + ||g_{\rm c}||_2^2 + \epsilon^T H^T (g_{\rm c} - g_{\rm a})}{2} \tag{9}$$

Based on Eq. (6), we can replace $(g_c - g_a)$ as $H\epsilon$:

$$g_{\rm c}^T g_{\rm a} = \frac{||g_{\rm a}||_2^2 + ||g_{\rm c}||_2^2 - \epsilon^T H^T H \epsilon}{2} \tag{10}$$

Recall the definition of μ as $\mu = ||g_c||_2 \cdot ||g_a||_2 \cdot (1 - \cos(g_c, g_a))$

$$\mu = ||g_{c}||_{2} \cdot ||g_{a}||_{2} \cdot (1 - \cos(g_{c}, g_{a}))$$

$$= ||g_{c}||_{2} \cdot ||g_{a}||_{2} - g_{c}^{T} g_{a}$$

$$= \frac{2||g_{c}||_{2} \cdot ||g_{a}||_{2} - ||g_{a}||_{2}^{2} - ||g_{c}||_{2}^{2} + \epsilon^{T} H^{T} H \epsilon}{2} \quad \text{(Use Eq. (10))}$$

$$= \frac{\epsilon^{T} \mathcal{K}(\theta, x) \epsilon - (||g_{c}||_{2} - ||g_{a}||_{2})^{2}}{2} \leq \frac{\epsilon^{T} \mathcal{K}(\theta, x) \epsilon}{2} \leq \frac{\lambda_{max} \epsilon^{T} \epsilon}{2} \quad (11)$$

where $\mathcal{K}(\theta, x) = H^T H$ is a symmetric and positive semi-definite matrix, and λ_{max} is the largest eigenvalue of K, where $\lambda_{max} \geq 0$.

Considering two widely-used restrictions for perturbation ϵ applied in adversarial examples as l_2 and l_{∞} norm, we have:

- For $||\epsilon||_2 \leq \delta$, where $\mu \leq \frac{1}{2}\lambda_{max}\delta^2$. The upper bound of μ is $\mathcal{O}(\delta^2)$.
- For $||\epsilon||_{\infty} \leq \delta$, it implies that the absolute value of each element of ϵ is bounded by δ , where $\epsilon^T \epsilon = \sum_{i=0}^d \epsilon_i^2 \leq d^2 \delta^2$. The upper bound of μ is $\mathcal{O}(d^2 \delta^2)$.

В ANALYTICAL SOLUTION FOR THE INNER MAXIMIZATION

We introduce the details about how to get the analytical inner-max solution (Eq. (3)) for our synthetic experiment presented in Section 3. As we introduced in Section 3, consider a linear model as $f(x) = w^T x + b$ under a binary classification task where $y \in \{+1, -1\}$. The predicted probability of sample x with respect to its ground truth y can be defined as:

$$p(y|x) = \frac{1}{1 + \exp(-y \cdot f(x))}$$
(12)

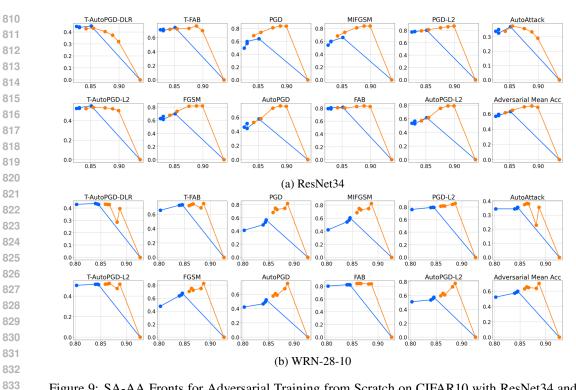


Figure 9: SA-AA Fronts for Adversarial Training from Scratch on CIFAR10 with ResNet34 and WRN-28-10.

		Standard	T-AutoPGD-DLR	T-AutoPGD-L2	T-FAB	FGSM	PGD	AutoPGD	MIFGSM	FAB	PGD-L2	AutoPGD-L2	AutoAttack	Adversarial Mean Acc
	$\gamma = 0.8$, PGD	0.8659	0.4004	0.5356	0.6861	0.7649	0.7442	0.6301	0.7419	0.8177	0.8211	0.67	0.3517	0.6512
	$\gamma = 0.8$, PGD-DLR	0.8646	0.4147	0.539	0.7168	0.7452	0.672	0.6429	0.6864	0.8001	0.8196	0.6919	0.3260	0.6413
	$\gamma = 0.9$, PGD	0.9009	0.2844	0.5075	0.6986	0.7781	0.7021	0.6624	0.7251	0.8371	0.8588	0.7267	0.2472	0.6389
_	$\gamma=0.9, \text{PGD-DLR}$	0.8923	0.3794	0.5353	0.6874	0.779	0.7207	0.6428	0.7315	0.8229	0.8488	0.7038	0.2992	0.6501

Table 2: Evaluation results for CA-AT for using different inner maximization solver (PGD/PGD-DLR) during the process of AT.

