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A PROOF OF THEOREM 1

Considering ||ϵ||2 or ||ϵ||∞ is usually very small for adversarial examples, we utilize Taylor Expansion
for x as the approximation for the adversarial loss L(x+ ϵ; θ), such that:

L(x+ ϵ; θ) = L(x; θ) + (
∂L(x; θ)

∂x
)T ϵ+O(∥ϵ∥2) (5)

To derive an upper bound on the gradient conflict in the regime that ∥ϵ∥ gets small, we will only
consider the first-order term above. We then take the derivative of both sides of the equation with
respect to θ to obtain:

ga = gc +
∂2L(x; θ)
∂x∂θ

ϵ = gc +
∂gc

∂x
ϵ = gc +Hϵ (6)

where H = ∂gc
∂x ∈ Rdθ×dx . dθ/dx denotes the dimension of parameter θ and input data x. By

multiplying gTa and gTc on the two sides of Eq. (6), respectively, we can obtain Eq. (7) and Eq. (8) as
follows.

gTc ga = ||gc||22 + gTc Hϵ (7)

||ga||22 = gTa gc + gTa Hϵ (8)

Eq. (7) minus Eq. (8):

gTc ga =
||ga||22 + ||gc||22 + ϵTHT (gc − ga)

2
(9)

Based on Eq. (6), we can replace (gc − ga) as Hϵ:

gTc ga =
||ga||22 + ||gc||22 − ϵTHTHϵ

2
(10)

Recall the definition of µ as µ = ||gc||2 · ||ga||2 · (1− cos(gc, ga))

µ = ||gc||2 · ||ga||2 · (1− cos(gc, ga))

= ||gc||2 · ||ga||2 − gTc ga

=
2||gc||2 · ||ga||2 − ||ga||22 − ||gc||22 + ϵTHTHϵ

2
(Use Eq. (10))

=
ϵTK(θ, x)ϵ− (||gc||2 − ||ga||2)2

2
≤ ϵTK(θ, x)ϵ

2
≤ λmaxϵ

T ϵ

2
(11)

where K(θ, x) = HTH is a symmetric and positive semi-definite matrix, and λmax is the largest
eigenvalue of K, where λmax ≥ 0.

Considering two widely-used restrictions for perturbation ϵ applied in adversarial examples as l2 and
l∞ norm, we have:

• For ||ϵ||2 ≤ δ, where µ ≤ 1

2
λmaxδ

2. The upper bound of µ is O(δ2).

• For ||ϵ||∞ ≤ δ, it implies that the absolute value of each element of ϵ is bounded by δ, where
ϵT ϵ =

∑d
i=0 ϵ

2
i ≤ d2δ2. The upper bound of µ is O(d2δ2).

B ANALYTICAL SOLUTION FOR THE INNER MAXIMIZATION

We introduce the details about how to get the analytical inner-max solution (Eq. (3)) for our synthetic
experiment presented in Section 3. As we introduced in Section 3, consider a linear model as
f(x) = wTx+ b under a binary classification task where y ∈ {+1,−1}. The predicted probability
of sample x with respect to its ground truth y can be defined as:

p(y|x) = 1

1 + exp(−y · f(x))
(12)
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(a) ResNet34

(b) WRN-28-10

Figure 9: SA-AA Fronts for Adversarial Training from Scratch on CIFAR10 with ResNet34 and
WRN-28-10.

Standard T-AutoPGD-DLR T-AutoPGD-L2 T-FAB FGSM PGD AutoPGD MIFGSM FAB PGD-L2 AutoPGD-L2 AutoAttack Adversarial Mean Acc
γ = 0.8, PGD 0.8659 0.4004 0.5356 0.6861 0.7649 0.7442 0.6301 0.7419 0.8177 0.8211 0.67 0.3517 0.6512

γ = 0.8, PGD-DLR 0.8646 0.4147 0.539 0.7168 0.7452 0.672 0.6429 0.6864 0.8001 0.8196 0.6919 0.3260 0.6413
γ = 0.9, PGD 0.9009 0.2844 0.5075 0.6986 0.7781 0.7021 0.6624 0.7251 0.8371 0.8588 0.7267 0.2472 0.6389

γ = 0.9, PGD-DLR 0.8923 0.3794 0.5353 0.6874 0.779 0.7207 0.6428 0.7315 0.8229 0.8488 0.7038 0.2992 0.6501

Table 2: Evaluation results for CA-AT for using different inner maximization solver (PGD/PGD-DLR)
during the process of AT.