Then, the BCE loss function for sample x can be formulated as:

$$\mathcal{L}(f(x), y) = -\log(p(y|x)) = \log(1 + \exp(-y \cdot f(x)))$$
(13)

Consider the perturbation ϵ under the restriction of L_{∞} norm, the adversarial attack for such a linear model can be formulated as an inner maximization problem as Eq. (14).

$$\max_{\|\epsilon\|_{\infty} \le \delta} \log(1 + \exp(-y \cdot f(x + \epsilon))) \equiv \min_{\|\epsilon\|_{\infty} \le \delta} y \cdot w^{T} \epsilon$$
(14)

Consider the case that y = +1, where the L_{∞} norm says that each element in ϵ must have magnitude less than or equal δ , we clearly minimize this quantity when we set $\epsilon_i = -\delta$ for $w_i \ge 0$ and $\epsilon_i = \delta$ for $w_i < 0$. For y = -1, we would just flip these quantities. That is, the optimal solution ϵ^* to the above optimization problem for the L_{∞} norm is expressed as Eq. (15).

$$\epsilon^* = -y \cdot \delta \odot \operatorname{sign}(w) \tag{15}$$

where \odot is the element-wise multiplication. Based on Eq. (15), we can formulate the adversarial loss as follows, which is as same as the adversarial loss presented in Eq. (3).

$$\mathcal{L}(f(x+\epsilon^*), y) = \log(1+\exp(-y \cdot w^T x - y \cdot b - y \cdot w^T \epsilon^*))$$
$$= \log(1+\exp(-y \cdot f(x) + \delta ||w||_1))$$
(16)

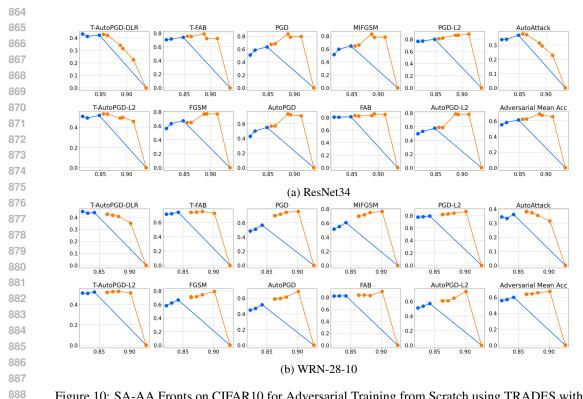


Figure 10: SA-AA Fronts on CIFAR10 for Adversarial Training from Scratch using TRADES with ResNet34 and WRN-28-10.

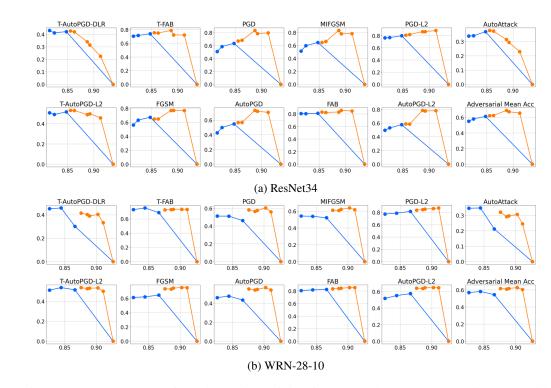


Figure 11: SA-AA Fronts for Adversarial Training from Scratch on CIFAR10 using CLP with ResNet34 and WRN-28-10.

		Standard Accuracy	DDN Attack	C&W Attack	Square Attack
	Standard Training	0.9392	0.133	0.1171	0.6795
ResNet18	Vanilla AT, $\lambda = 0.5$	0.8239	0.4585	0.4565	0.7329
	CA-AT, $\gamma = 0.8$	0.8659	0.5991	0.5089	0.7656
	Standard Training	0.9363	0.1036	0.088	0.6771
ResNet 34	Vanilla AT, $\lambda = 0.5$	0.8305	0.5411	0.4747	0.7429
	CA-AT, $\gamma = 0.8$	0.8753	0.7207	0.4885	0.7934

Table 3: The comparison Results against Black-box Attack (Square Attack) and Optimization-based Attack (C&W Attack and DDN Attack) between Vanilla AT and CA-AT on CIFAR10.

С ADDITIONAL EXPERIMENTAL RESULTS

Experimental setup on adversarial PEFT. For the experiments on adversarial PEFT, we leverage the adversarially pretrained Swin-T and ViT downloaded from ARES¹. For adapter, we implement it as (Pfeiffer et al., 2020) by inserting an adapter module subsequent to the MLP block at each layer with a reduction factor of 8.

The effect of inner maximization solver in AT. In Table 2, we conduct the ablation study for using 935 different attack methods to generate adversarial samples during adversarial training from scratch. We 936 find that PGD-DLR can achieve higher adversarial accuracies when $\gamma = 0.9$ but lead them worse 937 when $\gamma = 0.8$ but not significant. We conclude that the effect of the inner maximization solver, as 938 well as the adversarial attack method during AT, does not dominate the performance of CA-AT. 939

Results for different model architectures. For different model architectures such as ResNet34 940 941 and WRN-28-10, their SA-AA front on CIFAR10 and and CIFAR100 with different adversarial loss functions are shown in Fig. 9, Fig. 11, and Fig. 10. All of those figures demonstrate CA-AT can 942 consistently surpass Vanilla AT across different model architectures. 943

944 **Results for** L_2 **-based adversarial attacks with different budgets.** Besides evaluating the adversarial 945 accurate on L_{∞} -based attacks with different budgets (Table 1), we also evaluate the adversarial 946 robustness against L_2 -based adversarial attacks with different budgets ($||\epsilon||_2 = [0.5, 1, 1.5, 2]$), which 947 is shown in Table 4.

948 Results for Black-box Attack & Optimization-based Attack. To further evaluate the robustness 949 of CA-AT against optimization-based attacks, and also demonstrate that the performance gain of 950 adversarial accuracy is not brought by obfuscated gradients (Athalye et al., 2018), we evaluate the 951 adversarial robustness via black-box attack (Square Andriushchenko et al. (2020)) and optimization-952 based attack (C&W Carlini & Wagner (2017), DDN Rony et al. (2019)). Table 3 shows that CA-AT ($\gamma = 0.8$) outperforms Vanilla AT ($\lambda = 0.5$) on defending against the both black-box attack 953 and optimization-based attack, while achieving higher standard accuracy. 954

955 The Degraded Version of CA-AT. To rigorously demonstrate that projecting adversarial gradient 956 q_a into the cone of q_c can boost both standard and adversarial accuracy, we conduct an ablation study 957 by using traditional λ -weighted mean of g_a and g_c when $\phi \leq \gamma$ and only g_c when $\phi > \gamma$. As shown in Algorithm 2, we named such an ablated version of CA-AT as CA-AT-AV. The comparison results 958 shown in Figure 12 for Vanilla AT, CA-AT and CA-AT-DV demonstrate that the boost of tradeoff 959 between standard accuracy and adversarial accuracy. 960

961 Ablation Study on Learning Rate and Batch Size. We conducted ablation study on different 962 training parameters such as learning rate and batch size in Fig. 13. The observation is, although batch 963 size and learning rate effect the standard accuracy and adversarial accuracies aganist various attacks, 964 CA-AT can consistently lead to better standard performance and adversarial robustnessn accorss different batch size and learning rate. 965

966 **Experimental Results for Larger Dataset**. We also evaluated our method on Tiny-ImageNet. 967 Results presented in Table 5 demonstrate the superiority of CA-AT on large-scale dataset. 968

More Advanced Adversarial Loss., Besides TRADES and CLP, we conducted more experiments on 969 MART shown in Table 6. 970