Then, the BCE loss function for sample x can be formulated as:

L(f(x), y) = − log(p(y|x)) = log(1 + exp(−y · f(x))) (13)

Consider the perturbation ϵ under the restriction of L∞ norm, the adversarial attack for such a linear
model can be formulated as an inner maximization problem as Eq. (14).

max
∥ϵ∥∞≤δ

log(1 + exp(−y · f(x+ ϵ))) ≡ min
∥ϵ∥∞≤δ

y · wT ϵ (14)

Consider the case that y = +1, where the L∞ norm says that each element in ϵ must have magnitude
less than or equal δ, we clearly minimize this quantity when we set ϵi = −δ for wi ≥ 0 and ϵi = δ
for wi < 0. For y = −1, we would just flip these quantities. That is, the optimal solution ϵ∗ to the
above optimization problem for the L∞ norm is expressed as Eq. (15).

ϵ∗ = −y · δ ⊙ sign(w) (15)

where ⊙ is the element-wise multiplication. Based on Eq. (15), we can formulate the adversarial loss
as follows, which is as same as the adversarial loss presented in Eq. (3).

L(f(x+ ϵ∗), y) = log(1 + exp(−y · wTx− y · b− y · wT ϵ∗))

= log(1 + exp(−y · f(x) + δ∥w∥1)) (16)
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(a) ResNet34

(b) WRN-28-10

Figure 10: SA-AA Fronts on CIFAR10 for Adversarial Training from Scratch using TRADES with
ResNet34 and WRN-28-10.

(a) ResNet34

(b) WRN-28-10

Figure 11: SA-AA Fronts for Adversarial Training from Scratch on CIFAR10 using CLP with
ResNet34 and WRN-28-10.
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Standard Accuracy DDN Attack C&W Attack Square Attack

ResNet18
Standard Training 0.9392 0.133 0.1171 0.6795

Vanilla AT, λ = 0.5 0.8239 0.4585 0.4565 0.7329
CA-AT, γ = 0.8 0.8659 0.5991 0.5089 0.7656

ResNet 34
Standard Training 0.9363 0.1036 0.088 0.6771

Vanilla AT, λ = 0.5 0.8305 0.5411 0.4747 0.7429
CA-AT, γ = 0.8 0.8753 0.7207 0.4885 0.7934

Table 3: The comparison Results against Black-box Attack (Square Attack) and Optimization-based
Attack (C&W Attack and DDN Attack) between Vanilla AT and CA-AT on CIFAR10.

C ADDITIONAL EXPERIMENTAL RESULTS

Experimental setup on adversarial PEFT. For the experiments on adversarial PEFT, we leverage
the adversarially pretrained Swin-T and ViT downloaded from ARES1. For adapter, we implement it
as (Pfeiffer et al., 2020) by inserting an adapter module subsequent to the MLP block at each layer
with a reduction factor of 8.

The effect of inner maximization solver in AT. In Table 2, we conduct the ablation study for using
different attack methods to generate adversarial samples during adversarial training from scratch. We
find that PGD-DLR can achieve higher adversarial accuracies when γ = 0.9 but lead them worse
when γ = 0.8 but not significant. We conclude that the effect of the inner maximization solver, as
well as the adversarial attack method during AT, does not dominate the performance of CA-AT.

Results for different model architectures. For different model architectures such as ResNet34
and WRN-28-10, their SA-AA front on CIFAR10 and and CIFAR100 with different adversarial loss
functions are shown in Fig. 9, Fig. 11, and Fig. 10. All of those figures demonstrate CA-AT can
consistently surpass Vanilla AT across different model architectures.

Results for L2-based adversarial attacks with different budgets. Besides evaluating the adversarial
accuray on L∞-based attacks with different budgets (Table 1), we also evaluate the adversarial
robustness against L2-based adversarial attacks with different budgets (||ϵ||2 = [0.5, 1, 1.5, 2]), which
is shown in Table 4.

Results for Black-box Attack & Optimization-based Attack. To further evaluate the robustness
of CA-AT against optimization-based attacks, and also demonstrate that the performance gain of
adversarial accuracy is not brought by obfuscated gradients (Athalye et al., 2018), we evaluate the
adversarial robustness via black-box attack (Square Andriushchenko et al. (2020)) and optimization-
based attack (C&W Carlini & Wagner (2017), DDN Rony et al. (2019)). Table 3 shows that
CA-AT (γ = 0.8) outperforms Vanilla AT (λ = 0.5) on defending against the both black-box attack
and optimization-based attack, while achieving higher standard accuracy.