971

925

926 927 928

929 930

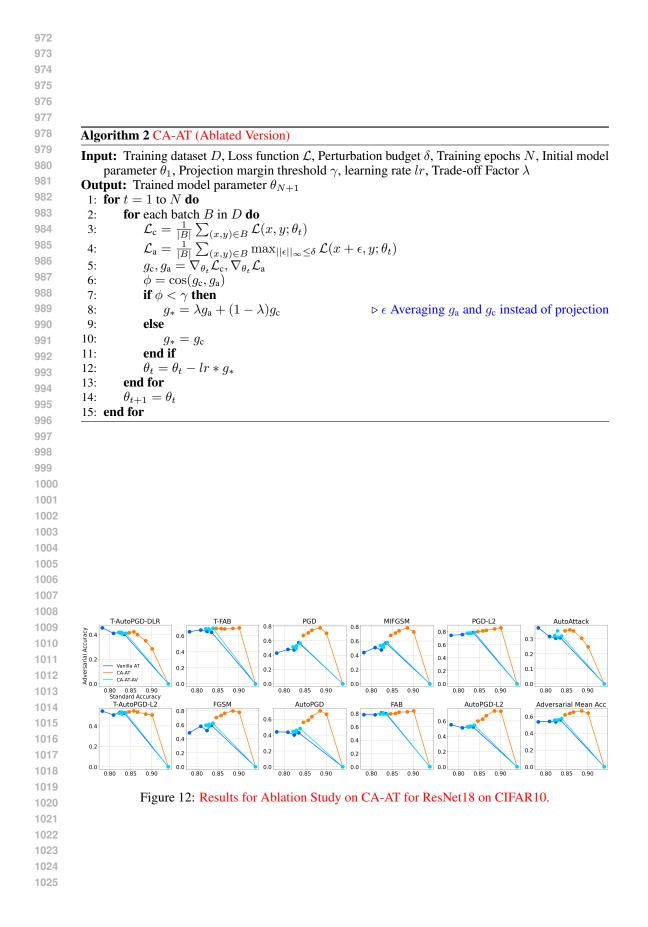
931

932

933

934

¹https://github.com/thu-ml/ares



1040

1067

1068

1073

		PGD-L2		AutoP	GD-L2	T-AutoPGD-L2		
	p=2	$\gamma = 0.8$	$\lambda = 0.5$	$\gamma = 0.8$	$\lambda = 0.5$	$\gamma = 0.8$	$\lambda = 0.5$	
	0.5	0.8211	0.7759	0.67	0.5222	0.5356	0.5327	
ResNet18	1	0.8207	0.7748	0.603	0.3036	0.261	0.2762	
Resiletto	1.5	0.8194	0.7738	0.5652	0.2405	0.1483	0.1428	
	2	0.8187	0.7734	0.5331	0.2115	0.0904	0.088	
		PGD-L2		AutoP	GD-L2	T-AutoPGD-L2		
	p=2	$\gamma = 0.8$	$\lambda = 0.5$	$\gamma = 0.8$	$\lambda = 0.5$	$\gamma = 0.8$	$\lambda = 0.5$	
	0.5	0.8411	0.78	0.7534	0.5255	0.5301	0.5325	
ResNet34	1	0.8412	0.7791	0.7249	0.3806	0.2571	0.2683	
Residence 4	1.5	0.8403	0.7784	0.7022	0.3462	0.1446	0.1438	
	2	0.8386	0.7781	0.679	0.3196	0.0899	0.0905	

Table 4: Evaluation Results for CA-AT ($\gamma = 0.8$) and vanilla AT ($\lambda = 0.5$) across different L_2 -based attacks with various restriction θ .

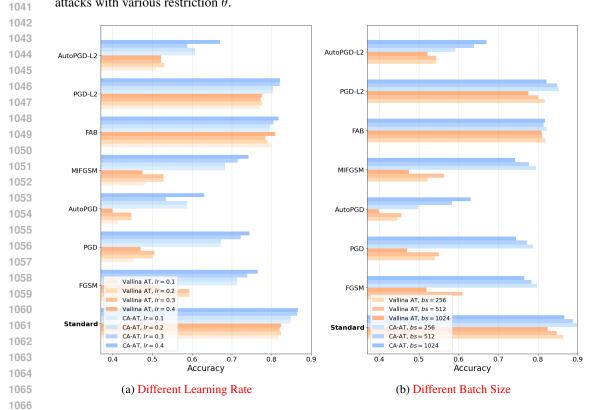


Figure 13: Ablation Study for Different Training Hyperparameters including Learning Rate and Batch Size.

1069		Standard	FGSM	PGD	AutoPGD	MIFGSM	T-FAB
1070	Vanilla AT, $\lambda = 0.5$	0.4881	0.1872	0.152	0.1615	0.16	0.347
1071 1072	CA-AT, $\gamma = 0.8$	0.4989	0.254	0.1867	0.1753	0.2044	0.3584

			Standard	T-AutoPGD	T-FAB	FGSM	PGD	AutoPGD	MIFGSM	FAB
ResNet 18	DacMat 19	Vanilla AT, $\lambda = 0.5$	0.83	0.5344	0.657	0.6017	0.5343	0.2666	0.4483	0.55
	CA-AT, $\gamma = 0.8$	0.8848	0.5381	0.6826	0.7953	0.782	0.669	0.7859	0.815	
D N (24	ResNet 34	Vanilla AT, $\lambda = 0.5$	0.82	0.3624	0.503	0.4832	0.3466	0.2479	0.3359	0.6284
г	tesinet 54	CA-AT, $\gamma = 0.8$	0.8857	0.4922	0.7357	0.8297	0.8466	0.7687	0.8466	0.829

Table 5: Results for Training PreActResNet18 on TinyImageNet

Table 6: Results for Training with MART loss on CIFAR10 with ResNet18