The Degraded Version of CA-AT. To rigorously demonstrate that projecting adversarial graodient
ga into the cone of gc can boost both standard and adversarial accuracy, we conduct an ablation study
by using traditional λ-weighted mean of ga and gc when ϕ ≤ γ and only gc when ϕ > γ. As shown
in Algorithm 2, we named such an ablated version of CA-AT as CA-AT-AV. The comparsion results
shown in Figure 12 for Vanilla AT, CA-AT and CA-AT-DV demonstrate that the boost of tradeoff
between standard accuracy and adversarial accuracy.

Ablation Study on Learning Rate and Batch Size. We conducted ablation study on different
training parameters such as learning rate and batch size in Fig. 13. The observation is, although batch
size and learning rate effect the standard accuracy and adversarial accuracies aganist various attacks,
CA-AT can consistently lead to better standard performance and adversarial robustnessn accorss
different batch size and learning rate.

Experimental Results for Larger Dataset. We also evaluated our method on Tiny-ImageNet.
Results presented in Table 5 demonstrate the superiority of CA-AT on large-scale dataset.

More Advanced Adversarial Loss.,Besides TRADES and CLP, we conducted more experiments on
MART shown in Table 6.

1https://github.com/thu-ml/ares
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Algorithm 2 CA-AT (Ablated Version)

Input: Training dataset D, Loss function L, Perturbation budget δ, Training epochs N , Initial model
parameter θ1, Projection margin threshold γ, learning rate lr, Trade-off Factor λ

Output: Trained model parameter θN+1

1: for t = 1 to N do
2: for each batch B in D do
3: Lc =

1
|B|

∑
(x,y)∈B L(x, y; θt)

4: La =
1

|B|
∑

(x,y)∈B max||ϵ||∞≤δ L(x+ ϵ, y; θt)

5: gc, ga = ∇θtLc,∇θtLa
6: ϕ = cos(gc, ga)
7: if ϕ < γ then
8: g∗ = λga + (1− λ)gc ▷ ϵ Averaging ga and gc instead of projection
9: else

10: g∗ = gc
11: end if
12: θt = θt − lr ∗ g∗
13: end for
14: θt+1 = θt
15: end for

Figure 12: Results for Ablation Study on CA-AT for ResNet18 on CIFAR10.
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PGD-L2 AutoPGD-L2 T-AutoPGD-L2
p = 2 γ = 0.8 λ = 0.5 γ = 0.8 λ = 0.5 γ = 0.8 λ = 0.5

ResNet18

0.5 0.8211 0.7759 0.67 0.5222 0.5356 0.5327
1 0.8207 0.7748 0.603 0.3036 0.261 0.2762

1.5 0.8194 0.7738 0.5652 0.2405 0.1483 0.1428
2 0.8187 0.7734 0.5331 0.2115 0.0904 0.088

PGD-L2 AutoPGD-L2 T-AutoPGD-L2
p = 2 γ = 0.8 λ = 0.5 γ = 0.8 λ = 0.5 γ = 0.8 λ = 0.5

ResNet34

0.5 0.8411 0.78 0.7534 0.5255 0.5301 0.5325
1 0.8412 0.7791 0.7249 0.3806 0.2571 0.2683

1.5 0.8403 0.7784 0.7022 0.3462 0.1446 0.1438
2 0.8386 0.7781 0.679 0.3196 0.0899 0.0905

Table 4: Evaluation Results for CA-AT (γ = 0.8) and vanilla AT (λ = 0.5) across different L2-based
attacks with various restriction θ.

(a) Different Learning Rate (b) Different Batch Size

Figure 13: Ablation Study for Different Training Hyperparameters including Learning Rate and
Batch Size.

Standard FGSM PGD AutoPGD MIFGSM T-FAB
Vanilla AT, λ = 0.5 0.4881 0.1872 0.152 0.1615 0.16 0.347

CA-AT, γ = 0.8 0.4989 0.254 0.1867 0.1753 0.2044 0.3584

Table 5: Results for Training PreActResNet18 on TinyImageNet

Standard T-AutoPGD T-FAB FGSM PGD AutoPGD MIFGSM FAB

ResNet 18 Vanilla AT, λ = 0.5 0.83 0.5344 0.657 0.6017 0.5343 0.2666 0.4483 0.55
CA-AT, γ = 0.8 0.8848 0.5381 0.6826 0.7953 0.782 0.669 0.7859 0.8151

ResNet 34 Vanilla AT, λ = 0.5 0.82 0.3624 0.503 0.4832 0.3466 0.2479 0.3359 0.6284
CA-AT, γ = 0.8 0.8857 0.4922 0.7357 0.8297 0.8466 0.7687 0.8466 0.8299

Table 6: Results for Training with MART loss on CIFAR10 with ResNet18

20


